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Solutions to Exercises 3

(1) Prove the identity(
n

0

)2

+

(
n

1

)2

+ · · ·+
(

n

n

)2

=

(
2n

n

)
in the following two ways.

(a) Apply the Binomial Theorem to both sides of the identity

(1 + x)n · (1 + x)n = (1 + x)2n,

and look at the coefficient of xn.

Solution. By the Binomial Theorem, we have

(1 + x)n =
n∑

i=0

(
n

i

)
xi

and

(1 + x)2n =
2n∑
i=0

(
2n

i

)
xi.

We rewrite

(1 + x)n · (1 + x)n = (1 + x)2n,

as
n∑

i=0

(
n

i

)
xi ·

n∑
j=0

(
n

j

)
xj =

2n∑
k=0

(
2n

k

)
xk.

From the right-hand side of this equality, we have that the coefficient of

xn is
(
2n
n

)
. To the left-hand side, we apply the Convolution Theorem and

obtain that the coefficient of xn is
n∑

i=0

(
n

i

)
·
(

n

n− i

)
.

Since
(

n
i

)
=
(

n
n−i

)
, we have that(

2n

n

)
=

n∑
i=0

(
n

i

)
·
(

n

n− i

)
=

n∑
i=0

(
n

i

)2

.
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(b) Consider two disjoint sets A and B, each of size n, and count the number

of subsets of A ∪B with n elements.

Solution. A∪B has 2n elements and, therefore, it has
(
2n
n

)
subsets of size

n. How can we count these subsets another way?

Each subset of A∪B has k elements from A and n−k elements from B for

some k, 0 ≤ k ≤ n. We can choose k elements from A in
(

n
k

)
ways and n−k

elements from B in
(

n
n−k

)
=
(

n
k

)
ways. So, we have

(
n
k

)(
n

n−k

)
=
(

n
k

)2
subsets

of A ∪ B with k elements from A and n − k elements from B. Summing

over all k, we get all the subsets of A ∪B of size n, that is,(
2n

n

)
=

n∑
k=0

(
n

k

)2

.

�

(2) Downtown Metropolis consists of a rectangular grid of streets. It has k blocks

from west to east, and m blocks from north to south. You stand at the south-

west (lower left) corner and want to go to your flat, which is at the north-east

(top right) corner.

It is clear that if you want to take a shortest path to your flat, then you only

walk in eastward or northward directions. Moreover, you can only move a whole

number of blocks each time. Show that if you are interested in shortest paths

only, you still have
(

k+m
k

)
possibilities to reach your flat.

Solution. The shortest way home is given by a sequence of one-block moves

eastwards or northwards. We must make m + k moves: m northwards and k

eastwards. Once we decide positions for eastwards moves, the remaining ones

must be northwards. Each such a sequence gives a different path home. There

are
(

m+k
k

)
ways to chose positions for eastwards moves, so there are

(
m+k

k

)
paths

home. �

(3) In an experiment on the effects of fertiliser on 27 plots of new breed of tomatoes,

8 plots are given nitrogen, phosphorus and potash fertiliser; 12 plots are given
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at least nitrogen and phosphorus, 12 plots are given at least phosphorus and

potash; and 12 plots are given at least nitrogen and potash. Also, 18 plots

receive nitrogen; 18 plots receive phosphorus; and 18 plots receive potash. How

many plots were left unfertilised?

Solution. Let AN be the set of plots that get nitrogen, let AF be the set of

plots that get phosphorus, and let AP be the set of plots that receive potash.

From the statement of the problem, we have that: |AF | = |AN | = |AP | = 18,

|AF ∩AN | = |AN ∩AP | = |AP ∩AF | = 12, and |AF ∩AN ∩AP | = 8. Using the

Inclusion-Exclusion Principle, we obtain

|AF∪AN∪AP | = |AF |+|AN |+|AP |−|AF∩AN |−|AN∩AP |−|AP∩AF |+|AF∩AN∩AP |

= 3 · 18− 3 · 12 + 8 = 26.

Hence, the number of unfertilised plots is 27−|AF ∪AN∪AP | = 27−26 = 1. �

(4) Solve the following recurrence relation:

an = 4an−1 − 4an−2 for n ≥ 2,

a0 = 1;

a1 = 3.

Solution. We use Theorem 3.5 from the lecture notes: first, we must find the

roots of x2 = 4x− 4, i.e., solve x2 − 4x + 4 = 0. Since x2 − 4x + 4 = (x− 2)2,

we have one double root r = 2. Hence, the general solution is

an = (k1 + k2n)2n.

Then, we obtain 1 = a0 = k12
0 = k1 and 3 = a1 = (k1 + k2)2

1 = 2k1 + 2k2.

From these two equations we obtain k1 = 1 and k2 = 1
2
. So,

an =
(

1 +
n

2

)
2n.

�
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(5) Solve the following recurrence relation:

bn = bn−1 + 6bn−2 for n ≥ 2,

b0 = 1;

b1 = 1.

Solution. We again use Theorem 3.5 from the lecture notes: first, we must

find the roots of x2 = x + 6, i.e., solve x2 − x − 6 = 0. Since x2 − x − 6 =

(x− 3)(x + 2), we have roots r1 = −2 and r2 = 3. Hence, the general solution is

bn = k1(−2)n + k23
n.

Then, we obtain 1 = b0 = k1 + k2 and 1 = b1 = k1(−2)1 + k23
1 = −2k1 + 3k2.

From these two equations we obtain k1 = 2
5

and k2 = 3
5
. So,

bn =
2

5
(−2)n +

3

5
3n.

�

(6) Let an denote the number of n-digit sequences in which each digit is 0, 1 or -1,

and no two consecutive 1’s or two consecutive -1’s are allowed.

(a) Show that an = 2an−1 + an−2 for n ≥ 3.

Solution. We are going to show that

an = 2(an−1 − an−2) + 3an−2 = 2an−1 + an−2.

Let x1, x2, . . . , xn be a valid sequence of length n, that is, a sequence with

xi ∈ {−1, 0, 1} for every i = 1, 2, . . . , n, and with no repeated 1’s or −1’s.

Then, x1, x2, . . . , xn−1 is also a valid sequence of length n− 1 and we have

an−1 of them. How many of these sequences have xn−1 = 0?

Again, x1, x2, . . . , xn−2 is a valid sequence of length n− 2 and there are no

additional restrictions on xn−2 because xn−1 = 0. (Note: if we considered

xn−1 = 1, then we would have to guarantee that xn−2 6= 1.) Since there

are an−2 valid sequences of length n− 2, we also have an−2 valid sequences
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of length n− 1 that ends with 0. Consequently, we have an−1 − an−2 valid

sequences of length n− 1 that ends with 1 or −1.

In the case when xn−1 = 0, xn can be any one of −1, 0, 1. So, we have 3an−2

valid sequences of length n of this type.

When xn−1 6= 0, we have only two options for xn: either −1, 0 (when

xn−1 = 1) or 0, 1 (when xn−1 = −1). So, we have 2(an−1 − an−2) valid

sequences of length n of this type.

Altogether, we have that

an = 2(an−1 − an−2) + 3an−2 = 2an−1 + an−2.

�

(b) Determine a1 and a2.

Solution. Since 0, −1, 1 are all valid sequences of length 1, we have a1 = 3.

There are 32 = 9 sequence of length 2 with entries from {−1, 0, 1}. Only

two of them are not valid: 1, 1 and −1,−1. Hence, a2 = 9− 2 = 7. �

(c) Find a closed form expression for an.

Solution. We find the roots of x2 = 2x + 1, i.e., x2 − 2x − 1 = 0. Using

the usual formula for the roots of quadratic equations, we obtain two roots:

1 +
√

2 and 1−
√

2. Hence, an = k1(1 +
√

2)n + k2(1−
√

2)n.

Using (b), we get

3 = a1 = k1(1 +
√

2) + k2(1−
√

2)

and

7 = a2 = k1(1 +
√

2)2 + k2(1−
√

2)2.

Solving these two equations, we obtain that k1 = 1
2
(1 +

√
2) and k2 =

1
2
(1−

√
2). Hence,

an =
1

2
(1 +

√
2)n+1 +

1

2
(1−

√
2)n+1.

�
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(7) On working through a problem, a student is said to be at the n-th stage if she

or he is n steps from the solution. At any stage the student has five choices how

to proceed. Two of these choices result in the student going to the (n − 1)-th

stage, and the remaining three of them are better and they take her or him

directly to the (n− 2)-th stage.

Let sn be the number of ways the student can reach the solution if she or he

starts from the n-th stage.

(a) If s1 = 2, verify that s2 = 7.

Solution. There are two choices for the student to go to stage 1, from which

there are 2 ways to get to the solution. And there are 3 choices that get

the student directly to the solution (stage 0), so s2 = 2s1 + 3 = 7. �

(b) Give a recurrence relation for sn.

Solution. There are two choices for the student to go to stage n− 1, from

which there are sn−1 ways to get to the solution. And there are 3 choices

that get the student to stage n− 2, from which there are sn−2 ways to get

to the solution. So,

sn = 2sn−1 + 3sn−2.

�

(c) Deduce that sn = 1
4
(3n+1 + (−1)n).

Solution. We find the roots of x2 = 2x+3, i.e., x2−2x−3 = (x−3)(x+1) =

0. Thus we have two roots: 3 and −1. Hence, sn = k13
n + k2(−1)n. Using

2 = s1 = 3k1 + (−1)k2 = 3k1 − k2 and 7 = s2 = 32k1 + (−1)2k2 = 9k1 + k2,

we obtain k1 = 3
4

and k2 = 1
4
. So,

sn = k13
n + k2(−1)n =

3

4
3n +

1

4
(−1)n =

1

4
(3n+1 + (−1)n).

�


