
Discrete Mathematics Lent 2009

MA210

Solutions to Exercises 9

(1) There are 5 cities. The cost of building a road directly between i and j is the entry ai,j in

the matrix below. An indefinite entry indicates that the road cannot be built. Determine the

least cost of making all the cities reachable from each other.



0 3 5 11 9

3 0 3 9 8

5 3 0 ∞ 10

11 9 ∞ 0 7

9 8 10 7 0


Solution. We order the edges according to the weights: 12, 23, 13, 45, 25, 15, 24, 35, 14.

Kruskal’s Algorithm accepts edges 12, 23, then rejects 13, then accepts 45, 25, and then it

stops. Thus, the least cost to build the road network is 3 + 3 + 7 + 8 = 21. �

(2) For natural numbers n and p, letG(n, p) be the complete graph with vertex set {1, 2, . . . , n},

and let the weight of the edge ij be given by cij = |i− j| mod p. (So cij ∈ {0, 1, . . . , p−

1}.) For every n and p, determine the minimum weight of a spanning tree in G(n, p).

Solution. We must distinguish two cases: p ≥ n and p < n.

•When p ≥ n, we have that

1 ≤ |i− j| < n ≤ p

for every i 6= j, 1 ≤ i, j ≤ n. From this, we obtain cij = |i− j| ≥ 1 for every two vertices

i 6= j ofG(n, p). Since every spanning tree ofG(n, p) must have n−1 edges and each edge

has weight at least 1, it follows that every spanning tree of G(n, p) must have total weight

at least n− 1.

On the other hand, the edges 12, 23, . . . , (n− 1)n have all weight 1 and form a spanning

tree of G(n, p). Hence, the minimum weight of a spanning tree of G(n, p) is n− 1.

2

•When p < n, we must be more careful because some edges have weight 0. Let ij be any

edge of G(n, p). Then, cij = 0 if and only if |i − j| is divisible by p. So, when does this

happen ?

We write n = mp+ r, where 0 ≤ r < p. We notice that any edge with both endpoints in

{p, 2p, 3p, . . . ,mp} or in {1, 1+p, 1+2p, . . . } has weight 0. More generally, for 0 < k ≤ r,

we set

Xk = {k, k + p, k + 2p, . . . , k +mp}

and, for r < k ≤ p, we set

Xk = {k, k + p, k + 2p, . . . , k + (m− 2)p, k + (m− 1)p}.

Note that cij = 0 if and only if i, j ∈ Xk for some k.

We order the edges of G(n, p) in the following order: first we list all the edges with both

ends X1, then all the edges with both ends in X2, etc., until we list all the edges with both

ends Xk. After this we put edges 12, 23, . . . , (p − 1)p, all of which have weight 1. Then,

we list all the remaining edges in any non-decreasing order.

So, what happens when we run Kruskal’s Algorithm on this order? It first accepts every

edge with both endpoints in X1 as long as it does not create a cycle. The crucial obser-

vation is that after Kruskal’s Algorithm examines all the edges with both endpoints in X1,

the edges selected form a spanning tree on the vertices in X1. In other words, Kruskal’s

Algorithm picked exactly |X1| − 1 edges (each of weight 0).

The same thing remains true for the other sets Xk: after Kruskal’s Algorithm examines

all the edges with both endpoints in Xk, the edges selected form a spanning tree on the

vertices in Xk. Hence, Kruskal’s Algorithm picked exactly |Xk| − 1 edges.

So, before proceeding to edges 12, 23, etc., Kruskal’s Algorith selected

(|X1| − 1) + (|X2| − 1) + . . . (|Xp| − 1) = |X1|+ |X2|+ · · ·+ |Xp| − p = n− p

edges. These edges form a forest with exactly p components (one on every Xk). Now,

edge 12 connects components on X1 and X2 to a tree on X1 ∪ X2. Adding the edge 23

creates a tree on X1 ∪ X2 ∪ X3. Similarly, when we add the edge (k − 1)k, we join two

components, one on X1 ∪ X2 ∪ · · · ∪ Xk−1 and the other one on Xk, and obtain a tree on

X1 ∪ X2 ∪ · · · ∪ Xk. Thus, we never create a cycle. Hence, Kruskal’s Algorithm accepts

p− 1 edges 12, 23, . . . , (p− 1)p and then stops because it selected n− 1 edges.

3

What is the weight of this spanning tree? The only edges with non-zero weight are 12,

23, . . . , (p− 1)p, hence, the minimum weight of a spanning tree is p− 1.

each of the edges 12, 23, . . . , (p − 1)p connects two of the components (draw a picture

to see this!) �

(3) (a) What is the chromatic number of the complete graph Kn?

Solution. Every two vertices of Kn are adjacent, therefore, every two vertices must

have different colours in any colouring of Kn. Clearly, if every vertex get a distinct

coulour, we obtain a proper colouring of Kn. Thus, χ(Kn) = n. �

(b) What is the chromatic number of the path Pn?

Solution. Clearly χ(P1) = 1. Since Pn has at least one edge for n ≥ 2, we have

χ(Pn) ≥ 2. Pn also has no (odd) cycles, so it is bipartite. Each partite set can be

viewed as one colour class, so we have a proper colouring of Pn with two colours.

Hence, χ(Pn) = 2 for n > 1. �

(c) What is the chromatic number of the cycle Cn?

Solution. Since Cn has at least one edge for n ≥ 3, we have χ(Cn) ≥ 2. As observed

in part (b), any graph is colourable with 2 colours if and only if it is bipartite.

For n even, Cn has no odd cycles, so it is bipartite and χ(Cn) = 2. For n odd, Cn

is not bipartite, so χ(Cn) > 2. It is easy to see that if Cn has vertices v1, . . . , vn

and edges v1v2, v2v3, . . . , vn−1vn, vnv1, then c(v1) = c(v3) = · · · = c(vn−2) = 1,

c(v2) = c(v4) = · · · = c(vn−1) = 2, c(vn) = 3 is a proper colouring of Cn with 3

colours. Hence, for n odd, χ(Cn) = 3. �

(4) Prove or disprove:

(a) Every k-chromatic graph G has a proper k-colouring in which some colour class has

α(G) vertices.

Solution. This is false. Let G be a graph with vertices {a, b, c, A,B,C} and edges

{aA, aB, aC, bA, cA}. This graph is bipartite (why?), hence it is 2-chromatic. In every

2-colouring of G, the vertices a and A must be in different colour classes because aA

is an edge. However, this force B,C to be in the same colour class as A, and b, c to be

in the same colour class as a. Hence, in every 2-colouring of G, every colour class has

size 3.

However, {b, c, B, C} is an independent set of size 4, so α(G) > 3. �

4

(b) For every n-vertex graph G, χ(G) ≤ n− α(G) + 1.

Solution. Let G = (V,E) be a graph and let X be an independent set of size α(G).

We assign the same colour 1 to all the vertices of X . Each of the remaining n− α(G)

vertices gets a new colour. Except colour 1, all the other colour classes have size 1,

i.e., they cannot contain an edge. The colour class for colour 1 is X and it contains no

edge because it is an independent set. Hence, we found a proper colouring of G using

n− α(G) + 1 colours. This means that χ(G) ≤ n− α(G) + 1. �

(c) For every two vertex disjoint graphs G and H , χ(G+H) = max{χ(G), χ(H)}.

Here, G + H is defined as follows: Let G = (V,E) and H = (V ′, E ′) be two graphs

with disjoint vertex sets, i.e., V ∩ V ′ = 0. The disjoint union of G and H , denoted by

G+H , is the graph with vertex set V ∪ V ′ and edge set E ∪ E ′.

Solution.G + H contains both G and H as subgraphs. SO, every proper colour-

ing of G + H also produces a proper colouring of G and H . Hence, χ(G + H) ≥

max{χ(G), χ(H)}.

On the other hand, since χ(G), χ(H) ≤ max{χ(G), χ(H)}, we can find a proper

colourings of G and H using max{χ(G), χ(H)} colours. Since there is no edge be-

tween G and H in G + H , we can combine these two colourings to a colouring of

G+H . Hence, χ(G+H) ≤ max{χ(G), χ(H)}. �

(5) Let G be a graph. Prove that there exists some ordering of the vertices of G such that the

greedy algorithm uses exactly χ(G) colours.

Solution. Take any colouring of G using χ(G) colours. (We may not know how this

colouring looks like, but we do know it exists!) We first list the vertices from colour class

1, then from colour class 2, etc., and the end we list the vertices from the colour class χ(G).

So, we have an ordering of the vertices of G. (More precisely, we know that the ordering

described above exists.)

So, how will the greedy algorithm (GA from now on) colour graph G using this order?

First, remember that each colour class is an independent set. So, the GA will assign colour

1′ to all the vertices coming from colour class 1. (We use 1′ to distinguish this colour from

colour 1 used in the definition of the ordering.)

5

Then, the GA will assign colour 1′ or 2′ to all the vertices coming from the colour class

2. This is because each such vertex may have neighbours among vertices from the colour

class 1 (GA coloured these by 1′) but none coming from the colour class 2.

In general, when the GA considers a vertex coming from the colour class i, it gets a

colour from {1′, 2′, ..., i′} because may have neighbours among vertices from colour classes

1, . . . , i−1 (GA coloured these by one of {1′, . . . , (i−1)′}) but none coming from the colour

class i.

Hence, the GA used at most χ(G) colours 1′, 2′, . . . , χ(G)′. But no proper colouring of

G can use less than χ(G) colours (this comes from the definition of χ(G), so the GA used

exactly χ(G) colours. �

(6) Find the minimum distance for the following codes:

(a) C1 = {10000, 01010, 00001};

(b) C2 = {0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111};

(c) C3 = {000000, 101010, 010101}.

Suppose we want to add extra codewords to the codes above. For which of the three of

them is that possible without altering the minimum distance?

Solution. A quick examination yields δ(C1) = 2, δ(C2) = 2, δ(C3) = 3.

We can add 11111 to C1 and 111000 to C3. (Check!) If we can add any word to C2, it

must have distance at least 2 from every word of C2. Since 0000, 1111 ∈ C2, every such

word must contain at least two 0’s and at least two 1’s. But the length of the code is 4 so

if we want to enlarge C2 without changing the minimum distance, such a word must have

exactly two 0’s and exactly two 1’s. Number of such words is
(
4
2

)
= 6 (Why ?) and we see

all of them are already in C2. �

(7) Prove the triangle inequality: for all x̄, ȳ, z̄ ∈ {0, 1}n,

dH(x̄, z̄) + dH(z̄, ȳ) ≥ dH(x̄, ȳ).

Solution. Let x̄ = x1x2 . . . xn, ȳ = y1y2 . . . yn, z̄ = z1z2 . . . zn ∈ {0, 1}n be given. Let

A be the set of positions at which x̄, z̄ differ, that is,

A = {i | 1 ≤ i ≤ n, xi 6= zi}.

6

Then, |A| = dH(x̄, z̄). Similarly, we define

B = {i | 1 ≤ i ≤ n, zi 6= yi},

C = {i | 1 ≤ i ≤ n, xi 6= yi}.

Then, |B| = dH(z̄, ȳ) and |C| = dH(x̄, ȳ).

We will show that C ⊂ A ∪ B. Indeed, let i ∈ C, that is xi 6= yi. If i 6∈ A ∪ B, then

i 6∈ A and i 6∈ B, so xi = zi and zi = yi. Hence, xi = zi = yi and this is not possible.

Thus, i ∈ A ∪B.

Consequently, we have |C| ≤ |A ∪B| and

dH(x̄, ȳ) = |C| ≤ |A ∪B| ≤ |A|+ |B| = dH(x̄, z̄) + dH(z̄, ȳ).

�

(8) Construct a binary code C of length 6 such that |C| = 5 and C is 1-error-correcting.

Solution. We know that C is 1-error-correcting if and only if δ(C) ≥ 2(1) + 1 = 3. So,

we need to find binary code C of length 6 such that |C| = 5 and δ(C) ≥ 3. One such a

code is

C = {000000, 101010, 010101, 111100, 001111}.

(Are you sure?) �

