
Discrete Mathematics Lent 2009
MA 210

Notes for lectures 15 and 16

3.8 Trees

A tree is a connected graph with no cycles.

Theorem 3.13. Every tree on n vertices has n− 1 edges.

A forest is a graph with no cycles. Every component of a forest is a tree.

Let G be a graph on n vertices. A spanning tree in G is a set of edges of G which form a tree
on n vertices.

Lemma 3.14. A graph contains a spanning tree if and only if the graph is connected.

3.9 Minimal spanning trees

Suppose we have a collection of cities which have to be connected by a cable network. For
each pair of cities u and v we have the following options: either it is impossible to construct
a cable between u and v, or it is possible to construct a cable between u and v and we know
the cost cuv for constructing this cable. We would like to find a collection of cables such that
each city is connected with every other city (not necessarily by a direct cable) and such that
the cost of the total network is as small as possible.

We model this problem in the following way: form a graph G whose vertex set V(G) is the
set of cities and the edge set is

E(G) = {uv | a cable between u and v can be constructed}.

Now we want to find a subset of edges of E(G) that form a connected graph on the set of
cities. It is obvious that, if we want to minimize the total cost, this subgraph should not
contain any cycles and, therefore, it should be a spanning tree of G.

So the question can be rephrased to: find a spanning tree T of G such that ∑
uv∈E(T)

cuv is

minimal.

Such a tree is called a minimal spanning tree or a spanning tree with minimum total cost.

Theorem 3.15 (Kruskal’s Algorithm). Let G be a connected graph on n vertices, with a cost value
ce for each e ∈ E(G). Then a minimal spanning tree of G can be found as follows:

(i) Let e1 be the edge with minimum cost, i.e.,

ce1 = min
e∈E(G)

ce.

Set W = ∅.

Authors : Jozef Skokan c© London School of Economics, 2009



MA 210 — Discrete Mathematics Notes for lectures 15 — Page 2

(ii) Obtain e2, e3, . . . , en−1 recursively: having found e1, e2, . . . , ek, let f be the edge with mini-
mum weight in E(G) \ ({e1, e2, . . . , ek} ∪W).

If we can form a cycle with edges from e1, e2, . . . , ek, f , then add f to W and repeat this step.

If we cannot form a cycle with edges from e1, e2, . . . , ek, f , then set ek+1 = f and repeat this
step as long as k + 1 < n− 1.


