Getting from One Colouring to Another

JAN VAN DEN HEUVEL

Department of Mathematics

London School of Economics and Political Science

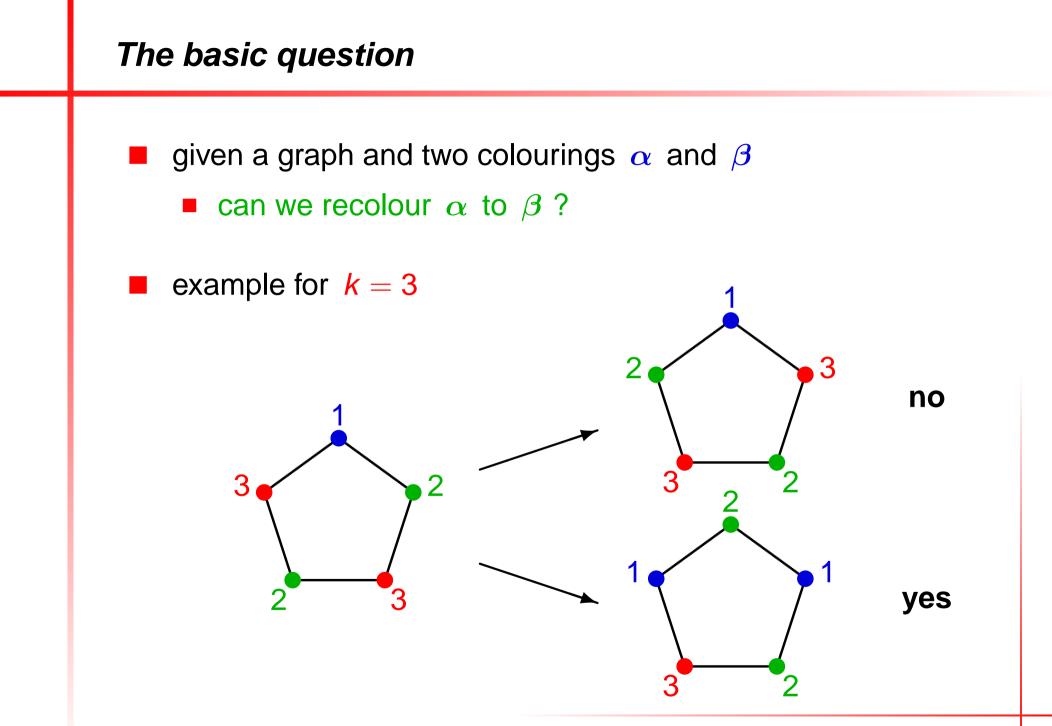
First definitions

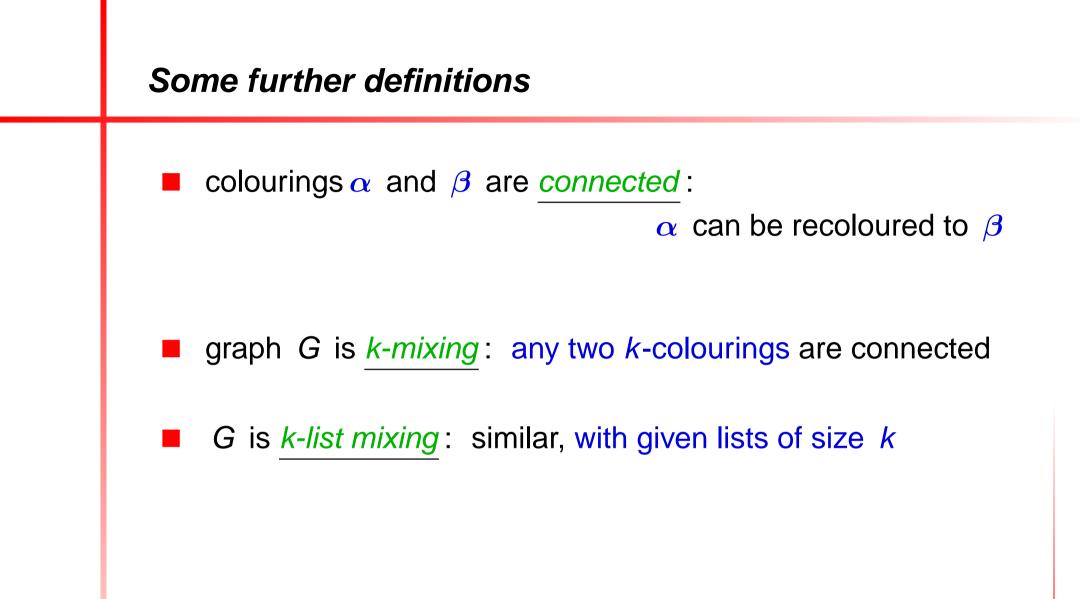
<u>k-colouring of G</u>: proper vertex-colouring using colours from { 1, 2, ..., k }

■ <u>*list k-colouring* of G</u>: proper vertex-colouring, using colours from each vertex' own list L(v), with |L(v)| = k

recolouring :

- changing the colour of one vertex v
- still using colours from $\{1, 2, \dots, k\}$ or L(v)
- and still maintaining a proper colouring





First properties

Easy fact

• $k \ge \Delta(G) + 2 \implies G \text{ is } k - (\text{list}) \text{ mixing}$

• requires at most $\Delta \cdot |V|$ steps

$\blacksquare degeneracy \deg(G) = \max \{ \delta(H) \mid H \subseteq G \}$

Property (Dyer, et al., 2004)

• $k \ge \deg(G) + 2 \implies G \text{ is } k - (\text{list}) \text{ mixing}$

First properties

Property (Dyer, et al., 2004)

• $k \ge \deg(G) + 2 \implies G \text{ is } k - (\text{list}) \text{ mixing}$

Question

how many steps are required?

- proof gives exponential upper bound (in |V|)
- is a polynomial upper bound possible ?
- maybe even a quadratic one ?

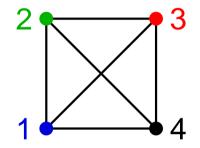
Theorem (Bonsma & Cereceda)

• $k \ge 2 \deg(G) + 1 \implies \text{requires at most } O(|V|^2) \text{ steps}$

Extremal graphs for k-mixing

"boring" extremal graph: complete graph K_m

- $deg(K_m) + 1 = m$
- all *m*-colourings look the same :
- no vertex can change colour

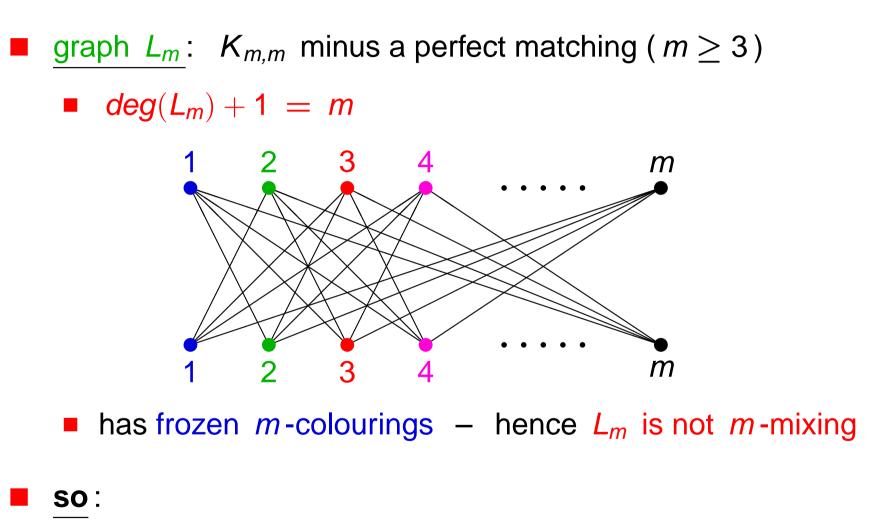


Terminology

frozen k-colouring: colouring in which no vertex can change colour

frozen colourings immediately mean G is not k-mixing

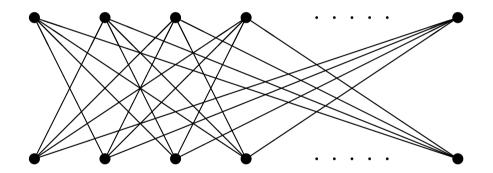
More interesting extremal graphs



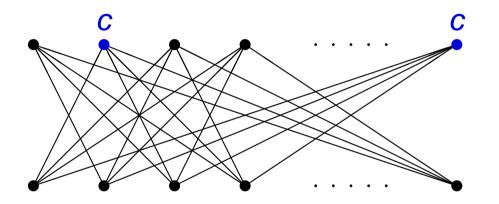
bipartite graphs can be non-k-mixing for arbitrarily large k

More interesting properties of *L_m*

- non-*k*-mixing for k = m colours
- but *k*-mixing for $3 \le k \le m 1$
 - suppose L_m coloured with $k \leq m 1$ colours

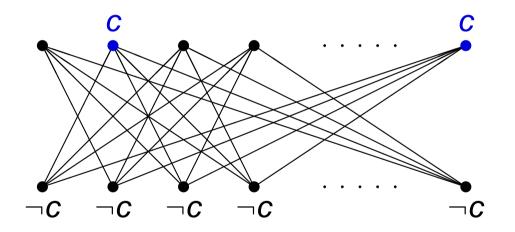


- non-*k*-mixing for k = m colours
- but *k*-mixing for $3 \le k \le m 1$
 - suppose L_m coloured with $k \leq m 1$ colours

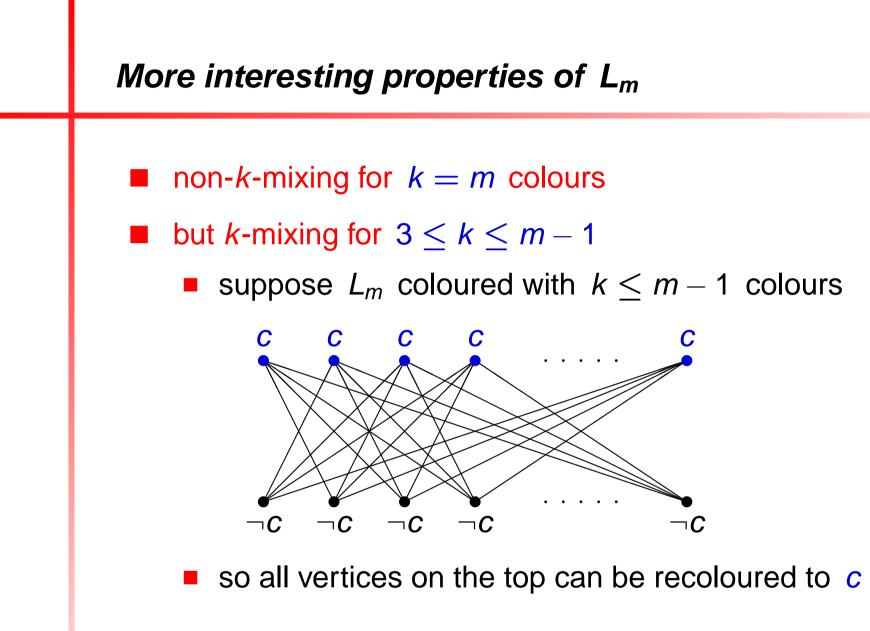


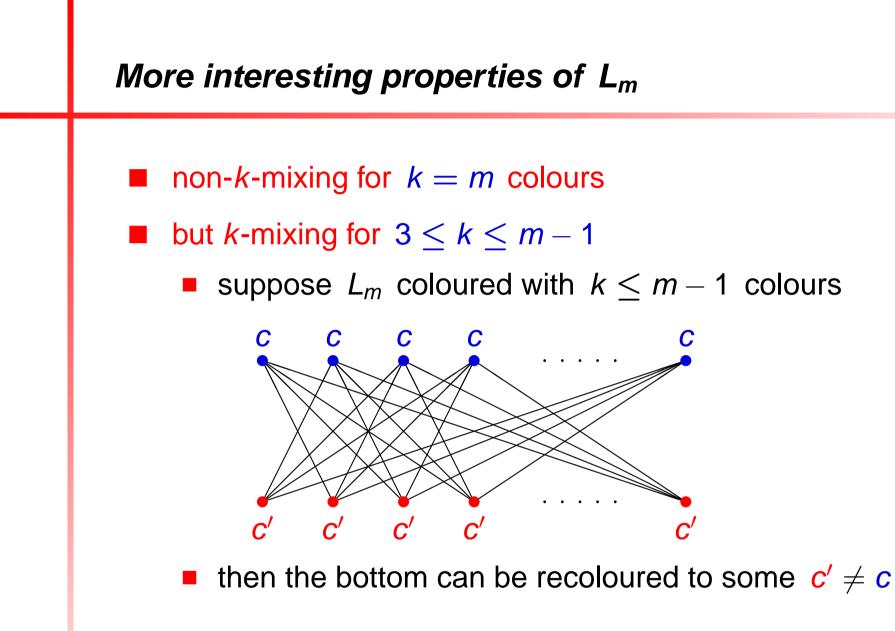
some colour c must appear more than once on the top

- non-*k*-mixing for k = m colours
- but *k*-mixing for $3 \le k \le m 1$
 - suppose L_m coloured with $k \leq m 1$ colours

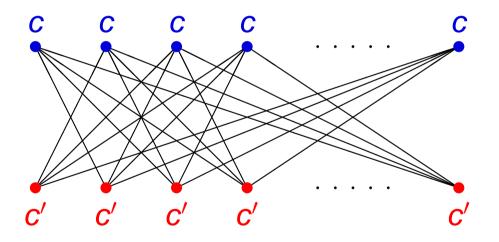


that colour c can't appear among the bottom vertices





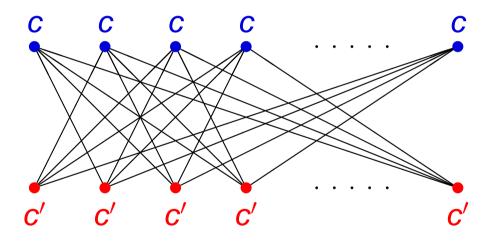
- non-*k*-mixing for k = m colours
- but *k*-mixing for $3 \le k \le m 1$
 - suppose L_m coloured with $k \leq m 1$ colours



hence any colouring is connected to a 2-colouring

easy to see that all these 2-colourings are connected

- non-*k*-mixing for k = m colours
- but k-mixing for $3 \le k \le m 1$
 - suppose L_m coloured with $k \leq m 1$ colours



hence any colouring is connected to a 2-colouring

easy to see that all these 2-colourings are connected

so: mixing is not a monotone property

k-COLOUR-PATH

Input: graph **G** and two *k*-colourings α and β **Question**: are α and β connected?

k-LIST-COLOUR-PATH

Input: graph *G*, lists L(v) of size *k* for each vertex *v*, and two colourings α and β

Question: are α and β connected?

"k-(LIST)-MIXING"

Input: graph G (and lists L(v) of size k for each vertex) **Question**: is G k-(list) mixing?

Decision problems for mixing

k-MIXING

Input: graph *G* and a *k*-colouring α **Question**: is *G k*-mixing?

BIPARTITE- *k*-**MIXING**

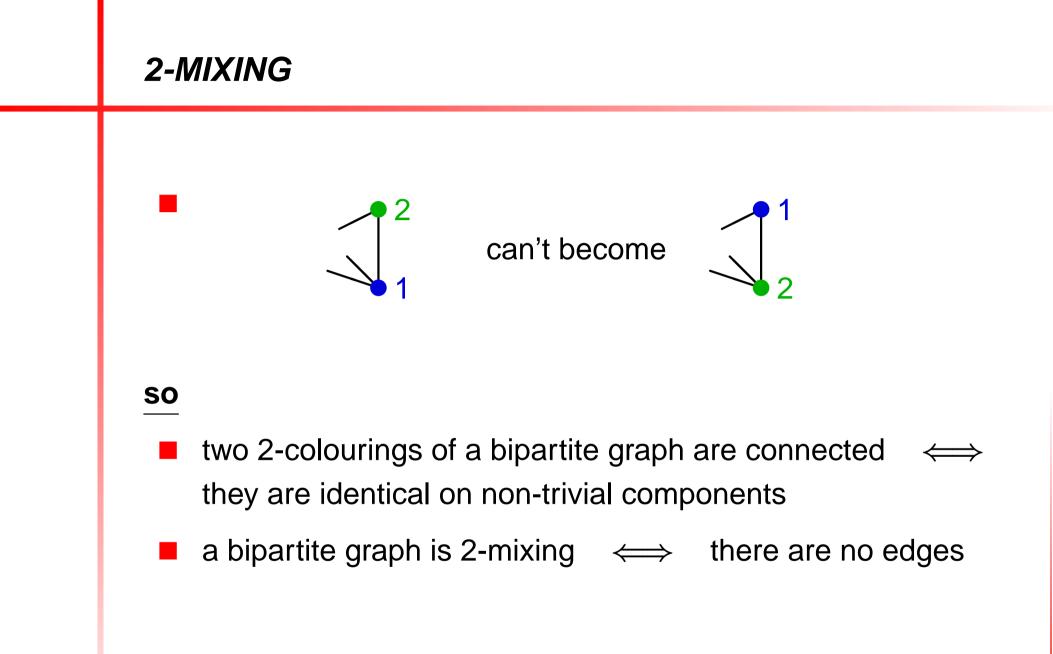
Input: bipartite graph **G**

Question: is *G k*-mixing?

k-LIST-MIXING

Input: graph G, lists L(v) of size k for each vertex v, proper colouring α using those lists

Question: is *G k*-list mixing?



2-LIST-MIXING

Input: graph G lists $L(v) = \{a_v, b_v\}$ for each vertex v

translate to 2-SAT problem :

• for each vertex v introduce Boolean variable x_v

• $x_v = T \leftrightarrow v$ is coloured a_v

•
$$x_v = F \leftrightarrow v$$
 is coloured b_v

• suppose uv is an edge with $b_u = a_v$

$$\begin{array}{cccc} & u & v \\ \bullet & \bullet & \bullet \\ & a_u & a_v \\ & b_u & b_v \end{array} & \longleftrightarrow & \mathbf{x}_u \vee \overline{\mathbf{x}_v} \end{array}$$

Recolouring and satisfiability

2-list colouring problem

 \longrightarrow 2-sat problem $(x_u \lor \overline{x_v}) \land (x_s \lor x_t) \land \cdots$

recolouring a vertex $v \leftrightarrow \cdots$ "flipping" the value of x_v

SAT-ST-CONNECTED

Input: Boolean expression φ , satisfying assignments $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ and $\mathbf{y} = (\mathbf{y}_1, \dots, \mathbf{y}_n)$

Question: can we get from **x** to **y** using single variable flips?

SAT-CONNECTED

Input : Boolean expression φ

Question: can we go between any two satisfying assignments?

Connectivity of satisfying assignments

Theorem (Gopalan, et al., 2007)

- SAT-ST-CONNECTED restricted to 2-sat expressions is in P
- SAT-CONNECTED restricted to 2-sat expressions is in P
- requires at most *n* flips

Corollary

- 2-LIST-COLOUR-PATH is in P
- 2-LIST-MIXING is in P
- requires at most |V| steps

The case $k \ge 3$

Theorem (Bonsma & Cereceda)

- for all $k \ge 3$: k-LIST-COLOUR-PATH is PSPACE-complete
- for all $k \ge 4$: *k*-COLOUR-PATH is PSPACE-complete

- problems remain PSPACE-complete for bipartite graphs
- for all the cases above, there exist examples of graphs **G** and two colourings α and β , so that going from α to β takes $\Omega(2^{\sqrt{|V|}})$ steps
- similar, but weaker, results earlier obtained by Jacob (1997)

Recolouring with 3 colours

Theorem (Cereceda, vdH & Johnson)

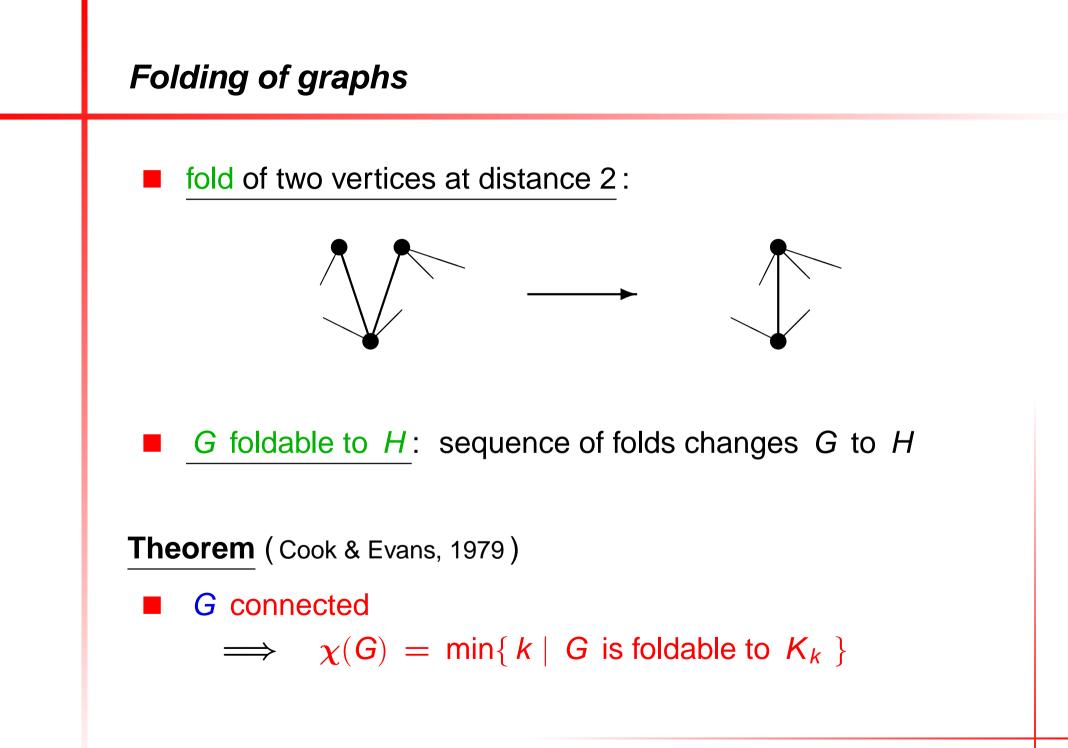
■ 3-COLOUR-PATH is in P

Theorem (Cereceda, vdH & Johnson)

BIPARTITE-3-MIXING is coNP-complete

a non-bipartite 3-colourable graph is never 3-mixing

requires at most $O(|V|^2)$ steps

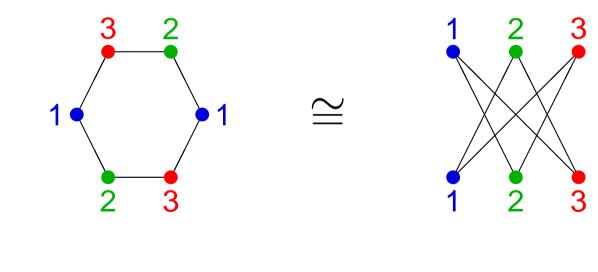


A structural certificate for bipartite non-3-mixing

Theorem

- connected bipartite G is not 3-mixing
 - \iff G is foldable to a chordless 6-cycle

• $C_6 \cong L_3$ - so C_6 is not 3-mixing



note : C₄ is 3-mixing

Why are 3 colours so much easier?

because everything just works! (and fails horribly for more colours)

Why are 3 colours so much easier?

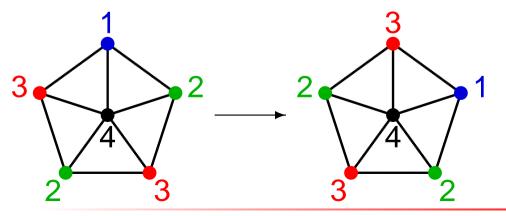
example

given graph G and k-colouring α , a vertex v is fixed (for α) if v can never be recoloured

if a vertex v is adjacent to fixed vertices of all colours (except from its own), then v itself is fixed

Lemma

- for 3 colours, this determines exactly the fixed vertices
- but not for 4 colours :



Open problems I

we know

- BIPARTITE-3-MIXING is coNP-complete
- **BIPARTITE-4-COLOUR-PATH** is PSPACE-complete

- what is the complexity of BIPARTITE-4-MIXING?
- maybe easier if the graph is cubic?

• what can we say if $k = \Delta + 1$ or $k = \Delta$?

Open problems II

what can we say about the structure of the set of all k-colourings of a graph?

• G is k-mixing \iff the set of k-colourings is connected

Theorem (Achlioptas & Coja-Oghlan, 2008)

- **G** a random graph
 - k close to the chromatic number of G
 - \implies the set of all *k*-colourings is shattered

Open problems III

what happens if we use a different recolouring rule ?

- Kempe recolouring :
 - changing the colour of one vertex v from c_1 to c_2
 - by swapping colours on the component induced by vertices coloured c₁ or c₂ containing v

Folklore

- G bipartite \implies G is Kempe-k-mixing for all k
- what is the complexity of KEMPE-k-PATH or KEMPE-k-MIXING for non-bipartite graphs?