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Solutions to Exercises 10

(1) Let C be the linear code of length n with check matrix

H = [1 1 1 . . . 1︸ ︷︷ ︸
n

].

Show that C is the parity check code (defined in lectures).

Solution. To find all codewords x̄ = x1x2 . . . xn in C, we must solve the equation

Hx̄ = 0̄,

where

x̄′ =


x1

x2

...

xn

 .

In our case, we obtain

x1 + x2 + · · ·+ xn = 0,

where the addition is modulo 2, that is, in (Z2, +). Thus we obtain that

x1 + x2 + · · ·+ xn−1 = xn,

so xn counts (modulo 2) the number of 1’s among x1, x2, . . . , xn−1, where x1, x2, . . . , xn−1 ∈

{0, 1} are arbitrary. This is, however , the definition of the parity check code. �

(2) Let C be the d-repetition code of length n. Show that C is a linear code.

Solution. We have n = `d for some natural number `. Each word of C is formed by

concatenation of ` copies of the same word of length d. Thus, if x̄, ȳ ∈ C, then

x̄ = ūū . . . ū︸ ︷︷ ︸
`

and ȳ = v̄v̄ . . . v̄︸ ︷︷ ︸
`

.

However, then (we add two words by adding the corresponding bits of both words)

x̄ + ȳ = w̄w̄ . . . w̄︸ ︷︷ ︸
`

,
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where w̄ = ū+ w̄ is also a word of length d. So, x̄+ ȳ is also a word from C and the code

is linear. �

(3) (a) Let C be the linear code with check matrix

H =


0 1 1 0 0

1 0 0 1 0

1 1 0 0 1


Determine the length n of C, the dimension k of C, the minimum distance d of C. (We

then refer to C as an [n, k, d]-code.)

(b) The following words were received:

11111, 01101, 01100.

Decide which of the above are codewords, and correct those which are not codewords,

assuming that only one error has been made.

Solution. The length n of C is simply the number of columns of H , i.e., n = 5. This is

because to find all codewords x̄ = x1x2 . . . xn in C, we must solve the equation Hx̄ = 0̄,

so x̄ must have as many entries as H has columns.

From Hx̄ = 0̄ we also obtain that

x2 + x3 = 0,

x1 + x4 = 0,

x1 + x2 + x5 = 0,

that is,

x2 = x3,

x1 = x4,

x1 + x2 = x5.

Hence, the choice of x1 and x2 uniquely determines x3, x4, x5 and, consequently, the whole

codeword x̄. There are 22 choices for x1 and x2, so the dimension of C is 2. (We know that

every linear code must have 2k codewords and we call k the dimension of C.)
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By the theorem from the lecture, to determine the minimum distance in a linear code,

we must find the smallest weight of a codeword not equal to 0̄. In our case, there are three

non-zero codewords: 10011, 01101, and 11110. So, the minimum distance d = 3.

For

x̄ = 11111, ȳ = 01101, z̄ = 01100,

we have

Hx̄′ =


0

0

1

 , Hȳ′ =


0

0

0

 , Hz̄′ =


0

0

1

 .

Hence 01101 is a codeword and 11111, 01100 are not. Since


0

0

1

 corresponds to the last

column of H and no two column of H are the same, we know that the error occurred at the

last bit. (Again, we used a theorem from the lectures.) Thus, we decode 11111 as 11110

and 01100 as 01101. �

(4) Let C be the linear code with check matrix

H =


1 1 0 1 0 1

1 1 0 0 1 0

1 0 1 1 0 0


If the word 110110 is received, and at most one error has been made, what was the intended

codeword?

Solution. For x̄ = 110110, we have

Hx̄′ =


1

1

0

 ,

so, x̄ is not a codeword. By the theorem from the lectures, since no column of H is repeated

and at most one error has been made, we need to change the bit corresponding to a column

that equals to


1

1

0

. This is the second column of H , so we must change the second bit of

x̄. Thus, we decode 110110 as 100110. �
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(5) (a) Let C be a code of length n. Suppose that C is 1-error-correcting. Prove that

|C| ≤ 2n

n + 1
.

(b) Show there is no 1-error-correcting code of length 5 with |C| = 6.

Solution. For a word x̄ ∈ C, let N1(x̄) be the set of all possible words ȳ with (Hamming)

distance at most 1 from x̄. For example, if n = 4, x̄ = 1101, then N1(x̄) = {1101, 0101,

1001, 1111, 1100}.

We make the following two observations:

(a) for every codeword x̄ ∈ C, we have |N1(x̄)| = n + 1,

(b) for every two different codewords x̄, z̄ ∈ C, we have N1(x̄) ∩N1(z̄) = ∅.

To see (a), we just realize that x̄ is at distance 0 from itself and that there are n words at

distance 1 from x̄, each of them obtained by changing exactly one bit from n possible.

Part (b) follows from the fact that C is one-error-correcting, i.e., no possible word of

length n can be within distance one from two codewords (otherwise, we couldn’t decode

such a word and the code would not be one-error-correcting).

So, what happens if we take the union of N1(x̄) over all codewords x̄ ∈ C?

Let x̄1, x̄2, . . . , x̄|C| be all the codewords in C. It follows from (b) and (a) that the size of

the union N1(x̄1)∪N1(x̄2)∪· · ·∪N1(x̄) is |N1(x̄1)|+|N1(x̄2)|+· · ·+|N1(x̄)| = |C|(n+1)

because these sets are pairwise disjoint. On the other hand, the number of words in the

union cannot be bigger than the total number of words of length n which is 2n. Hence,

|C|(n + 1) ≤ 2n must hold.

If there was an 1-error-correcting code of length 5 with |C| = 6, then 36 = 6(5 + 1) ≤

25 = 32 would have to hold, but this is not possible. �


