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Abstract

We propose a method to determine the expectation of the supre-
mum of the price process in stochastic volatility models. It can be
applied to the rough Bergomi model, avoiding the need to discuss
finiteness of higher moments. Our motivation stems from the theory
of American option pricing, as an integrable supremum implies the
existence of an optimal stopping time for any linearly bounded payoff.
Moreover, we survey the literature on martingales with non-integrable
supremum, and give a new construction that yields uniformly inte-
grable martingales with this property.
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1 Introduction

This paper deals mainly with the question whether a non-negative martingale
S = (St)0≤t≤T , where T ∈ (0,∞] is deterministic, satisfies

E
[

sup
t∈[0,T ]

St

]
< ∞. (1.1)

From the viewpoint of mathematical finance, this property is of interest in the
theory of American option pricing. If S is the price process of the underly-
ing and the expectation is under the chosen pricing measure, condition (1.1)
implies the existence of an optimal exercise time for all American payoffs of
at most linear growth [25, Theorem D.12]. A standard example is the strad-
dle [5], with payoff |St−K|. In the European case, its price decomposes into
a call price plus a put price, where both put and call have strike K. Under
American exercise rights, such a decomposition does not hold. Thus, (1.1)
serves as theoretical basis of any convergence analysis regarding approximate
optimal exercise strategies, as it guarantees the existence of the limiting ob-
ject.

If T < ∞ and E[Sp
T ] < ∞ for some p > 1, which may depend on T ,

then (1.1) follows from Doob’s Lp inequality. A convenient way of verify-
ing finiteness of moments E[Sp

T ] is to study the domain of the characteristic
function, and so the existence of higher moments is well understood for affine
models [26] and affine Volterra models [15, 27]. Further examples of stochas-
tic volatility models with known characteristic function can be found in [19,
Chapter 4]. The 3/2 model admits a particularly simple statement in this
regard, which has not been made explicit in the literature: If the asset and
variance processes are negatively correlated, any moment E[Sp

T ] with expo-
nent p ∈ [1, u+) is finite, irrespective of the value of T . We refer to [16] for
the definition of u+ > 1 in terms of the model parameters, and for refined
tail asymptotics of the marginal density. For models that do not feature an
explicit characteristic function, a tool that could be used to establish (1.1)
is [30, Theorem 4.1], which gives sufficient conditions for the finiteness of the
exponential Orlicz norm of the maximum of a continuous local martingale.

For rough volatility models outside the affine Volterra class, it seems that
there are only results on the non-existence of moments so far [14, 20], which
motivates studying (1.1) directly. We give a sufficient condition for (1.1),
and show that it is satisfied for the rough Bergomi model, for which there
are so far no positive results on moments with p > 1. Our approach is based
on Doob’s L1 inequality and a change of measure. We also show that it
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is applicable to generic stochastic volatility models driven by solutions of
stochastic Volterra integral equations, under certain regularity assumptions.

We note in passing that the stronger condition that the supremum of the
expectation in (1.1) over all equivalent martingale measures be finite is of in-
terest as well. Under this assumption, all arbitrage free price processes of a
linearly bounded American payoff can be represented by Snell envelopes with
respect to some equivalent martingale measure. This follows from [23, The-
orem 13.2.9], by specializing from game options to American options. The
statement is not found in many textbooks, while the European counterpart of
the theorem, viz. that all arbitrage free price processes arise from equivalent
martingale measures, is standard material in mathematical finance courses
– see [13, Theorem 5.29] for this (the European) statement in discrete time,
which avoids technicalities.

It is not obvious whether there actually are martingales that do not sat-
isfy (1.1). We discuss this question in Section 4. We survey the literature and
show how known results easily yield explicit examples of such martingales.
Moreover, we present a new construction that gives plenty of examples, by
appropriately stopping a strict local martingale.

As usual, we define the function log+ on [0,∞) by log+(x) = (log x)+. For
a given probability space, the class L logL consists of the random variables X
with E[|X| log+|X|] < ∞.

2 Integrability of the supremum in stochastic

volatility models

The following lemma states a version of Doob’s L1 inequality [4, 17].

Lemma 2.1. Let T > 0 and suppose that the process (Xt)t∈[0,T ] is a strictly
positive right-continuous submartingale. Then we have

E
[

sup
t∈[0,T ]

Xt

]
≤ e

e− 1

(
E [XT log(XT )] + E [X0(1− log(X0))]

)
.

Doob’s original statement has log+ instead of log, which is slightly less
convenient for our application. While some sources present the inequality
in discrete time, it is clear that we can easily pass to continuous time, by
means of the monotone convergence theorem. We note in passing that an
application of the inequality to pathwise hedging is presented in [3, Section 5].
We will apply this lemma to a generic stochastic volatility model introduced
below. In particular, the modelling framework includes the rough Bergomi
model (see Section 3).
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Assumption 2.2. Let f : [0,∞)×R → [0,∞) be a continuous non-negative
function. Fix y0 ∈ R such that f(0, y0) > 0, fix ρ ∈ [−1, 1], and consider
measurable functions

b : [0,∞)× R → R, σ : [0,∞)× R → R,

and K : ∆ → [0,∞), where ∆ = {(t, s) ∈ [0,∞)2 : t ≥ s}. We assume that
for any filtered probability space, satisfying the usual conditions and sup-
porting a one-dimensional Brownian motion (Bt)t≥0, the stochastic Volterra
equations

Yt = y0 +

∫ t

0

K(t, s)b(s, Ys)ds+

∫ t

0

K(t, s)σ(s, Ys)dBs (2.1)

and

Ỹt = y0 +

∫ t

0

K(t, s)
(
b(s, Ỹs) + ρ

√
f(s, Ỹs)σ(s, Ỹs)

)
ds

+

∫ t

0

K(t, s)σ(s, Ỹs)dBs

(2.2)

have unique continuous adapted solution processes (Yt)t≥0 and (Ỹt)t≥0, re-
spectively. For the given solution process Ỹ of (2.2), we define the process ṽ
via

ṽt = f(t, Ỹt), t ≥ 0. (2.3)

We do not impose any further regularity conditions on the functions
K,B, σ; our strong existence assumptions tacitly include the well-definedness
of all occurring integrals. We refer to the introduction of [8] for an up-to-date
survey of the solution theory of stochastic Volterra integral equations.

Definition 2.3. Under Assumption 2.2, and for a filtered probability space
supporting a two-dimensional Brownian motion (W, W̄ ), we define the asso-
ciated stochastic volatility model with initial value S0 > 0 by

dSt = St

√
vtdWt,

vt = f(t, Yt).

Here, the process Y (see (2.1)) is driven by the Brownian motion B = ρW +√
1− ρ2W̄ .

4



Lemma 2.4. Fix T > 0 and assume that S, from the preceding definition,
is a martingale on [0, T ]. Then, we have

E
[

sup
t∈[0,T ]

St

]
≤ e

e− 1

(
S0 + S0E

[∫ T

0

√
ṽsdWs +

1

2

∫ T

0

ṽsds

])
,

where ṽ is the process defined in (2.3). Additionally, we have the upper bound

E
[

sup
t∈[0,T ]

St

]
≤ α + β

∫ T

0

E [ṽs] ds, (2.4)

where α and β are some positive constants.

Proof. Assume w.l.o.g. that S0 = 1. By assumption, S is a martingale on
[0, T ], which allows us to define the measure dP̂ = STdP, sometimes called
the share measure, and apply Girsanov’s theorem to see that(

W (1)

W (2)

)
=

(
W −

∫ .∧T
0

√
vsds

W̄

)
is a Brownian motion under P̂. An application of Lemma 2.1 and the defini-
tion of W (1) yield

E
[

sup
t∈[0,T ]

St

]
≤ e

e− 1

(
1 + E

[
ST

(∫ T

0

√
vsdWs −

1

2

∫ T

0

vsds

)])
=

e

e− 1

(
1 + EP̂

[∫ T

0

√
vsdWs −

1

2

∫ T

0

vsds

])
=

e

e− 1

(
1 + EP̂

[∫ T

0

√
vsdW

(1)
s +

1

2

∫ T

0

vsds

])
.

Next, using vt = f(t, Yt), we observe

Yt = y0 +

∫ t

0

K(t, s)b(s, Ys)ds+

∫ t

0

K(t, s)σ(s, Ys)d(ρWs +
√

1− ρ2W̄s)

= y0 +

∫ t

0

K(t, s)
(
b(s, Ys) + ρ

√
f(s, Ys)σ(s, Ys)

)
ds

+

∫ t

0

K(t, s)σ(s, Ys)d(ρW
(1)
s +

√
1− ρ2W (2)

s ),

for t ∈ [0, T ]. Since ρW (1) +
√

1− ρ2W (2) is a Brownian motion under P̂, by
the uniqueness and existence assumptions made in Assumption 2.2, the law
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of Y under the measure P̂ must agree with the law of Ỹ under the measure P.
Whence, the same is true for v and ṽ, which yields, when changing back to
the measure P,

E
[

sup
t∈[0,T ]

St

]
≤ e

e− 1

(
1 + E

[∫ T

0

√
ṽsdWs +

1

2

∫ T

0

ṽsds

])
, (2.5)

which proves our claim. For the second inequality, note that the Burkholder-
Davis-Gundy inequality [24, Theorem 3.3.28] yields for some C > 0 that

E
[∫ T

0

√
ṽsdWs

]
≤ 1 + E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0

√
ṽsdWs

∣∣∣∣2
]
≤ 1 + CE

[∫ T

0

ṽsds

]
.

Combining this with (2.5) yields the existence of positive α and β such that

E
[

sup
t∈[0,T ]

St

]
≤ α + β

∫ T

0

E [ṽs] ds,

where we used that ṽ is non-negative. This completes the proof.

Note that the dynamics of the two auxiliary processes (2.1) and (2.2)
are similar, and so results yielding strong existence and uniqueness for the
former process could well be applicable to the latter as well. Additionally,
note that the right hand side of (2.4) does not depend on the stock price
process. Hence, we only have to bound the process ṽ appropriately in order
to conclude integrability of the supremum of S. While our main example,
the rough Bergomi model, satisfies Assumption 2.2, we show in Appendix A
that the assumption can be weakened.

Under suitable regularity assumptions, it is a straightforward matter to
apply Lemma 2.4 to stochastic volatility models driven by solutions of generic
stochastic Volterra integral equations. Concerning the kernel, we quote the
following assumption, which is condition (H0) in [1]:

Assumption 2.5. The kernel K is of the form K(t, s) = K̃(t − s), where
K̃ ∈ L2

loc([0,∞),R), and there is γ > 0 with∫ h

0

K̃(t)2dt = O(hγ), h ↓ 0,

and ∫ T

0

(K̃(t+ h)− K̃(t))dt = O(hγ), h ↓ 0, for all T > 0.

We refer to [2, Example 3.3] for examples of such kernels.
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Theorem 2.6. Let K be a kernel satisfying Assumption 2.5. Fix T > 0 and
suppose that

sup
t∈[0,T ]

|f(t, y)| ≤ c(1 + |y|), y ∈ R, (2.6)

for some c > 0, and that the coefficients b, σ and b+ρ
√
fσ in (2.1) and (2.2)

are of at most linear growth, in the sense of (2.6), and globally Lipschitz
continuous on [0, T ]× R. Then S from Definition 2.3 satisfies (1.1).

Proof. We apply [1, Theorem A.1] to infer strong existence and uniqueness
for (2.1) and (2.2). Note that the theorem covers multi-dimensional solutions
of time-homogeneous stochastic Volterra integral equations, and thus yields
solution processes (t, Yt) and (t, Ỹt), as well as the bound

sup
t∈[0,T ]

E
[∣∣∣Ỹt

∣∣∣] < ∞.

Thus, by (2.3) and (2.6), the statement follows from Lemma 2.4.

In the following section we apply Lemma 2.4 to the rough Bergomi model.
For the rough Heston model, another well-known rough volatility model, As-
sumption 2.2 amounts to a well-known open problem, viz. strong existence
for stochastic Volterra integral equations under Hölder assumptions. In Ap-
pendix A, we show how Assumption 2.2 can be weakened. In the case of the
rough Heston model, this serves illustrative purposes only: By [15] there is
some p > 1 such that E [Sp

T ] < ∞, which allows us to simply use Doob’s Lp

inequality to conclude (1.1).

3 Application to the rough Bergomi model

After introducing the rough Bergomi model below, we apply Lemma 2.4 to
conclude that (1.1) holds in this model. We do not consider positive correla-
tion, since it is known (see [14]) that the price process S is a true martingale if
and only if the instantaneous correlation of the two driving Brownian motions
is non-positive, i.e., ρ ≤ 0. Indeed, besides giving difficulties concerning op-
tion pricing [9], a non-negative strict local martingale cannot satisfy (1.1), by
the dominated convergence theorem. For the definition of the rough Bergomi
model, we use the kernel

Kα,η(t, s) = η
√
2α− 1(t− s)α−1, 0 ≤ s < t, (3.1)

where α > 1/2 and η > 0.
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Definition 3.1 (Rough Bergomi model [6]). The rough Bergomi model,
where S denotes the stock price and v is the instantaneous variance process,
is defined as

dSt = St

√
vtdWt, S0 > 0,

vt = v0 exp
(
Zt −

η2

2
t2α−1

)
, v0 > 0, (3.2)

where Y is the Riemann-Liouville process given by Yt =
∫ t

0
Kα,η(t, s)dBs for

t ≥ 0. Here B is a Brownian motion defined by B = ρW +
√

1− ρ2W̄ for
ρ ∈ [−1, 0] and some standard Brownian motion W̄ independent of W .

Remark 3.2. In (3.2), we assume a flat initial forward variance curve
ξ0(t) = E[vt] = v0 for simplicity of notation. Clearly, in what follows, v0 could
be generalized to a continuous, non-negative, and bounded function ξ0(·).

Note that Theorem 2.6 does not cover the rough Bergomi model, as the
exponential in (3.3) violates the linear growth assumption. Still, the rough
Bergomi model fits into Definition 2.3. Indeed, let

f(t, y) = v0 exp
(
y − η2

2
t2α−1

)
,

use the Volterra kernel Kα,η defined in (3.1), and set y0 = 0, b = 0, and
σ = 1. The equation for the process Ỹ is given by

Ỹt =

∫ t

0

Kα,η(t, s)ρ
√
v0 exp

(1
2
Ỹs −

η2

4
s2α−1

)
ds+

∫ t

0

Kα,η(t, s)dBs. (3.3)

The main issue in the application of Lemma 2.4 to the rough Bergomi model
is to establish strong existence and uniqueness for this equation.

Corollary 3.3. For any filtered probability space, satisfying the usual condi-
tions and supporting a one-dimensional Brownian motion (Bt)t≥0, the stochas-
tic Volterra equation (3.3) admits a unique and adapted global solution Ỹ .

Proof. Define the Riemann-Liouville process Y =
∫ ·
0
Kα,η(t, s)dBs and note

that it is continuous, adapted, and starts in zero. Further note that the kernel
Kα,η is a Volterra kernel of continuous type (see Definition B.1). Define next
the function

g(t, y) = |ρ|
√
v0 exp

(1
2
y − η2

4
t2α−1

)
.

Now Theorem B.3 yields the existence of a unique, adapted, and continuous
solution Ỹ to (3.3), which concludes the proof.
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Hence, by existence of a unique global solution, and combining (2.3) with
the fact that f is non-decreasing in y, we can use the a-priori estimate

0 ≤ ṽt ≤ v0 exp
(
Yt −

η2

2
t2α−1

)
, (3.4)

for t ≥ 0. Note that the right-hand side of the above inequality has a log-
normal distribution with constant expectation v0. Hence, an application of
Lemma 2.4 and the upper bound (3.4) show for the rough Bergomi model
that

E
[

sup
t∈[0,T ]

St

]
≤ α + β

∫ T

0

E [ṽs] ds ≤ α + β

∫ T

0

v0ds < ∞,

for some positive α and β. We summarize the above analysis for the rough
Bergomi model in the following theorem.

Theorem 3.4. For the rough Bergomi model with ρ ≤ 0, see Definition 3.1,
we have

E
[

sup
t∈[0,T ]

St

]
< ∞.

4 Martingales with non-integrable supremum

4.1 General remarks

By the Burkholder-Davis-Gundy inequalities, the set of local martingales
with integrable supremum coincides with H1, the space of local martin-
gales (Mt)t≥0 for which

∥M∥1 = E
[
[M ]1/2∞

]
is finite. By dominated convergence, “local” can be dropped from this state-
ment. Clearly, every element of H1 is uniformly integrable. For details and
further interesting properties of H1, such as its duality to the space of BMO
martingales, we refer to Section IV.4 in [31].

A family of discrete time examples of martingales with non-integrable
supremum is provided by Theorem 2 in [7]. In this section, we give three
different approaches that yield examples in continuous time. More exam-
ples can be found in [28]. First, recall that any continuous non-negative
martingale (Xt)t≥0 with X0 = 1 satisfies the reverse L1 inequality

E
[
sup
t≥0

Xt

]
≥ 1 + E[X∞ log+(X∞)]. (4.1)
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For a proof, we refer to p. 149 in [11]; see also [21, 22] for earlier versions of
similar inequalities.

For the mere existence of martingales with non-integrable supremum, the
following observation suffices: For T ∈ (0,∞], suppose that a probability
space with filtration (Ft)0≤t≤T supports a non-negative FT -measurable ran-
dom variable XT ∈ L1 which is not in the class L logL. If Xt = E[XT |Ft] is
continuous, then it is a uniformly integrable martingale which is not in H1.

4.2 A construction by Dubins and Gilat

The second construction is due to [10] and appears also in [28, Example 1]. In
our exposition, we add some details. In contrast to the above argument, the
process will be explicitly defined, and is a martingale w.r.t. its own filtration.
Unlike the rest of the paper, we drop the assumption of non-negativity, and
aim at finding a real-valued martingale (Xt)0≤t≤1 with E[supt∈[0,1]Xt] = ∞.
For convenience, the following assumption is in force throughout this subsec-
tion.

Assumption 4.1. Let F be the cumulative distribution function of some
distribution on the real line with finite first moment, with full support and a
continuous density.

The function

HF (t) =
1

1− t

∫ 1

t

F−1(s)ds, 0 < t < 1, (4.2)

is known as the Hardy–Littlewood maximal function of the distribution. For
the significance of this function concerning analytic and martingale inequali-
ties, we refer to [17] and the references therein. Note that, in financial terms,
the Hardy–Littlewood maximal function is the tail value at risk, or expected
shortfall, of the distribution defined by F . In economics, the closely related
function t 7→

∫ t

0
F−1(s)ds/

∫ 1

0
F−1(s)ds is known as the Lorenz curve. It has

been shown in [7] that the distribution of HF , viewed as a random variable
on the probability space (

(0, 1),B(0, 1),Leb
)
, (4.3)

is an upper bound for the set

{ν : ν is the distribution of the supremum of a martingale closed

by a random variable with cumulative distribution function F}
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with respect to stochastic order. In [10] it was shown that the distribution
ofHF is also a member of this set. This is achieved by defining a martingaleX
on the probability space (4.3) such that its closing element has cumulative
distribution function F and the distribution of the supremum of X equals
the distribution of HF . If HF /∈ L1, then X has the desired properties. See
Proposition 4.4 for details.

Remark 4.2. (i) It is clear that only the upper tail of the supremum of a
martingale can cause non-integrability, since∣∣∣ sup

t∈[0,1]
Xt

∣∣∣ 1{supt∈[0,1] Xt<0} ≤ |X0|.

(ii) Integrability of the Hardy–Littlewood maximal function (4.2) can only

fail because of a blowup as t tends to 1. Indeed, limt↓0HF (t) =
∫ 1

0
|F−1(s)|ds

is finite, by existence of the first moment of F . Thus, for integrability
criteria concerning HF , it does not matter if |F−1(s)| is used in the
definition (4.2) instead of F−1(s), as is the case in [32].

(iii) Concerning notation: The non-decreasing function f from [10] is our F−1.
On the other hand, f ∗ from [17] is assumed to be non-increasing, and
equals F−1(1 − ·) in our notation. As a consequence, when read-
ing [10, 17] it is important to note that the Hardy–Littlewood maximal
functions H from [10] (which is our HF ) and F ∗ from [17] are not
equal, but related by F ∗(1− t) = H(t), where 0 < t < 1.

Lemma 4.3. If ∫
R
|x| log+|x|F (dx) = ∞, (4.4)

then HF /∈ L1.

Proof. This follows from a classical theorem due to Stein [32], which asserts

that HF /∈ L1 is equivalent to
∫ 1

0
|F−1(s)| log+ |F−1(s)|ds = ∞, by substitu-

tion.

Examples of cumulative distribution functions with finite first moment,
but satisfying (4.4), can be easily found; e.g., assume that the density satisfies

F ′(x) ≤ c1
x2(log |x|)α

, |x| large,

and
F ′(x) ≥ c2

(x log x)2
, x > 0 large,

for some constants α ∈ (1, 2] and c1, c2 > 0.
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Proposition 4.4. Recall Assumption 4.1, and suppose that F satisfies (4.4).
Then the process (Xt)0≤t≤1 defined by

Xt(s) =

{
HF (t) for t ≤ s,

F−1(s) for t > s

is a martingale on the probability space (4.3), with respect to its own filtration,
and its supremum is not integrable.

Proof. According to the proof of [10, Lemma 2], the process (Xt)0≤t≤1 is a
martingale. As this is not shown in [10], we give a proof for the reader’s
convenience. Let U(s) = s, so that U is a standard uniformly distributed
random variable on the probability space (4.3). It is easy to see that Ft =
σ(U1{U<t}) is the filtration generated by X. Define X̃t = E[F−1(U)|Ft] for

t ∈ [0, 1]. It is readily verified that we have X̃t = F−1(U) on the event
{U < t} ∈ Ft, while on the event {U ≥ t} ∈ Ft we have X̃t = HF (t). Thus,
X = X̃. Finally, we have

sup
0≤t≤1

Xt(s) = HF (s), 0 < s < 1.

By Lemma 4.3, this is not integrable with respect to Lebesgue measure on
(0, 1).

4.3 A new approach

Our third construction starts with an arbitrary non-negative local martin-
gale M that is not a uniformly integrable martingale. In particular, M may
be any non-negative strict local martingale. See, e.g., Exercise 3.3.36 in [24]
for a standard example. We present the arguments for T = ∞, but they
trivially apply to finite T as well. Observe that

E
[
sup
t≥0

Mt

]
=

∫ ∞

0

P
[
sup
t≥0

Mt > u
]
du

and
∞∑
n=1

P
[
sup
t≥0

Mt > n
]
≤
∫ ∞

0

P
[
sup
t≥0

Mt > u
]
du ≤ 1 +

∞∑
n=1

P
[
sup
t≥0

Mt > n
]
.

As mentioned above, we have M ∈ H1 if and only if E[supt≥0Mt] < ∞, and
so it follows that M ∈ H1 if and only if

∞∑
n=1

P
[
sup
t≥0

Mt > n
]
< ∞. (4.5)

This condition plays a key role in our construction.
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Theorem 4.5. Let (Mt)t≥0 be a non-negative local martingale that is not a
uniformly integrable martingale. Then there is an extended filtered probability
space with a stopping time τ such that

(i) The lift of M to the extended probability space, again denoted by M ,
has the same properties.

(ii) The stopped process M τ is a uniformly integrable martingale which is
not in H1, i.e., E[supt≥0M

τ
t ] = ∞.

Proof. We assume that T = ∞; the construction clearly works for finite T ,
too. Define the non-decreasing sequence (cn)n∈N, by setting

cn = log

(
e+

n∑
k=1

P
[
sup
t≥0

Mt > k
])

> 1, (4.6)

for each n ∈ N. Since M /∈ H1, it follows that limn↑∞ cn = ∞. Without loss
of generality, the original probability space, with filtration (Ft)t≥0, accommo-
dates an N-valued and F0-measurable random variable Y that is independent
of M , and whose distribution satisfies P[Y > n] = 1/cn, for each n ∈ N. Let

σ = inf{t ≥ 0 |Mt > Y } (4.7)

denote the first time M exceeds Y . It follows that

P
[
sup
t≥0

Mσ
t > n

]
≥ P

[
sup
t≥0

Mt > n
]
P[Y > n] =

1

cn
P
[
sup
t≥0

Mt > n
]
,

for each n ∈ N. Consequently,
∞∑
n=1

P
[
sup
t≥0

Mσ
t > n

]
≥ lim

m↑∞

1

cm

m∑
n=1

P
[
sup
t≥0

Mt > n
]
= lim

m↑∞

ecm − e

cm
= ∞,

since (cn)n∈N is non-decreasing and limn↑∞ cn = ∞. This implies that Mσ /∈
H1. On the other hand, the almost sure limit Mσ

∞ = Mσ
∞− ∈ [0,∞) exists,

since Mσ is a non-negative local martingale, and hence also a non-negative
supermartingale. Moreover,

E[Mσ
∞] =

∞∑
n=1

E[Mσ
∞ |Y = n]P[Y = n]

=
∞∑
n=1

E[M τn
∞ |Y = n]P[Y = n]

=
∞∑
n=1

E[M τn
∞ ]P[Y = n] =

∞∑
n=1

E[M0]P[Y = n] = E[Mσ
0 ],

13



where
τn = inf{t ≥ 0 |Mt > n}, n ∈ N.

Here, the penultimate equality follows from the fact that M τn is uniformly
integrable, for each n ∈ N. Consequently, Mσ is uniformly integrable.

Recall from the beginning of this section that the existence of martingales
not in H1 is an immediate consequence of (4.1). If M is continuous, then
the process Mσ from the proof of Theorem 4.5 is of the kind mentioned
there, i.e., Mσ

∞ /∈ L logL. Besides accommodating càdlàg processes M , we
make the following pedagogical remark: Theorem 4.5 and its proof require
only material from an introductory course on stochastic calculus, and not
the reverse L1 inequality. Moreover, the natural way to prove Mσ /∈ H1 is to
show that (4.5) fails, and not to verify Mσ

∞ /∈ L logL.

Example 4.6. Consider a non-negative local martingale M that belongs to
Class (C0), according to the terminology of [29], and suppose that M0 = 1. In
that case, M is a strictly positive local martingale without any positive jumps,
for which M∞ = M∞− = 0. The construction from Theorem 4.5 is then ap-
plicable, since E[M∞] = 0 < 1 = E[M0] implies that M is not uniformly inte-
grable. Moreover, an application of Doob’s maximal identity [29, Lemma 2.1]
provides the following concrete representation for the non-decreasing sequence
(cn)n∈N, defined by (4.6):

cn = log

(
e+

n∑
k=1

1

k

)
, n ∈ N.

As the harmonic numbers tend to infinity, we have limn↑∞ cn = ∞, which is
the crucial ingredient for showing that Mσ /∈ H1, where the stopping time σ
is given by (4.7).

A Assuming only weak existence in Section 2

We generalize the results from Section 2, by weakening the assumption on
strong existence and uniqueness for equations (2.1) and (2.2). Indeed, we
remove the assumption on strong existence and uniqueness entirely and only
require weak existence and uniqueness of (2.1). This of course increases the
scope of models that fulfill these assumptions, but at the same time weakens
the assertion of the corresponding Lemma A.3.

Assumption A.1. Let f, y0, ρ, b, σ, and K be as in Assumption 2.2. We
assume weak existence and uniqueness in law for the stochastic Volterra

14



equation (2.1). That is, there is some filtered probability space satisfying
the usual conditions supporting a one-dimensional Brownian motion (Bt)t≥0

and a continuous process (Yt)t≥0 such that the pair (Y,B) satisfies equa-
tion (2.1). Further, any such solution pair (Y,B) induces the same law on
C([0,∞),R)× C([0,∞),R).

This yields a similar model definition compared to Definition 2.3.

Definition A.2. Under Assumption A.1, let (Y,B) be a solution pair to (2.1)
defined on some, from now on fixed, filtered probability space. By appropri-
ately extending this space, we may assume the existence of another Brownian
motion W̃ , independent of (Y,B). The associated stochastic volatility model
with initial value S0 > 0 is then defined by

dSt = St

√
vtdWt,

vt = f(t, Yt),

where the spot price process S is driven by the Brownian motion W = ρB +√
1− ρ2W̃ .

Using this definition, we can formulate a similar but weaker result than
Lemma 2.4. If one can find a sufficiently integrable and uniform bound on
f(s, Ỹs) for every weak solution of (2.2), then the supremum is still integrable.

Lemma A.3. Fix T > 0 and assume that S, from Definition A.2, is a
martingale on [0, T ]. Then there exists a weak solution to Equation (2.2)
and we have the upper bound

E
[

sup
t∈[0,T ]

St

]
≤ α + β sup

∫ T

0

EP̃[f(s, Ỹs)]ds, (A.1)

where α and β are some positive constants and where the supremum runs over
the nonempty set of all weak solutions of (2.2), each of which is given by a
pair (Ỹ , B̃) defined on some filtered probability space (Ω̃, F̃ , F̃, P̃) satisfying
the usual conditions.

Proof. We follow the proof of Lemma 2.4. Assume w.l.o.g. that S0 = 1 and
define the probability measure dP̂ = STdP. From Girsanov’s theorem we
obtain that (

W (1)

W (2)

)
=

(
B − ρ

∫ .∧T
0

√
vsds

W̃ −
√

1− ρ2
∫ .∧T
0

√
vsds

)

15



is a Brownian motion under P̂. Lemma 2.1 yields

E
[

sup
t∈[0,T ]

St

]
≤ e

e− 1

(
1 + EP̂

[ ∫ T

0

√
vsd
(
ρW (1)

s +
√

1− ρ2W (2)
s

)
+

1

2

∫ T

0

vsds

])
.

By the Burkholder-Davis-Gundy inequality we then have some α, β > 0 such
that

E
[

sup
t∈[0,T ]

St

]
≤ α + β

∫ T

0

EP̂ [vs] ds.

Note that

Yt = y0 +

∫ t

0

K(t, s)b(s, Ys)ds+

∫ t

0

K(t, s)σ(s, Ys)dBs

= y0 +

∫ t

0

K(t, s)
(
b(s, Ys) + ρ

√
f(s, Ys)σ(s, Ys)

)
ds+

∫ t

0

K(t, s)σ(s, Ys)dW
(1)
s ,

for t ∈ [0, T ]. Denoting our original model probability space as (Ω,F ,F,P)
the last equation implies that (Y,W (1)) defined on the space (Ω,F ,F, P̂) is a
weak solution to (2.2). Hence, there exists a weak solution and obviously we
get an upper estimate, by using the supremum over all weak solutions. This
concludes the proof.

Lastly, we want to illustrate Lemma A.3 by an application to affine
Volterra processes. We keep the presentation brief, as the integrability of
the supremum in Theorem A.6 below follows easily by an application of
Doob’s Lp-inequality; see the remarks after Theorem 2.6. Recall the general
stochastic Volterra equation

Yt = Y0 +

∫ t

0

Kα,η(t, s)µ(Ys)ds+

∫ t

0

Kα,η(t, s)σ(Ys)dWs, t ≥ 0, (A.2)

where the kernel Kα,η is defined as in (3.1) with η > 0 and α ∈ (1/2, 1) and
W is a Brownian motion. Following [2], we define affine Volterra processes
as follows.

Definition A.4 (Affine Volterra process). Let a and b be affine functions
given by

a(x) = a0 + a1y;

with scalars b0, b1 ∈ R and a0, a1 ≥ 0. An affine Volterra process is a contin-
uous weak solution of the stochastic Volterra equation (A.2) with µ(y) = b(y)
and σ(y) =

√
a(y) and starting value Y0 ≥ 0.
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The following theorem, see [2, Lemma 3.1 and Theorem 6.1], allows us to
show existence and uniqueness of affine Volterra processes and find uniform
bounds on the moments of solutions to (A.2).

Theorem A.5. The following holds.

(i) Let Y be a continuous weak solution to (A.2), where σ and µ are con-
tinuous on R and satisfy the linear growth condition

|b(y)| ∨ |σ(y)| ≤ cLG(1 + |y|), y ∈ R,

for some constant cLG. Then for any T > 0 and p ≥ 1, we have

sup
t∈[0,T ]

E [|Yt|p] ≤ c,

where the constant c only depends on T , p, Kα,η|[0,T ], Y0 and cLG.

(ii) Let µ and σ be given as in Definition A.4 with a0 = 0 and b0 ≥ 0.
Then (A.2) admits a unique, continuous, and positive weak solution
for every initial condition Y0 ≥ 0. In particular, the corresponding
affine Volterra process exists and is unique in law.

Proof. Part (i) immediately follows from [2, Lemma 3.1] and part (ii) follows
from [2, Theorem 6.1] since the kernel Kα,η fulfills the necessary assumptions
by [2, Examples 2.3 (ii) and 3.7].

Applying Theorem A.5 (ii), we can choose a positive affine Volterra pro-
cess with a0 = 0 and b0 ≥ 0. Using the link function f(y) = max{0, y}
allows us to consider the associated stochastic volatility model (S, v) as given
in Definition A.2. Noting that the stock price process S is a martingale by
[2, Theorem 7.1(iii)], we can readily apply Lemma A.3. The corresponding
equation for Ỹ , see (2.2), is given by

Ỹt = Y0 +

∫ t

0

K(t, s)

(
b0 + b1Ỹs + ρ

√
a1ỸsỸ +

s

)
ds+

∫ t

0

K(t, s)

√
a1ỸsdBs.

Since the coefficients of the above equation for Ỹ grow at most linearly, we
can apply Theorem A.5 (i) and hence find a uniform upper bound for the
supremum in (A.1). We therefore have the following theorem.

Theorem A.6. Let Y be an affine Volterra process according to Defini-
tion A.4 with a0 = 0, b0 ≥ 0 and initial condition Y0 ≥ 0. Consider
the associated stochastic volatility (S, v) model for the link function f(y) =
max{0, y}. Then it holds

E
[

sup
t∈[0,T ]

St

]
< ∞.
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Remark A.7 (Application to rough Heston model). In particular, the well-
known rough Heston model, see [12], is covered by the above theorem, since its
volatility process is an affine Volterra process as described in Definition A.4
with a0 = 0 and b0 ≥ 0.

B Strong existence and uniqueness for stochas-

tic Volterra integral equations

We present an existence and uniqueness result for certain stochastic Volterra
equations that in particular applies to equation (2.2) in the situation of the
rough Bergomi model. To this end, we first define Volterra kernels of contin-
uous type, see for example [18].

Definition B.1 (Volterra kernel of continuous type). Recall ∆ = {(t, s) ∈
[0,∞)2 : t ≥ s}. Then a measurable function κ : ∆ → [0,∞) is a Volterra
kernel of continuous type1 if for each t ∈ [0,∞) we have κ(t, .) ∈ L1([0,∞))
and the map [0,∞) ∋ t 7→ κ(t, .) ∈ L1([0,∞)) is continuous.

To apply [33] in the proof of the upcoming existence and uniqueness
result for stochastic Volterra equations, we establish two facts for Volterra
kernels of continuous type. The first part, regarding the continuity of the
map t 7→

∫ t

0
κ(t, s)g(s)ds for measurable and bounded g, is a special case of

[18, Theorem 9.5.3].

Lemma B.2. Let κ be a Volterra kernel of continuous type. Then for each
bounded measurable function g : R → R, the map

t 7→
∫ t

0

κ(t, s)g(s)ds

is continuous. Further, for each T > 0 we have

lim sup
ε↓0

∥∥∥∫ ·+ε

·
κ(·+ ε, s)ds

∥∥∥
L∞([0,T ])

= 0.

Proof. Let g : R → R be bounded and measurable and let h ≥ 0. Fix t, u ≥ 0
and first assume u > t. Then∣∣∣ ∫ u

0

κ(u+ h, s)g(s)ds−
∫ t

0

κ(t+ h, s)g(s)ds
∣∣∣

≤ ∥g∥∞
(∫ u

t

κ(u+ h, s)ds+

∫ t

0

|κ(u+ h, s)− κ(t+ h, s)|ds
)
.

1By abuse of notation, for t ∈ [0,∞) we extend κ(t, .) from [0, t] to [0,∞) and set
κ(t, s) = 0 for s > t.
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For u ↓ t, the first integral on the right hand side vanishes via an application
of dominated convergence and the second due to the assumed L1-continuity.
The case u < t is similar. Hence, taking h = 0, the first claim is shown.

For the second claim, fix ε > 0 and note that∫ t+ε

t

κ(t+ ε, s)ds =

∫ t+ε

0

κ(t+ ε, s)ds−
∫ t

0

κ(t+ ε, s)ds

must be a continuous function of t since it is the difference of two continuous
functions by the first part of the proof by taking g = 1 and h = 0 and
h = ε, respectively. Hence, the supremum over the compact interval [0, T ] is
attained by some maximizing t̂ε ∈ [0, T ]. Hence, we have∥∥∥∫ ·+ε

·
κ(·+ ε, s)ds

∥∥∥
L∞([0,T ])

=

∫ t̂ε+ε

t̂ε

κ(t̂ε + ε, s)ds.

Since the continuous maps

t 7→
∫ t

0

κ(t, s)ds ∈ R and t 7→ κ(t, ·) ∈ L1([0,∞))

are uniformly continuous on the compact set [0, T +1], there exists for every
η > 0 some δ > 0 such that |u− v| < δ implies∣∣∣ ∫ u

0

κ(u, s)ds−
∫ v

0

κ(v, s)ds
∣∣∣ < η and

∫ ∞

0

∣∣∣κ(u, s)− κ(v, s)
∣∣∣ds < η.

Let η > 0 be arbitrary, choose δ accordingly, and fix an arbitrary ε < δ.
Then we have∣∣∣ ∫ t̂ε+ε

t̂ε

κ(t̂ε + ε, s)ds
∣∣∣

=
∣∣∣ ∫ t̂ε+ε

0

κ(t̂ε + ε, s)ds−
∫ t̂ε

0

κ(t̂ε + ε, s)ds
∣∣∣

≤
∣∣∣ ∫ t̂ε+ε

0

κ(t̂ε + ε, s)ds−
∫ t̂ε

0

κ(t̂ε, s)ds
∣∣∣

+
∣∣∣ ∫ t̂ε

0

κ(t̂ε, s)ds−
∫ t̂ε

0

κ(t̂ε + ε, s)ds
∣∣∣

< η +

∫ ∞

0

∣∣∣κ(t̂ε + ε, s)− κ(t̂ε, s)
∣∣∣ds < 2η.

Since η was arbitrary, this completes the proof.
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Theorem B.3. Let κ be a Volterra kernel of continuous type and let Z be
a continuous and adapted real-valued process starting in zero. Further, let
g : [0,∞)×R → R be a non-negative continuous function, non-decreasing in
the second argument, and such that for every n ∈ N and any T > 0 there is
some constant L(n, T ) > 0 such that

sup
t∈[0,T ]

|g(t, x)− g(t, y)| ≤ L(n, T )|x− y|

for all x, y ∈ R with |x| ≤ n and |y| ≤ n. Then the stochastic Volterra
integral equation

Xt = Zt −
∫ t

0

κ(t, s)g(s,Xs)ds, t ≥ 0,

has a unique solution X, which is adapted and continuous.

Proof. To truncate the function g for each n ∈ N we define

gn(s, y) =

{
g(s ∧ n, y), for |y| ≤ n,

g
(
s ∧ n, y

|y|n
)
, for |y| > n,

for s ≥ 0. The resulting functions gn are continuous and bounded by the
continuity of g. Further, we have for each t ≥ 0 and all x, y ∈ R

|gn(t, x)− gn(t, y)| ≤ L(n, n)|x− y|.

Additionally define the stopping times σn = inf{t ≥ 0 : |Zt| ≥ n}. By
Lemma B.2 we can apply [33, Theorem 3.1], which yields that there exist
unique adapted processes Xn such that for almost all t ≥ 0 we have

Xn
t = Zσn

t −
∫ t

0

κ(t, s)gn(s,X
n
s )ds.

By the boundedness of gn, the right-hand side of the above equation is con-
tinuous according to Lemma B.2. Hence, we may assume that Xn is con-
tinuous and satisfies the above equation for all t ≥ 0 and up to indistin-
guishability. To remove the dependence on n, first define the stopping times
τn = inf{t ≥ 0 : |Xn

t | ≥ n} ∧ n ∧ σn, for each n ∈ N0 and note that τ0 = 0.
We first establish two facts:

(1) For n ≥ 1 and each t ∈ [0, τn−1] we have X
n−1
t = Xn

t . To see this, note
that for s ≤ τn−1 we have |Xn−1

s | ≤ n−1 < n and hence for t ∈ [0, τn−1]
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we have

Xn−1
t = Z

σn−1

t −
∫ t

0

κ(t, s)gn−1(s,X
n−1
s )ds

= Zσn
t −

∫ t

0

κ(t, s)gn(s,X
n−1
s )ds.

Uniqueness and continuity therefore yield Xn−1 = Xn on [0, τn−1].

(2) We have τn−1 ≤ τn for each n ≥ 1, which follows immediately from (1):
On [0, τn−1] the process Xn agrees with Xn−1, which implies |Xn

t | ≤
n− 1 on [0, τn−1]. Hence, for t ≤ τn−1 we have |Xn

t | < n.

Now, we define for each t ≥ 0

Xt =
∞∑
n=1

Xn
t 1[τn−1,τn)(t),

which defines an adapted process because Xn is adapted and {τn−1 ≤ t <
τn} ∈ Ft for each n ∈ N. Clearly, X is continuous on [0, limn↑∞ τn) by (1)
and (2) and jumps to zero afterwards.

To see that X is a solution of the Volterra equation on [0, limn↑∞ τn), we
note for t ∈ [τn−1, τn), using Zσn

t = Zt,

Xt = Xn
t = Zt −

∫ t

0

κ(t, s)gn(s,X
n
s )ds

= Zt −
n∑

l=1

∫ τl∧t

τl−1∧t
κ(t, s)gn(s,X

n
s )ds

= Zt −
n∑

l=1

∫ τl∧t

τl−1∧t
κ(t, s)g(s,X l

s)ds = Zt −
∫ t

0

κ(t, s)g(s,Xs)ds.

Lastly, we have by the properties of the function g that any solution of our
Volterra equation must satisfy

Zt −
∫ t

0

κ(t, s)g(s, Zs)ds ≤ Xt ≤ Zt.

Hence, we have continuous a-priori lower and upper bounds for the processX,
which imply that it cannot explode in finite time, yielding limn↑∞ τn = ∞
and hence global existence of the unique and continuous solution process X.
This concludes the proof.
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