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Abstract

We re-examine measure-category duality by a bitopological approach,

using both the Euclidean and the density topologies of the line. We give

a topological result (on convergence of homeomorphisms to the identity)

obtaining as a corollary results on infinitary combinatorics due to Kestelman

and to Borwein and Ditor. We hence give a unified proof of the measure

and category cases of Uniform Convergence Theorem for slowly varying

functions. We also extend results on very slowly varying functions of Ash,

Erdős and Rubel.
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1 Introduction

In a topological space one has one space and one topology. One often needs

to have one space and two comparable topologies, one stronger and one

weaker (as in functional analysis, where one may have the strong and weak

topologies in play, or the weak and weak-star topologies). The resulting

setting is that of a bitopological space, formalized in this language by Kelly

[Kel].

Measure-category duality is the theme of the well-known book by Oxtoby

[Oxt]. Here one has on the one hand measurable sets or functions, and

small sets are null sets (sets of measure zero), and on the other hand sets or

functions with the Baire property (briefly, Baire sets or functions), where

small sets are meagre sets (sets of the first category).

In some situations, one has a dual theory, which has a measure-theoretic

formulation on the one hand and a topological (or Baire) formulation on

the other. We present here as a unifying theme the use of two topologies,

each of which gives one of the two cases.

Our starting point is the density topology (introduced in [HauPau],

[GoWa], [Mar] and studied also in [GNN] – see also [CLO], and for textbook

treatments [Kech], [LMZ]). Recall that for T measurable, t is a (metric)

density point of T if limδ→0 |T ∩Iδ(t)|/δ = 1, where Iδ(t) = (t−δ/2, t+δ/2).
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By the Lebesgue Density Theorem almost all points of T are density points

([Hal] Section 61, [Oxt] Th. 3.20, or [Goff]). A set U is d-open (density-

open = open in the density topology d) if (it is measurable and) each of its

points is a density point of U. We mention five properties:

(i) The density topology is finer than (contains) the Euclidean topology

([Kech], 17.47(ii)). See [LMZ] for a textbook treatment of other such fine

topologies.

(ii) A set is Baire in the density topology iff it is (Lebesgue) measurable

([Kech], 17.47(iv)).

(iii) A Baire set is meagre in the density topology iff it is null ([Kech],

17.47(iii)). So (since a countable union of null sets is null) the conclusion

of the Baire theorem holds for the line under d :

(iv) (R, d) is a Baire space, i.e., the conclusion of the Baire theorem

holds ([Eng] Section 3.9).

(v) A function is d-continuous iff it is approximately continuous in Den-

joy’s sense ([Den]; [LMZ], p.1, 149).

The reader unfamiliar with the density topology may find it helpful to think,

in the style of Littlewood’s First Principle, of basic opens sets as being

intervals less some measurable set. See [Lit] Ch. 4, [Roy] Section 3.6 p.72.

Both measurability and the Baire property have been used as regularity

conditions, to exclude pathological situations. A classic instance is that

of additive functions, satisfying the Cauchy functional equation f(x + y) =

f(x)+f(y). Such functions are either very good – continuous, and so linear,

f(x) = cx for some c – or very bad (one can construct such functions from

Hamel bases, so this is called the Hamel pathology); see [BOst-SteinOstr] for

details. A further instance is our focus here, the theory of regular variation

[BGT], where each may be used as a regularity condition to prove the

basic result of the theory, the Uniform Convergence Theorem (UCT). The

present paper is a sequel to [BOst4] on generic regular variation, which

gave a common generalization of the measure and Baire cases. The theory

is usually developed in parallel, with the measure case regarded as primary

and the Baire case as secondary. Here, we develop the two cases together.

Our new viewpoint gives the interesting insight that it is in fact the Baire

case that is the primary one.

In Section 2 below we give our main result, the Category Embedding

Theorem (CET); the natural setting is a Baire space (as above). In Section

3 we give our unified treatment of the UCT, and extend to very slowly

varying functions in Section 4. We close in Section 5 with some remarks.
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2 Category Embedding Theorem (CET)

The three results of this section (or four, as Theorem 3 below has two cases)

develop a new aspect of measure-category duality. This has powerful appli-

cations: see Sections 3 and 4 below for the Uniform Convergence Theorem

(UCT) of regular variation, and Section 5 Remark 1 for numerous other

applications.

Theorem 1 below is a topological version of the Kestelman-Borwein-

Ditor (KBD) Theorem given at the end of this section (again see Section

5 Remark 1). The latter is a (homeomorphic) embedding theorem (see e.g.

[Eng] p. 67); Trautner uses the term covering principle in [Trau]. We need

the following definition.

Definition (weak category convergence). A sequence of homeomor-

phisms hn satisfies the weak category convergence condition (wcc) if:

For any non-empty open set U, there is an non-empty open set V ⊆ U

such that, for each k ∈ ω,

⋂
n≥k

V \h−1
n (V ) is meagre. (wcc)

Equivalently, for each k ∈ ω, there is a meagre set M such that, for

t /∈ M,

t ∈ V =⇒ (∃n ≥ k) hn(t) ∈ V.

We will see below in Theorem 2 that this is a weak form of convergence

to the identity and indeed Theorems 3E and D verify that, for zn → 0,

the homeomorphisms hn(x) := x + zn satisfy (wcc) in the Euclidean and in

the density topologies. However, it is not true that hn(x) converges to the

identity pointwise in the sense of the density topology; furthermore, whereas

addition (a two-argument operation) is not d-continuous (see [HePo]), trans-

lation (a one-argument operation) is. In what follows, the words quasi ev-

erywhere (q.e.), or for quasi-all points, mean for all points off a meagre set.

We will use for generically all to mean for quasi-all in the category case,

and for almost all in the measure case.

In Theorem 1 below, the topological space X may be assumed to be non-

meagre (of second category) in itself, and the Baire set T to be non-meagre,

as otherwise there is nothing to prove. To verify that X is non-meagre, one

would typically assume that X is a Baire space (see the Introduction).

Theorem 1 (Category Embedding Theorem – CET). Let X be

a topological space and hn : X → X be homeomorphisms satisfying (wcc).

Then, for any Baire set T, for quasi-all t ∈ T there is an infinite set Mt
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such that

{hm(t) : m ∈Mt} ⊆ T.

Proof. Take T Baire and non-meagre. We may assume that T = U\M
with U non-empty and open and M meagre. Let V ⊆ U satisfy (wcc). Since

the functions hn are homeomorphisms, the set

M ′ := M ∪
⋃

n
h−1

n (M)

is meagre. Writing ‘i.o.’ for ‘infinitely often’, put

W = h(V ) :=
⋂

k∈ω

⋃
n≥k

V ∩ h−1
n (V ) = lim sup[h−1

n (V ) ∩ V ]

= {x : x ∈ h−1
n (V ) ∩ V i.o.} ⊆ V ⊆ U.

So for t ∈ W we have t ∈ V and

vm := hm(t) ∈ V, (1)

for infinitely many m – for m ∈ Mt, say. Now V ∩ W is co-meagre in V.

Indeed

V \W =
⋃

k∈ω

⋂
n≥k

V \h−1
n (V ),

which by (wcc) is meagre.

Take t ∈ W\M ′ ⊆ U\M = T, as V ⊆ U and M ⊆ M ′. Thus t ∈ T. For

m ∈ Mt since t /∈ M ′, t /∈ h−1
m (M) as h−1

m (M) ⊆ M ′; but vm = hm(t) so

vm /∈ M. By (1), vm ∈ V \M ⊆ U\M = T. Thus {hm(t) : m ∈ Mt} ⊆ T for

t in a co-meagre set, as asserted. ¤

Theorem 1 implies that for Baire T the sets lim sup h−1
n (T ) and T are

equal modulo a meagre set. Clearly the result relativizes to any open subset

of T ; that is, the embedding property is a local one. The following theorem

sheds some light on the significance of the category convergence condition

(wcc). The result is capable of improvement, by reference to more gen-

eral (topological) countability conditions. (Typically these lift category and

measure arguments out of the classical context of separable metric spaces;

in this connection, for an account of Čech-completeness and metrization

theory see e.g. [Eng] §3.9 and 4.4, and for an account of p-spaces, their

common generalization, see [Arh] §7.) Here, for instance, a σ-discrete fam-

ily could replace the countable family B of the theorem as the generator

of the coarser topology; such a replacement would offer a route to Bing’s

Metrization Theorem, given sufficent regularity assumptions – see [Eng] Th.

4.4.8.
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Theorem 2 (Convergence to the identity). Assume that the home-

omorphisms hn : X → X satisfy the weak category convergence condition

(wcc) and that X is a Baire space. Suppose there is a countable family B
of open subsets of X which generates a (coarser) Hausdorff topology on X.

Then, for quasi-all (under the original topology) t, there is an infinite Nt

such that

limm∈Nt hm(t) = t.

Proof. For U in the countable base B of the coarser topology and

for k ∈ ω select open Vk(U) so that Mk(U) :=
⋂

n≥k Vk(U)\h−1
n (Vk(U)) is

meagre. Thus

M :=
⋃

k∈ω

⋃
U∈B

Mk(U)

is meagre. Now Bt = {U ∈ B : t ∈ U} is a basis for the neighbourhoods of

t. But, for t ∈ Vk(U)\M, we have t ∈ h−1
m (Vk(U)) for some m = mk(t) ≥ k,

i.e. hm(t) ∈ Vk(U) ⊆ U. Thus hmk(t)(t) → t, for all t /∈ M. ¤

We now deduce the category and measure cases of the Kestelman-Borwein-

Ditor Theorem (Th. KBD, stated below) as two corollaries of the above

theorem by applying it first to the usual and then to the density topology

on the reals, R.

For our first application we take X = R with the density topology, a

Baire space. Let zn → 0 be a null sequence. Put

hn(x) = x− zn, so that h−1
n (x) = x + zn.

The topology is translation-invariant, and so each hn is a homeomorphism.

To verify the weak category convergence of the sequence hn, consider U

non-empty and d-open; then consider any measurable non-null V ⊆ U . To

verify (wcc) in relation to V, it now suffices to prove the following result,

which is of independent interest (cf. Littlewood’s First Principle, as above).

Theorem 3D (Verification Theorem – D). Let V be measurable and

non-null. For any null sequence {zn} → 0 and each k ∈ ω,

Hk :=
⋂

n≥k
V \(V + zn) is of measure zero, so meagre in the d-topology.

Proof. Suppose otherwise. Then for some k, |Hk| > 0. Write H for Hk.

Since H ⊆ V, we have, for n ≥ k, that ∅ = H ∩ h−1
n (V ) = H ∩ (V + zn) and

so a fortiori ∅ = H ∩ (H + zn).

Let u be a density point of H. Thus for some interval Iδ(u) = (u −
δ/2, u + δ/2) we have

|H ∩ Iδ(u)| > 3

4
δ.
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Let E = H∩Iδ(u). For any zn, we have |(E+zn)∩(Iδ(u)+zn)| = |E| > 3
4
δ.

For 0 < zn < δ/4, we have |(E + zn)\Iδ(u)| ≤ |(u + δ/2, u + 3δ/4)| = δ/4.

Put F = (E + zn) ∩ Iδ(u); then |F | > δ/2.

But δ ≥ |E ∪ F | = |E|+ |F | − |E ∩ F | ≥ 3
4
δ + 1

2
δ − |E ∩ F |. So

|H ∩ (H + zn)| ≥ |E ∩ F | ≥ 1

4
δ,

contradicting ∅ = H ∩ (H + zn). This completes the proof. ¤

A similar but simpler proof establishes the following result which implies

(wcc) for the Euclidean topology on R; here for given open U we may take

any open interval V ⊆ U.

Theorem 3E (Verification Theorem – E). Let V be an open interval

in R. For any null sequence {zn} → 0 and each k ∈ ω,

Hk :=
⋂

n≥k
V \(V + zn) is empty.

We are now ready to state and prove Th. KBD. As with the CET,

the set T here may be assumed to be non-meagre/non-null, since otherwise

there is nothing to prove.

Theorem KBD (Kestelman-Borwein-Ditor Theorem). Let {zn} →
0 be a null sequence of reals. If T is Baire/Lebesgue measurable, then for

generically all t ∈ T there is an infinite set Mt such that

{t + zm : m ∈Mt} ⊆ T.

Proof. Th. CET may be applied to hn(x) as above in view of Th. 3E

or 3D respectively in the category/measure cases. ¤

3 Uniform Convergence Theorem (UCT)

As an illustration of the power of the results above, we use them to give a

short proof of the fundamental theorem of regular variation, the Uniform

Convergence Theorem (UCT) below (see [BGT] Section 1.2 for background

and references). This has traditionally been proved for the measure and

Baire cases separately; an old question, raised in [BGT] p. 11 and answered

in [BOst4], is that of finding the minimal common generalization of mea-

surability and the Baire property (the ‘No Trumps’ property below). Here

we handle the two cases together by working bitopologically, reducing the

measure case to the Baire case, and greatly simplify the proof.
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Recall (see [BGT]) that a function h : R → R is slowly varying (in

additive notation) if for every sequence {xn} → ∞ and each u ∈ R
limn→∞ h(u + xn)− h(xn) = 0. (SV)

Theorem 4 (Uniform Convergence Theorem – UCT). If h is

slowly varying, and measurable, or Baire, then (SV) holds uniformly in u

on compacts.

Proof. Suppose otherwise. Then for some measurable/Baire slowly

varying function h and some ε > 0, there is {un} → u and {xn} → ∞ such

that

|h(un + xn)− h(xn)| ≥ 2ε. (2)

Now, for each point y, limn |h(y + xn) − h(xn)| = 0 by slow variation, so

there is k = k(y) such that, for n ≥ k,

|h(y + xn)− h(xn)| < ε.

For k ∈ ω, define the measurable/Baire set

Tk :=
⋂

n≥k
{y : |h(y + u + xn)− h(xn)| < ε}.

Since {Tk : k ∈ ω} covers R, for some k ∈ ω the set Tk is non-null/non-

meagre. Since zn := un − u is null, we have by Th. KBD that for some

t ∈ Tk and for some infinite Mt, {t + zm : m ∈Mt} ⊆ Tk. Thus

|h(t + um + xm)− h(xm)| < ε.

By slow variation of h at t, since um + xm → ∞ we have that for m large

enough and in Mt

|h(t + um + xm)− h(um + xm)| < ε.

The last two inequalities together imply that for m large enough and in Mt

|h(um + xm)− h(xm)| ≤ |h(um + xm)− h(t + um + xm)|
+|h(t + um + xm)− h(xm)|

< 2ε,

and this contradicts (2). ¤

This strikingly brief proof is inspired by the ‘fourth proof’ in [BGT],

from [BG1], itself based on work of Csiszár and Erdős [CsEr]. It is a much

streamlined version of that in [BOst1], the main simplification being enabled

by use of CET (Th. 1) to prove Th. KBD (all that the proof above uses

explicitly). For another proof, albeit for the measurable case only, see [Trau].

Trautner employs a theorem of Egorov (cf. Littlewood’s Third Principle,

see [Lit] Ch. 4, [Roy] Section 3.6 and Problem 31, or [Hal] Section 55 p.

243); see [BGT] p. ixx and p. 10.
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4 UCT for very slowly varying functions

We recall from [AER] that h is very slowly varying if for some non-decreasing

positive ϕ

{h(x + u)− h(x)}ϕ(x) → 0 (x →∞) ∀u ∈ R;

h is ϕ-slowly varying if this holds for a specific ϕ (see also [BGT] 1.2.5 p.

11, where ϕ is 1/g, and p.134-5). If ϕ is bounded (in which case we may

take ϕ ≡ 1), this is just slow variation; if ϕ ↑ ∞, h is more than slowly

varying, whence the terminology. Note that as ϕ is monotone, ϕ itself is

both measurable and Baire.

It is a remarkable fact, due to Ash, Erdös and Rubel [AER], that if ϕ

grows fast enough we can obtain a uniform convergence theorem with no

regularity condition on h whatever. We summarize their results as follows.

Theorem AER.

(i) If h is ϕ-slowly varying and measurable, then h is ϕ-slowly varying

uniformly on compact u-sets.

(ii) If h is ϕ-slowly varying, and ϕ satisfies

ϕ(x)
∞∑

n=0

1/ϕ(x + n) ≤ B < ∞ ∀x ≥ 0, (AER)

then h is uniformly ϕ-slowly varying.

(iii) If (AER) does not hold (e.g. for ϕ ≡ 1), there is a function h = h(ϕ)

which is ϕ-slowly varying but not uniformly so.

To formulate our generalization of Theorem AER(i), we recall some com-

binatorial terminology from [BOst4], concerning ‘No Trumps’ or NT (see

Section 5 for an explanation of this term), applied to sequences of sub-

sets of the line and to functions, which will provide our desired common

generalization of the measurable and Baire cases: see Th. 5 below.

Definition. For {Tk : k ∈ ω} a countable family of subsets of R, write

NT({Tk : k ∈ ω}) to mean that, for every bounded/convergent sequence

{un} in R, some Tk contains a translate of a subsequence of {un}, i.e. there

is k ∈ ω, infinite M ⊆ ω, t ∈ R such that

{t + un : n ∈M} ⊆ Tk.

The term appears in [BOst5] on subadditive functions. When Tk = S for

all k, we write this as NT(S). This allows a formulation of when a function

may be regarded as having ‘nice’ level sets:

Hk(h) := {t : |h(t)| < k}, (k ∈ ω),
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as in [BOst4]. Thus, since R is the union of the level sets of a function, we

have as an immediate corollary of the Kestelman-Borwein-Ditor Theorem:

Theorem 5 (No Trumps Theorem, cf. [BOst4]). For R under either

the density or the Euclidean topology and h : R → R measurable/Baire,

NT({Hk(h) : k ∈ ω}) holds.

Proof. Since R =
⋃

k∈ω
Hk(h) and R is a Baire space under either

topology, Hk(h) is non-meagre/non-null for some k. For this k, by Th.

KBD the set Hk(h) contains (by quasi-all/almost all members) translates

of any bounded sequence. ¤

Thus the NT property is a common generalization of both measurability

and the Baire property. We now extend this to the setting of [AER].

Definitions. 1. For given increasing ϕ, {xn} → ∞ and ε > 0, we define

the {xn}-stabilized ε-level sets of h by

T ε
k (h) :=

⋂
n≥k

{z ∈ R+ : |h(z + xn)− h(xn)|ϕ(xn) < ε}.

2. Say that h is a ϕ-NT function if for each ε > 0, NT{T ε
k (h) : k ∈ ω}

holds.

If h is both ϕ-NT and ϕ-slowly varying, say that h is ϕ-NT-slowly

varying. The following result contains the UCT as the case ϕ ≡ 1, and its

proof is similar to that of Th. 4.

Theorem 6 (ϕ-UCT, cf. [AER]). Suppose that h is ϕ-NT-slowly

varying. Then h is uniformly ϕ-slowly varying.

Proof. As usual suppose for some xn → ∞ and some bounded un we

have |h(un + xn) − h(xn)|ϕ(xn) > 2ε. Note that, as ϕ is increasing and

un > 0, we haveϕ(xn)/ ϕ(xn + un) ≤ 1. As h is ϕ-slowly varying, for each

z ∈ R+, |h(z + xn)− h(xn)|ϕ(xn) tends to 0, so for ε > 0 is less than ε for

large n. So for

T ε
k = T ε

k (h) :=
⋂

n≥k
{z ∈ R+ : |h(z + xn)− h(xn)|ϕ(xn) < ε},

R+ =
⋃

k∈ω
T ε

k . By NT{T ε
k (h) : k ∈ ω} there are k ∈ ω, t ∈ Tk and an

infinite Mt s.t.{t + um : m ∈ Mt} ⊂ T ε
k . Now, as un + xn → ∞, for some

N ≥ k, and all n ≥ N, |h(t + un + xn) − h(un + xn)|ϕ(xn) < ε (since

h is ϕ-slowly varying at t). So for m > N with m in Mt we also have
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|h(t + um + xm)− h(xm)|ϕ(xm) < ε, since ϕ is increasing. Combining,

|h(um + xm)− h(xm)|ϕ(xm)

≤ |h(t + um + xm)− h(xm)|ϕ(xm) + |h(t + um + xm)− h(um + xm)|ϕ(xm)

≤ |h(t + um + xm)− h(xm)|ϕ(xm)

+|h(t + um + xm)− h(um + xm)|ϕ(xm + um) · (ϕ(xm)/ ϕ(xm + um))

≤ |h(t + um + xm)− h(xn)|ϕ(xm) + |h(t + um + xm)− h(um + xm)|ϕ(xm + um)

≤ 2ε,

a contradiction. ¤

By Th. KBD we have two immediate corollaries, the first of which is

new.

Theorem 6B (Baire ϕ-UCT). Suppose that h is ϕ-slowly varying and

Baire. Then h is uniformly ϕ-slowly varying.

Theorem 6M (Measurable ϕ-UCT, [AER]). Suppose that h is ϕ-

slowly varying and measurable. Then h is uniformly ϕ-slowly varying.

For other results related to [AER], see our recent sequel to it, [BOst2].

5 Remarks

1. The Category Embedding Theorem and infinite combinatorics.

Results of van der Waerden type for the reals are derived from the

CET in [BOst-KCC] and an Interior Points Theorem of Steinhaus type

(see [BGT] Th. 1.1.1 for background) in [BOst-SteinOstr]. For applications

beyond the real line including the theory of topological regular variation see

[BOst12], [BOst13] and [Ost2]. Applications of Th. KBD are wide rang-

ing: in addition to the UCT of Sections 3 and 4 they include automatic

continuity ([BOst6], [BOst7], [BOst-SteinOstr]), the theory of subadditive

functions [BOst5], combinatorics in function spaces [BOst9] and more gen-

erally in topological groups and normed groups [BOst12]. For an extension

see [BOst10].

The KBD Theorem in the measure case is due to Borwein and Ditor

[BoDi], but was already known much earlier albeit in somewhat weaker

form by Kestelman ([Kes] Th. 3), and rediscovered by Trautner [Trau] (see

the end of Section 3).

2. No Trumps.

The term No Trumps in Theorem 5, a combinatorial principle, is used
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in close analogy with earlier combinatorial principles, in particular Jensen’s

Diamond 3 [Je] and Ostaszewski’s Club ♣ [Ost1]. It also plays a key role in

the analysis of the UCT, as is shown in [BOst1]. Our proof of Th. 5 makes

explicit an argument implicit in [BG1], p. 482 (and repeated in [BGT],

p. 9), itself inspired by [CsEr] (see also [BOst1], [BOst4]). The intuition

behind our formulation may be gleaned from forcing arguments in [Mil1],

[Mil2], [Mil3], [Mil4].

3. Measure-Category Duality

The duality between measure and category emerged in the 1920s, largely

in the work of Sierpiński. See the commentary by Hartman [Hart] in

Sierpiński’s selected works ([Sie1], [Sie2]). The theme is explored at text-

book length in [Oxt]; see Ch. 19 for duality (including the Sierpiński-Erdős

Duality Principle under the Continuum Hypothesis), Ch. 17 (in ergodic

theory, duality extends to some but not all forms of the Poincaré recurrence

theorem) and Ch. 21 (in probability theory, duality extends as far as the

zero-one law but not to the strong law of large numbers). Duality also fails

to extend to the theory of random series [Kah]. For further limitations of du-

ality, see [DoF], [Bart], [BGJS]. For Wilczyński’s theory of a.e.-convergence

associated with σ-ideals, see [PWW]. For a set-theoretic explanation of the

duality in regular variation in terms of forcing see [BOst1] Section 5, [Mil1]

Section 6.

References

[Arh] A.V. Arhangel’skii, Paracompactness and metrization.

The method of covers in the classification of spaces. in

General topology III (ed. A.V. Arhangel’skii), 1-70, En-

cyclopaedia Math. Sci., 51, Springer, 1995.
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real analysis and potential theory, Lecture Notes in Math-

ematics, 1189, Springer, 1986.

[Mar] N.F.G. Martin, A topology for certain measure spaces,

Trans. Amer. Math. Soc. 112 (1964) 1–18.

[Mil1] A.W. Miller, Infinite combinatorics and definabil-

ity, Ann. of Pure and Applied Mathematical Logic

14



41(1989), 179-203 (see also updated web version at :

http://www.math.wisc.edu/˜miller/res/).

[Mil2] A.W. Miller, Special sets of reals, 415-432, in H.

Judah (ed.), Set Theory of the Reals, Israel Math-

ematical Conference Proceedings, vol. 6, Proceed-

ings of the Winter Institute held at Bar-Ilan Uni-

versity, Ramat Gan, 1993. (or see web version at :

http://www.math.wisc.edu/˜miller/res/).

[Mil3] A.W. Miller, Descriptive set theory and forcing, Springer,

1995.

[Mil4] A.W. Miller, Souslin’s hypothesis and convergence in

measure, Proc. Amer. Math. Soc. 124 (1996), no. 5, 1529–

1532.

[Ost1] A.J. Ostaszewski, On countably compact perfectly normal

spaces, J. London Math. Soc. 14 (1976), 505-516.

[Ost2] A. J. Ostaszewski, Regular variation: uniform bounded-

ness, multiplicative flows and knit products, Topology

Proc., to appear.

[Oxt] J. C. Oxtoby, Measure and category, 2nd ed., Grad. Texts

Math. 2, Springer, New York, 1980.

[PWW] W. Poreda, E. Wagner-Bojakowska, W. Wilczyński, A
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