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Abstract

Let X be a progressively measurable, almost surely right-continuous stochastic process such that
Xτ ∈ L1 and E[Xτ ] = E[X0] for each finite stopping time τ . In 2006, Cherny showed that X is then
a uniformly integrable martingale provided that X is additionally nonnegative. Cherny then posed the
question whether this implication also holds even if X is not necessarily nonnegative. We provide an
example that illustrates that this implication is wrong, in general. If, however, an additional integrability
assumption is made on the limit inferior of |X| then the implication holds. Finally, we argue that this
integrability assumption holds if the stopping times are allowed to be randomized in a suitable sense.
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1 Introduction

We fix a filtered probability space (Ω,F ,F,P) with expectation operator E[·], where F = (Ft)t∈[0,∞) and
F∞ =

∨
t∈[0,∞)Ft ⊂ F . Furthermore, we fix a progressively measurable, almost surely right-continuous

process X . We write Z ∈ L1 if E[|Z|] < ∞ for some random variable Z. For some F–adapted process Y
and some stopping time η we write Y η to denote the process Y stopped at time η; to wit, Y η

t = Yη∧t for
each t ∈ [0,∞). All identifications and statements in the following are in the almost-sure sense.

We consider the following five statements:

(I) X is a uniformly integrable martingale.

(II) X∞ = limt↑∞Xt exists, Xτ ∈ L1 and E[Xτ ] = E[X0] for all stopping times τ .

(III) Xτ ∈ L1 and E[Xτ ] = E[X0] for all finite stopping times τ and lim inft↑∞ |Xt| ∈ L1.

(IV) Xτ ∈ L1 and E[Xτ ] = E[X0] for all finite stopping times τ .
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(V) Xt ∈ L1 and E[Xt] = E[X0] for all t ∈ [0,∞).

The optional sampling theorem yields the implications (I)⇒ (II)⇒ (III)⇒ (IV)⇒ (V). The implication
(II)⇒ (I) follows from the following simple argument. Fix s, t ∈ [0,∞] with s < t and A ∈ Fs. Let τ1 = s
and τ2 = s1Ac+t1A denote two stopping times, whereAc = Ω\A. Then, by assumption, E[Xτ1 ] = E[Xτ2 ],
which yields E[Xs1A] = E[Xt1A]. Thus we obtain the desired implication (II)⇒ (I). However, if only (III)
or (IV) is assumed, this argument only yields the martingale property of X but not its uniform integrability.

Cherny (2006) now asks the question whether also the implication (IV)⇒ (I) holds. Before answering
this question and discussing the role of (III), let us first briefly consider the statement in (V). Hulley (2009)
provides an example of a local martingale X , such that (V) is satisfied but X is not a martingale. Alterna-
tively, if X denotes Brownian motion started in 0 then (V) holds but (IV) is not satisfied. To see this, we
only need to let τ denote the first hitting time of level 1 by X . Thus, the implication (V)⇒ (IV) does not
hold in general.

We now return to discuss the missing implications, namely whether (III) or, more generally (IV), imply
(I) (or equivalently, (II)). Cherny (2006) proves that these implications hold if X is nonnegative. The fol-
lowing theorem proves that the implication (III)⇒ (I) holds always, not only if X is nonnegative. However,
the example of the next section shows that (IV) does not necessarily imply any of the statements (I) – (III) if
the nonnegativity assumption on X is dropped. Yet, as proven in Section 3, if the filtered probability space
(Ω,F ,F,P) allows for some additional randomization, then these implications hold. More precisely, if the
filtered probability space (Ω,F ,F,P) allows for a (0, 1)–uniformly distributed random variable, measurable
with respect to Fη for some finite stopping time η, then the implications (IV)⇒ (I), (IV)⇒ (II), and (IV)
⇒ (III) hold.

Theorem 1. The statements (I), (II), and (III) are equivalent.

Proof. We only need to show the implication (III)⇒ (I). We start by arguing that we may assume, without
loss of generality, that F and X(ω) are right-continuous for each ω ∈ Ω. Towards this end, we set F+

t =⋂
s>tFs and F+ = (F+

t )t∈[0,∞). Next, we observe that the F–martingale X is also an F+–martingale due
to Exercise 1.5.8 in Stroock and Varadhan (2006). Now, Lemma 1.1 in Föllmer (1972) yields the existence
of a right-continuous version of X , which we call again X . Next, we fix a finite F+–stopping time σ̂ and
set σ = σ̂ + 1, which is a finite F–stopping time by Theorem IV.57 in Dellacherie and Meyer (1978). Then,
Xσ satisfies (II) and is therefore a uniformly integrable F+–martingale. The optional sampling theorem then
also yields that Xσ̂ ∈ L1 and E[Xσ̂] = E[X0]. Thus, (III) also holds for all finite F+–stopping times, and
we shall assume from now on, throughout this proof, that F and X(ω) are right-continuous for each ω ∈ Ω.

We now construct a nondecreasing sequence (Tn)n∈N of [0,∞)–valued random variables such that
limn↑∞ |XTn | = lim inft↑∞ |Xt| ∈ F∞. For example, we can choose Tn as the first time that ||X| −
lim inft↑∞ |Xt|| ≤ 1/n. Then Tn is F∞–measurable, due to the right-continuity of X , for each n ∈ N
(but not necessarily a stopping time). Now we set Y = lim infn↑∞XTn ∈ F∞ and note that |Y | =
lim inft↑∞ |Xt|, thus Y ∈ L1 by assumption.

Next, let us consider the martingale M given by Mt = Xt − E[Y |Ft] for each t ∈ [0,∞), where
we may use a right-continuous modification of the conditional expectation process thanks to F being right-
continuous; see again Lemma 1.1 in Föllmer (1972). Then (III) holds with X replaced by M . We note
that lim inft↑∞ |Mt| = 0 since lim infn↑∞MTn = lim infn↑∞XTn − Y = 0, thanks to Lévy’s martingale
convergence theorem and the fact that Y ∈ F∞.

It is sufficient to show that the martingale M is uniformly integrable, or, equivalently that M ≡ 0.
Towards this end, we assume that there exists ε ∈ (0, 1) such that P(supt∈[0,1/ε)Mt > ε) > ε. We then let
σ1 be the first time that M is greater than or equal to ε and σ2 the first time after time 1/ε that |M | is less
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than or equal to ε2/4. Then σ2 is finite since lim inf |Mt| = 0 and, with τ = σ1 ∧ σ2, we may assume that
Mτ ∈ L1 and obtain

E[Mτ ] = E[Mσ11{σ1≤σ2}] + E[Mσ21{σ1>σ2}] ≥ εP
(
σ1 ≤

1

ε

)
− ε2

4
≥ 3ε2

4
>
ε2

4
≥ E[|Mσ2 |] ≥ E[Mσ2 ],

which contradicts (III) with X replaced by M . Thus M ≤ 0 and in the same manner, we can show that
M ≥ 0, which yields the statement.

We briefly remark that if X is nonnegative, then (IV) yields that X is a martingale, thus a nonnegative
supermartingale and therefore lim inft↑∞ |Xt| ∈ L1. Theorem 1 then yields Cherny’s result, namely the
implication (IV)⇒ (I) provided that X is nonnegative.

2 A counterexample

We now construct a filtered probability space (Ω,F ,F,P) with a right-continuous martingaleX that satisfies
(IV) and has a limit X∞ = limt↑∞Xt, but is not uniformly integrable.

Example 1. We let Ω = (N ∪ {∞})× {−1, 1} and F the power set of Ω. Next, we let P be the probability
measure on (Ω,F) such that P((n, i)) = 1/(4n2) for all n ∈ N and i ∈ {−1, 1} and P((∞, i)) =
(1− π2/12)/2 for all i ∈ {−1, 1}. Since

∑
n∈N 1/(2n2) = π2/12 ∈ (0, 1), this yields indeed a probability

measure on (Ω,F).
We let σ : Ω → [0,∞], (ω1, ω2) 7→ ω1 denote the first component and D : Ω → {−1, 1}, (ω1, ω2) 7→

ω2 the second component of each scenario (ω1, ω2) ∈ Ω. Then σ and D are independent and P(σ = x) =
1/(2x2)1x∈N for all x ∈ [0,∞], P(σ =∞) = 1− π2/12, and P(D = −1) = 1/2 = P(D = 1).

We now set X ≡ Dσ21[[σ,∞[[ and let F denote the natural filtration of X . To wit, X is a martingale that
at time σ jumps to either σ2 or −σ2 provided that σ is finite. In particular, we have

X∞ = lim
t↑∞

Xt = Dσ21{σ<∞}.

Next, we observe that

E[|X∞|] = E[σ21{σ<∞}] =
∑
n∈N

n2 1

2n2
=∞.

Hence, X∞ /∈ L1, and X is not a uniformly integrable martingale.
Now, we let τ be an arbitrary finite stopping time and set u = τ((∞,−1)) ∨ τ((∞, 1)) ∈ [0,∞). Thus,

{σ =∞} ⊂ {τ ≤ u} ∈ Fu, which again yields {σ > u} ⊂ {τ ≤ u} since {σ > u} is the smallest event in
Fu that contains {σ =∞}. Thus, since

{τ ∧ σ ≤ u} = {σ ≤ u} ∪ {τ ≤ u} ⊃ {σ ≤ u} ∪ {σ > u} = Ω,

the stopping time τ ∧ σ is uniformly bounded by u and we obtain that Xτ = Xσ
τ = Xτ∧σ ∈ L1 and, by the

optional sampling theorem again, that E[Xτ ] = E[Xτ∧σ] = 0 = E[X0]. Hence, X satisfies (IV) but not (I),
and therefore neither (II) nor (III).

We remark that Dellacherie (1970) discusses the filtration of a similar example.
In order to motivate the arguments in the next section, we now slightly modify Example 1 by extending

the underlying filtration.
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Example 2. We let (Ω,F ,F,P) be an arbitrary probability space that supports a right-continuous martingale
X = Dσ21[[σ,∞[[ with the same distribution as in Example 1 and an independent F0–measurable (0, 1)–
uniformly distributed random variable U .

Our goal is to construct a finite stopping time τ such that Xτ /∈ L1. Thus, under this enlarged filtration,
the previous example is not a counterexample for the implication (IV)⇒ (I). Indeed, we note that τ = 1/U
is a finite stopping time and |Xτ | = σ21{σ≤1/U}. Therefore,

E[|Xτ |] = E
[
σ21{σ≤1/U}

]
= E

b1/Uc∑
n=1

n2 1

2n2

 =
1

2
E
[⌊

1

U

⌋]
≥ E

[
1

2U

]
− 1

2
=

∫ 1

0

1

2y
dy − 1

2
=∞,

where b·c denotes the Gauss brackets, by independence of U and X .

Example 2 indicates that if “randomized stopping” is possible, a non-uniformly integrable martingale X
will not satisfy (IV). In the next section, we will prove this assertion.

3 An additonal randomization

In this section, we show that the implication (IV)⇒ (I) holds if we may randomize stopping times. More
precisely, we shall make the following assumption:

There exists a (0, 1)–uniformly distributed random variable U

and a finite stopping time η, such that U is Fη–measurable.
(R)

We emphasize that (R) is an assumption on the underlying filtered probability space (Ω,F ,F,P), and
not on the stochastic process X . We recall that we already argued that X is a martingale if (IV) holds. The
conclusion that X is also a uniformly integrable martingale, if additionally (R) holds, follows then from the
following theorem.

Theorem 2. If (IV) and (R) hold then so does (I); to wit, X is then a uniformly integrable martingale.

Proof. Exactly as in the proof of Theorem 1, we may assume, without loss of generality, that F and X(ω)
are right-continuous for each ω ∈ Ω. Lemmata 1 and 2 below then yield that lim inft↑∞ |Xt| ∈ L1 and the
implication (III)⇒ (I), proven in Thereom 1, yields the assertion.

Lemma 1. Assume that F and X(ω) are right-continuous for each ω ∈ Ω. If Xτ ∈ L1 for all finite stopping
times τ and (R) holds then E[lim inft↑∞ |Xt||Fη] <∞.

Proof. We define the event

A =

{
E
[

lim inf
t↑∞

|Xt|
∣∣∣∣Fη] =∞

}
∈ Fη.

We need to argue that P(A) = 0. Towards this end, we assume that P(A) > 0 and define the function
g : [0, 1] → [0,∞] by t 7→ 1/P(A ∩ {U ≤ t}), where U is the uniformly distributed random variable of
(R). We note that the function 1/g is continuous and nondecreasing and set t∞ = sup{t ∈ [0, 1]|g(t) =∞}.
Then we have P(A ∩ {U ≤ t∞}) = 0 and P(A ∩ {U ≤ t}) > 0 for all t > t∞, which yields that 1Ag(U)
(with 0×∞ = 0) is finite (almost surely).
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We now let σ denote the first time t after η such that E[|Xt||Fη] is greater than or equal to g(U) and note
that σ is a stopping time. Then, Fatou’s lemma yields that σ is finite on A. We now set τ = η1Ω\A + σ1A,
which is again a finite stopping time, and observe

E[|Xτ |] ≥ E [1A|Xσ|] = E [1AE[|Xσ||Fη]] ≥ E [1Ag(U)] ≥
∑
n∈N

P

(
A ∩

{
P(A ∩ {U ≤ t})t=U ≤

1

n

})
=∞.

Here the last inequality follows from Tonelli’s theorem and the last equality follows from the fact that
for each n ≥ 1/P(A) the corresponding term in the sum equals 1/n. To see this, fix n ≥ 1/P(A), let
tn = sup{t ∈ [0, 1]|g(tn) ≥ n}, and use the fact that P(A∩{U ≤ tn}) = 1/n. The last display contradicts
the assumption and thus yields P(A) = 0.

Lemma 2. Assume that F and X(ω) are right-continuous for each ω ∈ Ω. If Xτ ∈ L1 for all finite stopping
times τ and E[lim inft↑∞ |Xt||Fη] <∞ holds for some finite stopping time η then lim inft↑∞ |Xt| ∈ L1.

Proof. We let Y = (Yt)t∈[0,∞) denote the right-continuous modification of the finite-valued conditional
expectation process (

E
[

lim inf
s↑∞

|Xs|
∣∣∣∣Fη∨t])

t∈[0,∞)

.

For each κ > 0 the process (Yt1{Y0≤κ})t∈[0,∞) is a uniformly integrable martingale under its natural filtration
and Lévy’s martingale convergence theorem yields that 1{Y0≤κ} limt↑∞ Yt = 1{Y0≤κ} lim infs↑∞ |Xs|, and
thus limt↑∞ Yt = lim infs↑∞ |Xs|.

We now let τ denote the first time after time η such that |X| is greater than or equal to Y − 1, which is a
stopping time. Moreover, τ is finite since lim inft↑∞ |Xt| > limt↑∞ Yt − 1. We then obtain

E
[
lim inf
t↑∞

|Xt|
]

= E [Yτ ] ≤ 1 + E [|Xτ |] <∞,

which yields the statement.
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