
Further Mathematical Methods (Linear Algebra)

Solutions For The 2000 Examination

Question 1

(a) For a non-empty subset W of V to be a subspace of V we require that, for all vectors x,y ∈ W
and all scalars α ∈ R:

i. Closure under vector addition: x + y ∈ W .

ii. Closure under scalar multiplication: αx ∈ W .

To be an inner product on V , a function 〈x,y〉 which maps vectors x,y ∈ V to R must be such that:

i. Positivity: 〈x,x〉 ≥ 0 and, 〈x,x〉 = 0 if and only if x = 0.

ii. Symmetry: 〈x,y〉 = 〈y,x〉.

iii. Linearity: 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉.

for all vectors x,y, z ∈ V and all scalars α, β ∈ R.

(b) We consider the vector space which consists of all 2× 2 real matrices given by

V =
{[

a b
c d

] ∣∣∣∣ a, b, c, d ∈ R
}

,

where the operations of vector addition and scalar multiplication are defined in the normal way. To
show that the set W ⊂ V defined by

W =
{[

a 0
c d

] ∣∣∣∣ a, c, d ∈ R
}

,

is a subspace of V , we start by noting that W is a subset of V since any matrix of the form

[
a 0
c d

]
can be written as

[
a b
c d

]
,

with b = 0. So, to show that W is a subspace of V , we take any two vectors in W , say

u =
[
a 0
c d

]
and v =

[
a′ 0
c′ d′

]
,

and any scalar α ∈ R and note that W is closed under:

• vector addition since

u + v =
[
a 0
c d

]
+

[
a′ 0
c′ d′

]
=

[
a + a′ 0
c + c′ d + d′

]
,

and so, u + v ∈ W too since a + a′, b + b′, d + d′ ∈ R.

• scalar multiplication since

αu =
[
αa 0
αc αd

]
,

and so, αu ∈ W too since αa, αb, αd ∈ R.
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as required. Clearly, the matrix which plays the role of the additive identity (i.e. 0) in this vector
space is [

0 0
0 0

]
,

since

u + 0 =
[
a 0
c d

]
+

[
0 0
0 0

]
=

[
a 0
c d

]
= 0.

(c) We are asked to show that the function defined by
〈[

a 0
c d

]
,

[
a′ 0
c′ d′

]〉
= aa′ + cc′ + dd′,

is an inner product on W . To do this, we show that this formula satisfies all of the conditions given
in part (a). Thus, taking any three vectors

u =
[
a 0
c d

]
, v =

[
a′ 0
c′ d′

]
and w =

[
a′′ 0
c′′ d′′

]
,

in W and any two scalars α and β in R we have:

i. 〈u,u〉 = a2 + c2 + d2 which is the sum of the squares of three real numbers and as such is real
and non-negative. Further, to show that 〈u,u〉 = 0 if and only if u = 0 (where here, 0 is the
2× 2 zero matrix), we note that:

• LTR: If 〈u,u〉 = 0, then a2 + c2 + d2 = 0. But, this is the sum of the squares of three
real numbers and so it must be the case that a = c = d = 0. Thus, u = 0.

• RTL: If u = 0, then a = c = d = 0. Thus, 〈u,u〉 = 0.

(as required).

ii. Obviously, 〈u,v〉 = aa′ + cc′ + dd′ = a′a + c′c + d′d = 〈v,u〉.
iii. We note that the vector αu + βv is given by

αu + βv = α

[
a 0
c d

]
+ β

[
a′ 0
c′ d′

]
=

[
αa + βa′ 0
αc + βc′ αd + βd′

]
,

and so we have

〈αu + βv,w〉 = (αa + βa′)a′′ + (αc + βc′)c′′ + (αd + βd′)d′′

= α(aa′′ + cc′′ + dd′′) + β(a′a′′ + b′b′′ + c′c′′)
∴ 〈αu + βv,w〉 = α〈u,w〉+ β〈v,w〉,

Consequently, the formula given above does define an inner product on W (as required).

(d) To find a matrix A such that
[M]S = A[M]S′ ,

where [M]S and [M]S′ are the coordinate vectors of M ∈ W relative to the bases

S =
{[

1 0
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
,

and

S′ =
{[

1 0
1 1

]
,

[
1 0
0 1

]
,

[
0 0
−1 1

]}
,

respectively, we use the definition of coordinate vector. That is, we use the fact that the equality

a

[
1 0
0 0

]
+ b

[
0 0
1 0

]
+ c

[
0 0
0 1

]
= a′

[
1 0
1 1

]
+ b′

[
1 0
0 1

]
+ c′

[
0 0
−1 1

]
,
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holds if and only if 


a
b
c




S

= A




a′

b′

c′




S′

,

where

A =




1 1 0
1 0 −1
1 1 1


 ,

is the required matrix.
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Question 2. The required Leslie matrix is

L =




1 3 0
1/4 0 0
0 1/2 0


 ,

and to find its unique real positive eigenvalue we solve the equation
∣∣∣∣∣∣

1− λ 3 0
1/4 −λ 0
0 1/2 −λ

∣∣∣∣∣∣
= 0 =⇒ (1− λ)λ2 +

3
4
λ = 0 =⇒ λ

(
λ2 − λ− 3

4

)
= 0,

where we have simplified the determinant using a cofactor expansion on the third column. This can
be factorised to give:

λ

(
λ− 3

2

)(
λ +

1
2

)
= 0,

and so the eigenvalues are λ = 0, 3
2 ,−1

2 . Thus, the unique positive real eigenvalue is λ1 = 3
2 and this

is clearly dominant since it is larger in magnitude than the other two (or, alternatively, since we have
two successive fertile classes). To describe the long-term behaviour of this population, we recall from
the lectures that

x(k) ' cλk
1v1 and x(k) ' λ1x(k−1),

for large k since we have a dominant eigenvalue. To find v1, an eigenvector corresponding to λ1, it
is probably easiest to recall that:

v1 =




1
b1/λ1

b1b2 λ2
1


 =




1
1/6
1/18


 and so we take v1 =




18
3
1


 .

Consequently, in the long-term, we have

x(k) ' c

(
3
2

)k



18
3
1


 and x(k) ' 3

2
x(k−1),

where the first result tells us that

The proportion of the female population in each age-class becomes constant in the ratio
18:3:1.

whereas the second result tells us that

The population in each age class increases by a factor of 3
2 (i.e. increases by 50%) every

time period (i.e. every twenty years in this case).

(b) The required Leslie matrix and the initial population distribution vector are given by:

L =
[

1 3
1/4 0

]
and x(0) =

[
320
320

]
.

So, to find an exact formula for the population distribution vector at the end of the kth time period
we note that

x(k) = Lkx(0) = PDkP−1x(0),

where D is a diagonal matrix and the matrix P is invertible. To find these two matrices we can see
that the eigenvalues of L are given by the equation:
∣∣∣∣
1− λ 3
1/4 −l

∣∣∣∣ = 0 =⇒ −λ(1− λ)− 3
4

= 0 =⇒ λ2 − λ− 3
4

= 0 =⇒
(

λ− 3
2

)(
λ +

1
2

)
= 0,

i.e. the eigenvalues of L are λ = 3
2 and λ = −1

2 . The corresponding eigenvectors are then given by:
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• For λ = 3
2 , we have [−1/2 3

1/4 −3/2

] [
x
y

]
= 0 =⇒ −x + 6y = 0,

i.e. x = 6y for any y ∈ R, and so a corresponding eigenvector would be [6, 1]t.

• For λ = −1
2 , we have [

3/2 3
1/4 1/2

] [
x
y

]
= 0 =⇒ x + 2y = 0,

i.e. x = −2y for any y ∈ R, and so a corresponding eigenvector would be [−2, 1]t.

Consequently, we can take our matrices P and D to be

P =
[
6 −2
1 1

]
and D =

[
3/2 0
0 −1/2

]
,

and so, we have

P−1 =
1
8

[
1 2
−1 6

]
,

as well. Hence, to calculate x(k) = PDkP−1x(0), we note that

DkP−1x(0) =
1
8

[
(3/2)k 0

0 (−1/2)k

] [
1 2
−1 6

] [
320
320

]
=

[
(3/2)k 2(3/2)k

−(−1/2)k (−1/2)k

] [
40
40

]
= 40

[
3(3/2)k

5(−1/2)k

]
,

and so,

x(k) = PDkP−1x(0) = 40
[
6 −2
1 1

] [
3(3/2)k

5(−1/2)k

]
= 40

[
18(3/2)k − 10(−1/2)k

3(3/2)k + 5(−1/2)k

]
,

is the required exact formula for x(k).
The above expression for x(k) gives the population distribution vector at time tk = 3000+20k years,
so for the population distribution vector in the year 3040, we want to evaluate this for k = 2. Thus,

x(2) = 40
[
18(3/2)2 − 10(−1/2)2

3(3/2)2 + 5(−1/2)2

]
= 10

[
18× 9− 10
3× 9 + 5

]
=

[
1520
320

]
,

is the required population distribution vector.

(c) As the females are now infertile, the Leslie matrix for this population is

L =
[

0 0
1/4 0

]
.

Thus, we can see that

x(3) = Lx(2) =
[

0 0
1/4 0

] [
1520
320

]
=

[
0

1520/4

]
,

and so,

x(4) = Lx(3) =
[

0 0
1/4 0

] [
0

1520/4

]
=

[
0
0

]
,

i.e. the female population dies out after 40 years, i.e. in the year 3080.
Or, alternatively, noting that the maximum lifespan of a female in this population is forty years, it
should be clear that (since no new females are being born after 3040) they will all be dead within
forty years, i.e. by the year 3080.
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Question 3

(a) We are given that Y and Z are subspaces of a vector space X and we are asked to show that the
following two statements are equivalent:

I. X = Y + Z and every x ∈ X can be written uniquely as x = y + z with y ∈ Y and z ∈ Z.

II. X = Y + Z and Y ∩ Z = {0}.
That is, we need to show that I is true if and only if II is true. So, as this is an ‘if and only if’
statement we have to show that it holds ‘both ways’:
If I, then II: We are given that X = Y + Z and every x ∈ X can be written uniquely as x = y + z
with y ∈ Y and z ∈ Z and so noting that:

• We are allowed to assume that X = Y + Z.

• Taking any vector u ∈ Y ∩ Z we have u ∈ Y and u ∈ Z. Now, as u ∈ X and 0 is in both Y
and Z (since they are subspaces of X), we can write

u = 0 + u = u + 0,

and so, by uniqueness, we have u = 0. Thus, Y ∩ Z = {0}.
we have X = Y + Z and Y ∩ Z = {0} (as required).
If II, then I: We are given that X = Y + Z and Y ∩ Z = {0} and so noting that:

• We are allowed to assume that X = Y + Z.

• Consider any vectors y, y′ ∈ Y and any vectors z, z′ ∈ Z which are such that

x = y + z = y′ + z′.

On re-arranging, this gives
y − y′ = z′ − z,

where y − y′ ∈ Y and z′ − z ∈ Z as Y and Z are subspaces of X. So, as y − y′ = z′ − z, the
vector given by these differences must be in Y ∩ Z = {0}, i.e. y − y′ = z′ − z = 0. Thus, we
have y = y′ and z = z′, and so there is only one way of writing x ∈ X in terms of y ∈ Y and
z ∈ Z.

we have X = Y + Z and every x ∈ X can be written uniquely as x = y + z with y ∈ Y and z ∈ Z
(as required).

(b) Given that X = Y ⊕Z (i.e. the subspaces X, Y and Z satisfy I or II as given above), we define
the projection P from X onto Y parallel to Z to be a mapping P : X → Y such that for any x ∈ X
we have Px = y where x = y + z with y ∈ Y and z ∈ Z.
To show that P is idempotent, we note that:

• For any y ∈ Y ⊆ X, we can write y = y + 0 and so Py = y.

• So, for any x ∈ X, we can write x = y + z with y ∈ Y and z ∈ Z, and so we have

Px = y =⇒ P2x = Py =⇒ P2x = y,

since Py = y. But, Px = y, and so this gives us P2x = Px for any x ∈ X. Thus, P2 = P and
so P is idempotent.

(as required).

(c) We are given that A be a real matrix where R(A) and R(A)⊥ denote the range of A and the
orthogonal complement of R(A) respectively. Now, we let Ps be a projection of any vector s onto
R(A) parallel to R(A)⊥, and this is clearly going to be the orthogonal projection of s onto R(A). So,
to show that this vector, i.e. Ps, is the vector in R(A) closest to s, we note that:
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• Ps is clearly in R(A) since P projects vectors onto R(A).

• Taking r to be any vector in R(A), we can construct the vector u = Ps− r and this is in R(A)
too (since R(A) is a vector space). Now, the ‘distance’ between the vectors s and r is given by

‖s− r‖2 = ‖s− Ps + u‖2 = ‖(I− P)s + u‖2,

So, as u ∈ R(A) and (I − P)s ∈ R(A)⊥ we can apply the Generalised Theorem of Pythagoras,
to get

‖s− r‖2 = ‖(I− P)s‖2 + ‖u‖2,

and this quantity is minimised when u = 0. Thus, the vector in R(A) closest to s is given by
u = 0, i.e. r = Ps.

(as required).

(d) Hence, or otherwise, we are asked to find the least squares estimate of the parameters m and c
when x and y are related by the expression y = mx + c and we are given the data:

x 1 0 -1
y 3 -1 1

To start with, we note that the relationship that the parameters that m and c should satisfy gives
us a set of three [inconsistent] equations, i.e.

m + c = 3
c = −1

−m + c = 1

and we can write these in the form Ax = b using

A =




1 1
0 1
−1 1


 , x =

[
m
c

]
and b =




3
−1
1


 .

Now, the ‘hence or otherwise’ indicates that there are [at least] two methods and so, let’s look at
them both:
‘Hence’ The least squares estimate of these parameters are the values of m and c which minimise
the quantity ‖Ax− b‖. But, since Ax is just a vector in R(A), we have

R(A) = Lin








1
0
−1


 ,




1
1
1






 ,

and so, the vector we seek will be of the form

m




1
0
−1


 + c




1
1
1


 .

Indeed, we seek the values of m and c which make this vector closest to the vector [3,−1, 1]t. But,
by inspection we can see that

R(A)⊥ = Lin








1
−2
1






 ,

(since the vector [1,−2, 1]t is orthogonal to both [1, 0,−1]t and [1, 1, 1]t) and so, by part (c), as



3
−1
1


 =




1
0
−1


 +




1
1
1




︸ ︷︷ ︸
∈R(A)

+




1
−2
1




︸ ︷︷ ︸
∈R(A)⊥

,
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we can see that orthogonally projecting the vector [3,−1, 1]t onto R(A) using P yields

P




3
−1
1


 =




1
0
−1


 +




1
1
1


 ,

i.e. x∗ = [m∗, c∗]t = [1, 1]t.
‘Otherwise’ We know from lectures that a least squares solution to the matrix equation Ax = b is
given by x∗ = (AtA)−1Atb and so, since

AtA =
[
1 0 −1
1 1 1

] 


1 1
0 1
−1 1


 =

[
2 0
0 3

]
=⇒ (AtA)−1 =

1
6

[
3 0
0 2

]
,

and

Atb =
[
1 0 −1
1 1 1

]


3
−1
1


 =

[
2
3

]
,

we have [
m∗

c∗

]
= x∗ = (AtA)−1Atb =

1
6

[
3 0
0 2

] [
2
3

]
=

[
1
1

]
,

as the least squares estimate for m and c.

8



Question 4.

(a) A complex matrix A is called anti-Hermitian if A† = −A (where A† denotes the complex conjugate
transpose of A). We are asked to show that:

• The non-zero eigenvalues of an anti-Hermitian matrix are all purely imaginary.

Let λ be a non-zero eigenvalue of the anti-Hermitian matrix A with corresponding eigenvector
x, i.e. Ax = λx. Multiplying through by x†, we get

x†Ax = λx†x, (i)

and taking the complex conjugate transpose of this yields,

x†A†x = λ∗x†x =⇒ −x†Ax = λ∗x†x, (ii)

since A is anti-Hermitian. Now, adding (i) and (ii) together we get,

(λ + λ∗)x†x = 0,

and so as x†x = ‖x‖2 6= 0 (since x is an eigenvector) we have λ = −λ∗. Thus, since λ 6= 0, λ is
purely imaginary (as required).

• The eigenvectors of an anti-Hermitian matrix corresponding to distinct eigenvalues are orthog-
onal.

Let A be an anti-Hermitian matrix and let x and y be eigenvectors corresponding to the distinct
eigenvalues λ and µ respectively of A. (Without loss of generality, we assume that µ 6= 0.) Thus,
we have

Ax = λx and Ay = µy,

which on multiplying both sides of these expressions by y† and x† respectively yields

y†Ax = λy†x and x†Ay = µx†y.

Now, taking the complex conjugate transpose of the latter expression gives

y†A†x = µ∗y†x =⇒ −y†Ax = µ∗y†x,

since A is anti-Hermitian. So, equating our two expressions for y†Ax we get

(λ + µ∗)y†x = 0 =⇒ (λ− µ)y†x = 0,

since µ is non-zero, and hence purely imaginary. Thus, we have

y†x = 0 =⇒ 〈y,x〉∗ = 0 =⇒ 〈x,y〉 = 0,

and so the eigenvectors x and y are orthogonal (as required).

(b) A complex matrix A is normal if A†A = AA†. Clearly, anti-Hermitian matrices are normal since

A†A = −A2 = AA†.

(c) To find the spectral decomposition of the matrix

A =




i 1 0
−1 0 −1
0 1 i


 ,

where i2 = −1, we start by noting that this matrix is anti-Hermitian and hence it is normal by part
(b). So, to find the eigenvalues of A, we solve the determinant equation given by
∣∣∣∣∣∣

i− λ −1 0
−1 −λ −1
0 1 i− λ

∣∣∣∣∣∣
= 0 =⇒ (i− λ)[−λ(i− λ) + 1] + (i− λ) = 0 =⇒ (λ− i)(λ2 − iλ + 2) = 0.

Factorising this gives (λ− i)(λ− 2i)(λ + i) = 0 and so, the eigenvalues are λ = ±i, 2i. We now need
to find an orthonormal set of eigenvectors corresponding to these eigenvalues, i.e.
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• For λ = i, a corresponding eigenvector [x, y, z]t is given by



0 1 0
−1 −i −1
0 1 0







x
y
z


 = 0 =⇒

y = 0
x + iy + z = 0

y = 0
=⇒ y = 0

x + z = 0
,

i.e. x = −z for z ∈ R and y = 0. Thus, a corresponding eigenvector is [−1, 0, 1]t.

• For λ = −i, a corresponding eigenvector [x, y, z]t is given by



2i 1 0
−1 i −1
0 1 2i







x
y
z


 = 0 =⇒

2ix + y = 0
x− iy + z = 0

y + 2iz = 0
=⇒

2ix + y = 0
2ix + 2y + 2iz = 0

y + 2iz = 0
,

i.e. y = −2ix and z = x for x ∈ R. Thus, a corresponding eigenvector is [1,−2i, 1]t.

• For λ = 2i, a corresponding eigenvector [x, y, z]t is given by


−i 1 0
−1 −2i −1
0 1 −i







x
y
z


 = 0 =⇒

ix− y = 0
x + 2iy + z = 0

y − iz = 0
=⇒

ix− y = 0
ix− 2y + iz = 0

y − iz = 0
,

i.e. y = ix and z = x for x ∈ R. Thus, a corresponding eigenvector is [1, i, 1]t.

and so an orthonormal set of eigenvectors is




1√
2



−1
0
1


 ,

1√
6




1
−2i
1


 ,

1√
3




1
i
1






 ,

(since the eigenvectors are already mutually orthogonal). Thus,

A =
i

2



−1
0
1


 [−1 0 1

]− i

6




1
−2i
1


 [

1 2i 1
]
+

2i

3




1
i
1


 [

1 −i 1
]

=
i

2




1 0 −1
0 0 0
−1 0 1


− i

6




1 2i 1
−2i 4 −2i
1 2i 1


 +

2i

3




1 −i 1
i 1 i
1 −i 1


 .

is the spectral decomposition of A.
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Question 5.

(a) To find the general solution to the system of coupled linear differential equations given by

ẏ1 = −y1 − 2y2

ẏ2 = −2y1 + 2y3

ẏ3 = 2y2 + y3

we re-write them as ẏ = Ay where y = [y1, y2, y3]t and

A =



−1 −2 0
−2 0 2
0 2 1


 ,

and diagonalise this matrix. So, to find the eigenvalues of A, we solve the determinant equation
∣∣∣∣∣∣

−1− λ −2 0
−2 −λ 2
0 2 1− λ

∣∣∣∣∣∣
= 0 =⇒ −(1 + λ)[−λ(1− λ)− 4]− 4(1− λ) = 0,

which on simplifying yields

λ(1− λ2) + 4(1 + λ)− 4(1− λ) = 0 =⇒ λ(λ2 − 9) = 0,

and so the eigenvalues are λ = 0,±3. Then, to find the eigenvectors, we note that:

• For λ = 0, a corresponding eigenvector [x, y, z]t is given by


−1 −2 0
−2 0 2
0 2 1







x
y
z


 = 0 =⇒

x + 2y = 0
x− z = 0

2y + z = 0
,

i.e. x = z and y = −z/2 for z ∈ R. Thus, a corresponding eigenvector is [1,−1/2, 1]t or
[2,−1, 2]t.

• For λ = 3, a corresponding eigenvector [x, y, z]t is given by


−4 −2 0
−2 −3 2
0 2 −2







x
y
z


 = 0 =⇒

2x + y = 0
2x + 3y − 2z = 0

2y − 2z = 0
=⇒ 2x + y = 0

y − z = 0
,

i.e. x = −z/2 and y = z for z ∈ R. Thus, a corresponding eigenvector is [−1/2, 1, 1]t or
[−1, 2, 2]t.

• For λ = −3, a corresponding eigenvector [x, y, z]t is given by



2 −2 0
−2 3 2
0 2 4







x
y
z


 = 0 =⇒

x− y = 0
−2x + 3y + 2z = 0

y + 2z = 0
=⇒ x− y = 0

y + 2z = 0
,

i.e. x = y and z = −y/2 for y ∈ R. Thus, a corresponding eigenvector is [1, 1,−1/2]t or
[2, 2,−1]t

Thus, we have P−1AP = D where

P =




2 −1 −2
−1 2 −2
2 2 1


 and D =




0 0 0
0 3 0
0 0 −3


 .

So, given our set of coupled linear differential equations, we can use this to write

ẏ = Ay =⇒ ẏ = PDP−1y =⇒ ż = Dz,
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where z = P−1y. Thus, we proceed by solving the uncoupled linear differential equations given by



ż1

ż2

ż3


 =




0 0 0
0 3 0
0 0 −3







z1

z2

z3


 =⇒




z1

z2

z3







A
Be3t

Ce−3t


 ,

for arbitrary constants A, B and C. Consequently, using the fact that y = Pz, we can see that

y(t) =




2 −1 −2
−1 2 −2
2 2 1







A
Be3t

Ce−3t


 =




2A−Be3t − 2Ce−3t

−A + 2Be3t − 2Ce−3t

2A + 2Be3t + Ce−3t


 ,

is the required general solution to ẏ = Ay.
The initial conditions for this system are restricted so that they satisfy the equation

y1(0)− 2y2(0)− 2y3(0) = 0.

and so noting that our general solution gives

y(t) =




y1(0)
y2(0)
y3(0)


 =




2A−B − 2C
−A + 2B − 2C
2A + 2B + C


 ,

we substitute these expressions for y1(0), y2(0) and y3(0) into the restriction to get

(2A−B − 2C)− 2(−A + 2B − 2C)− 2(2A + 2B + C) = 0 =⇒ B = 0.

Thus, substituting this into our general solution, we find that

y(t) =




2A− 2Ce−3t

−A− 2Ce−3t

2A + Ce−3t


 .

is the general solution in the presence of this restriction.
If the initial conditions are further restricted by stipulating that

y(0) =



−2− 2γ
1− 2γ
−2 + γ


 ,

for some constant γ, we can see that at t = 0, we have


−2− 2γ
1− 2γ
−2 + γ


 =




2A− 2C
−A− 2C
2A + C


 =⇒ (A + 1)




2
−1
2


 + (C − γ)



−2
−2
1


 = 0.

But, the vectors [2,−1, 2]t and [−2,−2, 1]t are clearly linearly independent and so we must have
A = −1 and C = γ. Thus, in the presence of this new restriction, the general solution becomes

y(t) =



−2− 2γe−3t

1− 2γe−3t

−2 + γe−3t


 =



−2
1
−2


 +



−2
−2
1


 e−3t,

and so, in the long-term, we can see that y(t) → [−2, 1,−2]t.

(b) The steady states of the coupled non-linear differential equations

ẏ1 = y1(y1 − 3y2 − 4)
ẏ2 = y2(y2 − 4y1 − 6)

12



are given by the solutions of the simultaneous equations

y1(y1 − 3y2 − 4) = 0
y2(y2 − 4y1 − 6) = 0

i.e. by (y1, y2) = (0, 0), (0, 6), (4, 0) and (−2,−2).
To assess the stability of the steady state given by (y1, y2) = (−2,−2), we evaluate the Jacobian for
this system at (−2,−2), i.e.

DF[(y1, y2)] =
[
2y1 − 3y2 − 4 −3y1

−4y2 2y2 − 4y1 − 6

]
=⇒ DF[(−2,−2)] =

[−2 6
8 −2

]
,

and find the eigenvalues of this matrix. So, solving
∣∣∣∣
−2− λ 6

8 −2− λ

∣∣∣∣ = 0 =⇒ (2 + λ)2 − 6× 8 = 0 =⇒ 2 + λ = ±4
√

3,

we find that the eigenvalues are λ = −2 ± 4
√

3. According to a result given in the lectures, since
these are not both both real and negative (note that 4

√
3 > 2), the steady state (y1, y2) = (−2,−2)

is not asymptotically stable.
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Question 6

(a) To test the set of functions {1, x, x2} for linear independence we calculate the Wronskian as
instructed, i.e.

W (x) =

∣∣∣∣∣∣

f1 f2 f3

f ′1 f ′2 f ′3
f ′′1 f ′′2 f ′′3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 x x2

0 1 2x
0 0 2

∣∣∣∣∣∣
= 2,

and as W (x) 6= 0 for all x ∈ R, this set of functions is linearly independent (as required).

(b) We consider the inner product space formed by the vector space P[−2,2]
3 and the inner product

〈f(x), g(x)〉 = f(−2)g(−2) + f(−1)g(−1) + f(0)g(0) + f(1)g(1) + f(2)g(2).

To find an orthonormal basis of the space Lin{1, x, x2}, we use the Gram-Schmidt procedure:

• We start with the vector 1, and note that ‖1‖2 = 〈1, 1〉 = 1 + 1 + 1 + 1 + 1 = 5. Consequently,
we set e1 = 1/

√
5.

• We need to find a vector u2 where

u2 = x−
〈

x,
1√
5

〉
1√
5

= x− 〈x, 1〉
5

,

But, as
〈x, 1〉 = (−2)(1) + (−1)(1) + (0)(1) + (1)(1) + (2)(1) = 0,

we have u2 = x. Now, as

‖x‖2 = 〈x, x〉 = (−2)(−2) + (−1)(−1) + (0)(0) + (1)(1) + (2)(2) = 10,

we set e2 = x/
√

10.

• Lastly, we need to find a vector u3 where

u3 = x2 −
〈

x2,
x√
10

〉
1√
10
−

〈
x2,

1√
5

〉
1√
5

= x2 − 〈x2, x〉
10

− 〈x2, 1〉
5

,

But, as
〈x2, x〉 = (4)(−2) + (1)(−1) + (0)(0) + (1)(1) + (4)(2) = 0,

and,
〈x2, 1〉 = (4)(1) + (1)(1) + (0)(1) + (1)(1) + (4)(1) = 10,

we have u3 = x2 − 2. Now, as

‖x2 − 2‖2 = 〈x2 − 2, x2 − 2〉 = (2)(2) + (−1)(−1) + (−2)(−2) + (−1)(−1) + (2)(2) = 14,

we set e3 = (x2 − 2)/
√

14.

Consequently, the set {
1√
5
,

x√
10

,
x2 − 2√

14

}
,

is an orthonormal basis for the space Lin{1, x, x2}.
(c) We are given that {e1, e2, . . . , ek} is an orthonormal basis of a subspace S of an inner product
space V . Extending this to an orthonormal basis {e1, e2, . . . , ek, ek+1, . . . , en} of V , we note that for
any vector x ∈ V ,

x =
n∑

i=1

αiei.
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Now, for any j (where 1 ≤ j ≤ n) we have

〈x, ej〉 =

〈
n∑

i=1

αiei, ej

〉
=

n∑

i=1

αi〈ei, ej〉 = αj ,

since we are using an orthonormal basis. Thus, we can write

x =
n∑

i=1

〈x, ei〉ei =
k∑

i=1

〈x, ei〉ei

︸ ︷︷ ︸
in S

+
n∑

i=k+1

〈x, ei〉ei

︸ ︷︷ ︸
in S⊥

.

and so, the orthogonal projection of V onto S [parallel to S⊥] is given by

Px =
k∑

i=1

〈x, ei〉ei,

for any x ∈ V (as required). Further, since ‖x− y‖ measures the ‘distance’ between x and a vector
y ∈ S, this quantity is minimised since orthogonal projections give the vector Px ∈ S which is
‘closest’ to x.

(d) Using the results in (c) it should be clear that a least squares approximation to x3 in Lin{1, x, x2}
will be given by Px3. So, using the inner product in (b) and the orthonormal basis for Lin{1, x, x2}
which we found there, we have:

Px3 = 〈x3, e1〉e1 + 〈x3, e2〉e2 + 〈x3, e3〉e3

=
〈x3, 1〉

5
+
〈x3, x〉

10
x +

〈x3, x2 − 2〉
14

(x2 − 2)

∴ Px3 =
34
10

x.

since,

• 〈x3, 1〉 = (−8)(1) + (−1)(1) + (0)(1) + (1)(1) + (8)(1) = 0,

• 〈x3, x〉 = (−8)(−2) + (−1)(−1) + (0)(0) + (1)(1) + (8)(2) = 34,

• 〈x3, x2 − 2〉 = (−8)(2) + (−1)(−1) + (0)(0) + (1)(−1) + (8)(2) = 0.

Thus, our least squares approximation to x3 is 17
5 x.
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