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Abstract. We consider an investment project that produces a single commodity. The
project’s operation yields payoff at a rate that depends on the project’s installed capacity
level and on an underlying economic indicator such as the output commodity’s price or
demand, which we model by an ergodic, one-dimensional Itô diffusion. The project’s
capacity level can be increased dynamically over time. The objective is to determine
a capacity expansion strategy that maximises the ergodic or long-term average payoff
resulting from the project’s management. We prove that it is optimal to increase the
project’s capacity level to a certain value and then take no further actions. The optimal
capacity level depends on both the long-term average and the volatility of the underlying
diffusion.

1. Introduction

We consider an investment project, the capacity of which can be expanded irreversibly
over time. The project yields payoff at a rate that depends on the installed capacity level
and on the value of an underlying state process that we model with a recurrent, ergodic Itô
diffusion. This state process can represent an economic indicator that evolves randomly
over time such as the demand for or the discounted price of the project’s unique output
commodity. The objective is to determine the capacity expansion strategy that maximises
the long-term average payoff resulting from the project’s operation in a pathwise as well as
in an expected sense. It is worth noting that establishing the optimality of a given capacity
expansion strategy in a mathematically rigorous way is surprisingly involved, even though
the strategy is straightforward to come up with.

Under suitable general assumptions, we prove that it is optimal to increase the project’s
capacity to a given level, which is the unique solution of a given algebraic equation, and
then take no further actions. Thus, we show that the dynamical optimisation problem that
we consider is equivalent to a static one that involves only the underlying state process’
stationary distribution and the running payoff function. This is one of the main contri-
butions of the paper because it shows that apparently “simple” static models such as the
ones encountered in undergraduate microeconomics textbooks can be identified with mod-
els involving non-trivial stochastic dynamics. As a result, we can expect that this paper
will motivate research aiming at identifying static microeconomics models with appropri-
ate dynamical ones. The output of such research is important because (a) it shows that
the “simple” microeconomics models considered are not that simple after all, and (b) it
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can provide a methodological way for estimating the various parameters associated with a
static model. As a matter of fact, the example that we consider in Section 4 reveals that
the volatility of the underlying state process is as important as the long-term mean of the
time series.

Capacity expansion models have attracted considerable interest in the literature and can
be traced beck to Manne [9]; see Van Mieghem [13] for a recent survey. A number of other
related models have been studied by Abel and Eberly [1], Davis, Dempster, Sethi and
Vermes [5] (see also Davis [4]), Kobila [7], Øksendal [11], Wang [14], Bank [2], Chiarolla
and Haussmann [3], Merhi and Zervos [10], Guo and Tomecek [6] and in references therein.
This research output has considered the optimisation of expected discounted performance
indices, which quantify the expected present value of the cash flow associated with each
decision strategy. With regard to applications, such optimisation objectives require the
modelling of stochastic dynamics for the underlying state (e.g., price) process, which in-
volves the use of historical data taking into account future expectations, as well as the
discounting factor. In fact, determining appropriate discounting for the payoff flow re-
sulting from an investment project, which factors in expectations about future economic
growth, has been a controversial issue in economics. Considering a long-term average cri-
terion involves only the modelling of the underlying state (e.g., discounted price) process,
which involves the use of historical data moderated by future expectations. In view of these
considerations, we can conclude that long-term average criteria have an advantage relative
to expected discounted ones at least as long as investment is not motivated by speculation
and applications in sustainable development are concerned. In connection to the type of
applications that we consider here, a further major advantage of the long-term average
criterion approach arises from the fact that it leads to results of an explicit analytic nature
that require minimal computational effort for a most wide class of stochastic dynamics for
the underlying state process.

2. Problem formulation

We consider an investment project that operates within a random economic environment,
the state of which is modelled by the one-dimensional Itô diffusion

(2.1) dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x > 0,

where b, σ : (0,∞)→ R are given functions, and W is a one-dimensional Brownian motion.
In practice, we can think of such an investment project as a unit that can produce a single
commodity. In this context, the state processX can be used to model an economic indicator
such as the commodity’s demand or the commodity’s price.

With reference to the general theory of one-dimensional diffusions (e.g., see Section 5.5
in Karatzas and Shreve [8]), we impose the following standard assumption that is sufficient
for (2.1) to define a diffusion that is unique in the sense of probability law.

Assumption 2.1. The deterministic functions b, σ : (0,∞) → R satisfy the following
conditions:

σ2(x) > 0, for all x ∈ (0,∞),(2.2)
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for all x ∈ (0,∞), there exists ε > 0 such that

∫ x+ε

x−ε

1 + |b(s)|
σ2(s)

ds <∞.(2.3)

This assumption also ensures that the scale function p and the speed measure m̃ given by

p(1) = 0 and p′(x) = exp

(
−2

∫ x

1

b(s)

σ2(s)
ds

)
, for x ∈ (0,∞),(2.4)

and

m̃(dx) =
2

σ2(x)p′(x)
dx,(2.5)

respectively, are well defined. We denote by m the normalised speed measure, given by

m(dx) =
1

m̃((0,∞))
m̃(dx).

We also assume that the solution to (2.1) is non-explosive and recurrent . With re-
gard to Proposition 5.5.22 in Karatzas and Shreve [8], we therefore impose the following
assumption.

Assumption 2.2. The scale function p defined by (2.4) satisfies limx↓0 p(x) = −∞ and
limx→∞ p(x) =∞.

We assume that the investment project’s capacity can be increased to any positive level
dynamically over time. We denote by Yt the project’s capacity level at time t, and we
assume that Y is a càglàd, increasing process. The constant y = Y0 is the project’s initial
capacity level, while Yt+−y is the total additional capacity installed following the project’s
management decisions by time t.

We adopt a weak formulation of the capacity expansion problem that we study.

Definition 2.1. Given an initial condition (x, y) ∈ (0,∞) × [0,∞), a capacity expansion
strategy is any seven-tuple Sx,y =

(
Ω,F ,Ft, Px,y,W,X, Y

)
such that:

(i) (Ω,F ,Ft, Px,y) is a filtered probability space satisfying the usual conditions,
(ii) W is a standard, one-dimensional (Ft) - Brownian motion,

(iii) X is a continuous, (Ft)-adapted process satisfying (2.1), and
(iv) Y is a càglàd, increasing process such that Y0 = y.

We denote by Ax,y the set of all such capacity expansion strategies, by AFx,y ⊆ Ax,y the
family of all capacity expansion strategies such that Y∞ = limt→∞ Yt <∞, P -a.s., and by
AIx,y ⊆ AFx,y the class of all capacity expansion strategies such that Ex,y

[
Y∞
]
<∞.

With each capacity expansion strategy Sx,y ∈ Ax,y, we associate the pathwise perfor-
mance criterion

(2.6) JP
(
Sx,y
)

= lim sup
T→∞

1

T

[∫ T

0

h
(
Xt, Yt

)
dt−K

(
YT+ − y

)]
,
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as well as the expected performance index

(2.7) JE
(
Sx,y
)

= lim sup
T→∞

1

T
Ex,y

[∫ T

0

h
(
Xt, Yt

)
dt−K

(
YT+ − y

)]
.

Here, the function h : (0,∞) × [0,∞) → R provides the running payoff resulting from
the project’s operation, while the constant K > 0 is associated with modelling the cost
incurred by the project’s capacity expansion.

The objective is to maximise JP and JE over Ax,y. To achieve this aim, we impose the
following assumption

Assumption 2.3. There exist a measurable function k : (0,∞) → R, a continuous func-
tion g : [0,∞)→ [0,∞) and constants C1, C2 > 0 such that∫ ∞

0

k(x)m(dx) <∞, lim
y↓0

g(y) = 0,(2.8)

−C1(1 + y) ≤ h(x, y) ≤ k(x)− C2(1 + y), for all (x, y) ∈ (0,∞)× [0,∞),(2.9) h(x, y)− h(x, y′)
 ≤ k(x) g(y − y′), for all x ∈ (0,∞) and y, y′ ∈ [0,∞).(2.10)

Note that (2.8) and (2.9) imply∫ ∞
0

h(x, y)
m(dx) <∞, for all y ≥ 0.

It follows that, since X is a recurrent, ergodic diffusion,

lim
T→∞

1

T

∫ ∞
0

h
(
Xt, y

)
dt =

∫ ∞
0

h(x, y)m(dx), for all y ≥ 0,(2.11)

(see Theorem V.53.1 in Rogers and Williams [12]), and

lim
T→∞

1

T
Ex,y

[∫ ∞
0

h
(
Xt, y

)
dt

]
=

∫ ∞
0

h(x, y)m(dx), for all y ≥ 0,(2.12)

(see Theorem V.54.5 in Rogers and Williams [12]).

Remark 2.1. For future reference, note that given a weak solution (Ω,F ,Ft, Px,W,X) to
(2.1), if Z is a measurable mapping from Ω into R, then (2.11) implies

lim
T→∞

1

T

∫ T

0

h
(
Xt, Z

)
dt =

∫ ∞
0

h
(
x, Z

)
m(dx), Px-a.s..(2.13)

3. The solution to the optimisation problem

To solve the optimisation problems formulated in the previous section, we first show that
maximising JP and JE over Ax,y is equivalent to maximising JP and JE over the smaller
sets AFx,y and AIx,y, respectively.

Lemma 3.1. Given any (x, y) ∈ (0,∞)× [0,∞),

sup
Sx,y∈Ax,y

JP
(
Sx,y
)
<∞,(3.1)
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JP
(
Sx,y
)
1{Y∞=∞} = −∞1{Y∞=∞}, for all Sx,y ∈ Ax,y(3.2)

and

sup
Sx,y∈Ax,y

JE
(
Sx,y
)

= sup
Sx,y∈AIx,y

lim sup
T→∞

1

T
Ex,y

[∫ T

0

h
(
Xt, Yt

)
dt

]
∈ R.(3.3)

Proof. In view of (2.8), (2.11), and (2.12) with k in place of h(·, y),

sup
Sx,y∈Ax,y

JE
(
Sx,y
)
≤
∫ ∞

0

k(x)m(dx) <∞.

Also, by considering the strategy that involves no capacity increases at any time, we can
see that, in the presence of assumption (2.9),

sup
Sx,y∈Ax,y

JE
(
Sx,y
)
≥ −C1(1 + y) > −∞.

Now, fix any Sx,y ∈ Ax,y \ AIx,y. Assumption (2.9) implies that, given any constant time
T1 > 0,

JE
(
Sx,y
)
≤
∫ ∞

0

k(x)m(dx)− C2

(
1 + lim inf

T→∞

1

T

∫ T

0

Ex,y

[
Yt
]
dt
)

≤
∫ ∞

0

k(x)m(dx)− C2

(
1 + Ex,y

[
YT1

])
.

Since T1 is arbitrary, it follows that

JE
(
Sx,y
)
≤
∫ ∞

0

k(x)m(dx)− C2

(
1 + lim

T1→∞
Ex,y

[
YT1

])
=

∫ ∞
0

k(x)m(dx)− C2(1 + Ex,y

[
Y∞
])

= −∞,

the first equality following thanks to the monotone convergence theorem. However, this
calculation establishes the identity in (3.3).

Using similar arguments, we can prove (3.1) and (3.2). �

The next result shows that, to maximise JP , we only need to consider the “eventual”
capacity level.

Lemma 3.2. Given any Sx,y ∈ Ax,y, limT→∞ T
−1
∫ T

0
h
(
Xt, Yt

)
dt exists and

JP
(
Sx,y
)

= 1{Y∞<∞} lim
T→∞

1

T

∫ T

0

h
(
Xt, Yt

)
dt−∞1{Y∞=∞}

= 1{Y∞<∞}

∫ ∞
0

h
(
x, Y∞

)
m(dx)−∞1{Y∞=∞}.(3.4)
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Proof. With reference to (3.2) in Lemma 3.1, we shall prove this result if we establish (3.4)
on the event {Y∞ < ∞}. To simplify the notation, we therefore fix Sx,y ∈ AFx,y in what
follows, without loss of generality. We define the function

G(y) = g(y)

∫ ∞
0

k(x)m(dx),(3.5)

where k and g are as in Assumption 2.3, and we consider any ε > 0. With reference to
the properties of g, choose any δ > 0 such that G(y) ≤ ε for all y ∈ [0, δ]. Since Y∞ <∞,
Px,y-a.s., there exists a finite random time Tδ such that Y∞−Yt ≤ δ, for all t ≥ Tδ, Px,y-a.s..
In view of (2.10), we calculate

lim sup
T→∞

1

T

[∫ T

0

[
h
(
Xt, Y∞

)
− h
(
Xt, Yt

)]
dt

]
= lim sup

T→∞

1

T

[∫ T

Tδ

[
h
(
Xt, Y∞

)
− h
(
Xt, Yt

)]
dt

]
≤ lim sup

T→∞

1

T

∫ T

Tδ

h(Xt, Y∞
)
− h
(
Xt, Yt

)dt
≤ g(δ) lim sup

T→∞

1

T

[∫ T

Tδ

k(Xt) dt

]
≤ G(δ) ≤ ε.

With reference to (2.13), it follows that∫ ∞
0

h
(
x, Y∞

)
m(dx) = lim

T→∞

1

T

∫ T

0

h
(
Xt, Y∞

)
dt

≤ lim inf
T→∞

1

T

∫ T

0

h
(
Xt, Yt

)
dt+ ε.(3.6)

Similarly, we can see that

lim sup
T→∞

1

T

∫ T

0

[
h
(
Xt, Yt

)
− h
(
Xt, Y∞

)]
dt ≤ ε,

which, combined with (2.13), implies

lim sup
T→∞

1

T

∫ T

0

h
(
Xt, Yt

)
dt− ε ≤ lim

T→∞

1

T

∫ T

0

h
(
Xt, Y∞

)
dt

=

∫ ∞
0

h
(
x, Y∞

)
m(dx).(3.7)

However, since ε > 0 is arbitrary, (3.6) and (3.7) establish the claims made. �
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The following result, which parallels the preceding one, is concerned with maximising
JE.

Lemma 3.3. Given any Sx,y ∈ AIx,y,

JE
(
Sx,y
)

= Ex,y

[∫ ∞
0

h
(
x, Y∞

)
m(dx)

]
.

Proof. Let any Sx,y ∈ AIx,y. Observing that∫ T

0

k
(
Xt

)
dt−

∫ T

0

h
(
Xt, Yt

)
dt ≥ 0,

which follows from the upper bound in (2.9), we can appeal to (2.8) and Fatou’s lemma to
see that

lim
T→∞

1

T
Ex,y

[∫ T

0

k
(
Xt

)
dt

]
− lim sup

T→∞

1

T
Ex,y

[∫ T

0

h
(
Xt, Yt

)
dt

]
≥ Ex,y

[
lim inf
T→∞

(
1

T

∫ T

0

k
(
Xt

)
dt− 1

T

∫ T

0

h
(
Xt, Yt

)
dt

)]
= lim

T→∞

1

T
Ex,y

[∫ T

0

k
(
Xt

)
dt

]
− Ex,y

[
lim sup
T→∞

1

T

∫ T

0

h
(
Xt, Yt

)
dt

]
,

the equality following thanks to (2.11) and (2.12). However, this observation and Lemma
3.2 imply

lim sup
T→∞

1

T
Ex,y

[∫ T

0

h
(
Xt, Yt

)
dt

]
≤ Ex,y

[∫ ∞
0

h
(
x, Y∞

)
m(dx)

]
.(3.8)

To proceed further, we note that

lim
T→∞

1

T
Ex,y

[∫ T

0

Yt dt

]
= Ex,y

[
Y∞
]
<∞.(3.9)

To see this claim, we first note that Ex,y

[
Yt
]
↑ Ex,y

[
Y∞
]

thanks to the fact that Y is an
increasing process and the monotone convergence theorem. In view of this observation,
given any ε > 0, there exists T1 > 0 such that Ex,y

[
Yt
]
≥ Ex,y

[
Y∞
]
− ε, for all t ≥ T1. It

follows that

lim
T→∞

1

T
Ex,y

[∫ T

0

Yt dt

]
≥ Ex,y

[
Y∞
]
− ε.

Since ε > 0 is arbitrary, this proves that limT→∞
1
T

Ex,y

[∫ T
0
Yt dt

]
≥ Ex,y [Y∞]. The reverse

inequality is obvious because Ex,y [Yt] ≤ Ex,y [Y∞], for all t ≥ 0. Using similar arguments,
we can see that

lim
T→∞

1

T

∫ T

0

Yt dt = Y∞.(3.10)



8 LØKKA AND ZERVOS

Now, in view of (3.9), (3.10), the lower bound in (2.9) in Assumption 2.3 and Fatou’s
lemma, we calculate

lim inf
T→∞

1

T
Ex,y

[∫ T

0

h
(
Xt, Yt

)
dt

]
+ C1

(
1 + Ex,y

[
Y∞
])

= lim inf
T→∞

1

T
Ex,y

[∫ T

0

[
h
(
Xt, Yt

)
+ C1

(
1 + Yt

)]
dt

]
≥ Ex,y

[
lim inf
T→∞

1

T

(∫ T

0

[
h
(
Xt, Yt

)
+ C1

(
1 + Yt

)]
dt

)]
= Ex,y

[
lim inf
T→∞

1

T

∫ T

0

h
(
Xt, Yt

)
dt+ C1

(
1 + Y∞

)]
= Ex,y

[∫ ∞
0

h
(
x, Y∞

)
m(dx)

]
+ C1

(
1 + Ex,y

[
Y∞
])
,

the last equality following thanks to Lemma 3.2. However, this inequality and (3.8) imply
the claim made. �

Given the results that we have established thus far, it is straightforward to see that the
following theorem provides the solution to the optimisation problems that we consider.

Theorem 3.4. Consider the optimisation problems formulated in Section 2, fix any initial
condition (x, y) ∈ (0,∞)× [0,∞), and define

ȳ = arg max
z∈[y,∞)

∫ ∞
0

h(x, z)m(dx).

In the presence of Assumption 2.3,

sup
Sx,y∈Ax,y

JP
(
Sx,y
)

= sup
Sx,y∈Ax,y

JE
(
Sx,y
)

=

∫ ∞
0

h(x, ȳ)m(dx),

In either case, immediately increasing the project’s capacity level to ȳ and then take no
further action provides an optimal capacity expansion strategy.

4. A special case

We now consider the special case that arises when the state process X is modelled by
the SDE

dXt = κ(θ −Xt) dt+ σ
√
Xt dWt,(4.1)

where κ, θ, σ > 0 are constants satisfying 2κθ > σ2. This diffusion is identical to the
short rate process in the Cox-Ingersoll-Ross interest rate model, and is widely adopted
as a model for commodity prices. Verifying that this diffusion satisfies Assumption 2.1
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and Assumption 2.2 is a standard exercise. Also, it is straightforward to verify that the
normalised speed measure of X is given by

m(dx) = Γ−1

(
2κθ

σ2

)
x

2κθ
σ2 −1 exp

(
2κ

σ2

[
θ ln

(
2κ

σ2

)
− x
])

dx,

where Γ is the gamma function and Γ−1(·) = 1/Γ(·).
We also assume that the running payoff function h is given by

h(x, y) = xαyβ − c y,
where α, β ∈ (0, 1) and c ∈ (0,∞) are constants, which is a choice satisfying Assumption
2.3. The term xαyβ here identifies with the so-called Cobb-Douglas production function,
while the term cy provides a measure for the cost of capital utilisation.

With reference to Theorem 3.4, the project’s optimal capacity level ȳ is the maximum
of the project’s initial capacity y and the solution to the algebraic equation(∫ ∞

0

xαm(dx)

)
yβ − cy = 0.

In the light of the calculation∫ ∞
0

xαm(dx) = Γ

(
2κθ

σ2
+ α

)
Γ−1

(
2κθ

σ2

)(
σ2

2κ

)α
,

it follows that the investment project’s optimal capacity level is given by

ȳ = max

{
y,

[
βΓ
(
zθ + α

)
cΓ
(
zθ
)
zα

] 1
1−β
}
,

where z = 2κ/σ2.
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