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We study the Bayesian problem of sequential testing of two simple hy-
potheses about the local drift of an observed diffusion process. The optimal
stopping time is found as the first time when the a posteriori probability
process leaves the region defined by two stochastic boundaries depend-
ing on the observation process. It is shown that under some nontrivial
relationships on the coefficients of the observed diffusion the problem ad-
mits a closed form solution. The method of proof is based on embedding
the initial problem into a two-dimensional optimal stopping problem and
solving the equivalent free-boundary problem by means of the smooth-fit
conditions.

1. Introduction

The problem of sequential testing of two simple hypotheses about the local drift µ(x) of
an observed diffusion process seeks to determine as soon as possible and with minimal error
probabilities if the true drift coefficient is either µ0(x) or µ1(x). This problem admits two
different formulations (see Wald [20]). In the Bayesian formulation it is assumed that the
drift coefficient µ(x) has an a priori given distribution, and in the variational formulation no
probabilitsic assumption is made about the unknown drift µ(x). In this paper we only study
the Bayesian formulation.

By means of the Bayesian approach, Wald and Wolfowitz [21]-[22] proved the optimality
of the sequential probability ratio test (SPRT) in the variational formulation of the problem
for sequences of i.i.d. observations. Dvoretzky, Kiefer and Wolfowitz [2] pointed out that if
the (continuous time) likelihood ratio process has stationary independent increments, then the
SPRT remains optimal in the variational problem. Mikhalevich [12] and Shiryaev [18] (see also
[19; Chapter IV]) obtained an explicit solution of the Bayesian problem for an observed Wiener
process by reducing the initial optimal stopping problem to a free-boundary problem for an
ordinary second order operator. A complete proof of the statement of [2] (under some mild
assumptions) was given by Irle and Schmitz [7]. Peskir and Shiryaev [14] obtained an explicit
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solution of the Bayesian problem of testing hypotheses about the intensity of an observed Pois-
son process by solving a free-boundary problem for a differential-difference operator. Sequential
testing problems for a compound Poisson process having exponentially distributed jumps were
explicitly solved in [4]. Recently, Dayanik and Sezer [1] obtained a solution of the Bayesian
sequential testing problem for a general compound Poisson process. A finite horizon version of
the Wiener sequential testing problem was studied in [5]. The main purpose of this paper is
to present a solution of the problem of testing hypotheses about the local drift of an observed
diffusion process in the Bayesian formulation under some nontrivial relationships on coefficients
of the observed diffusion. In this case the optimal Bayes stopping time is the first time when the
a posteriori probability process leaves a region defined by two stochastic boundaries depending
on the observation process.

In the present paper we make an embedding of the initial Bayesian problem into an extended
optimal stopping problem for a two-dimensional (time-homogeneous strong) Markov diffusion
process (consisting of the a posteriori probability process and the observation process). We
show that the continuation region (for the a posteriori probability process) is determined by
two stochastic boundaries depending on the observation process where the behavior of the
boundaries is characterized by the signal/noise ratio. In order to find analytic expressions
for the value function and the stopping boundaries under some special nontrivial relationships
on coefficients of the observed diffusion, we formulate an equivalent free-boundary problem.
By applying smooth-fit conditions we show that the free-boundary problem admits an explicit
solution and the boundaries are uniquely determined from a coupled system of transcendental
equations. Then we verify that the solution of the free-boundary problem turns out to be a
solution of the initial extended optimal stopping problem. The main result of the paper is
stated in Theorem 2.1.

2. Formulation and solution of the Bayesian problem

In the Bayesian formulation of the problem (see [19; Chapter IV, Section 2] for the case of
Wiener process) it is assumed that we observe a trajectory of the diffusion process X = (Xt)t≥0

with drift µ0(x) + θ(µ1(x) − µ0(x)) where the random parameter θ may be 1 or 0 with
probability π or 1− π , respectively.

2.1. For a precise probabilistic formulation of the Bayesian problem it is convenient to
assume that all our considerations take place on a probability space (Ω,F , Pπ) where the
probability measure Pπ has the following structure:

Pπ = πP1 + (1− π)P0 (2.1)

for any π ∈ [0, 1]. Let θ be a random variable taking two values 1 and 0 with probabilities
Pπ[θ = 1] = π and Pπ[θ = 0] = 1 − π , and let W = (Wt)t≥0 be a standard Wiener process
started at zero under Pπ . It is assumed that θ and W are independent.

It is further assumed that we observe a continuous process X = (Xt)t≥0 with the (open)
state space E ⊆ R and solving the stochastic differential equation:

dXt = [µ0(Xt) + θ(µ1(Xt)− µ0(Xt))] dt + σ(Xt) dWt (X0 = x) (2.2)
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where the functions µi(x) and σ(x) are Lipschitz continuous on E , that is, there exists a
constant C > 0 such that:

[µi(x)− µi(x
′)]2 + [σ(x)− σ(x′)]2 ≤ C[x− x′]2 (2.3)

for all x, x′ ∈ E and i = 0, 1. Thus, from [11; Chapter IV, Theorem 4.6] it follows that under
fixed θ = i equation (2.2) has a unique strong solution, and hence, Pπ[X ∈ · | θ = i] = Pi[X ∈ · ]
is the distribution law of a homogeneous diffusion process (starting at some fixed point x ∈ E )
with local drift µi(x) and diffusion coefficient σ2(x) for i = 0, 1. We will also assume that
either µ0(x) < µ1(x) or µ0(x) > µ1(x) holds and σ2(x) > 0 for all x ∈ E . Let π and 1 − π
play the role of a priopi probabilities of the statistical hypotheses:

H1 : θ = 1 and H0 : θ = 0 (2.4)

respectively.
Being based upon the continuous observation of X our task is to test sequentially the

hypotheses H1 and H0 with a minimal loss. For this, we consider a sequential decision rule
(τ, d) where τ is a stopping time of the observed process X (i.e., a stopping time with respect
to the natural filtration FX

t = σ{Xs | 0 ≤ s ≤ t} generated by the process X for t ≥ 0), and
d is an FX

τ -measurable function taking on values 0 and 1. After stopping the observations at
time τ , the terminal decision function indicates which hypothesis should be accepted according
to the following rule: if d = 1 we accept H1 , and if d = 0 we accept H0 . The problem consists
of computing the risk function:

V (π) = inf
(τ,d)

Eπ[τ + aI(d = 0, θ = 1) + bI(d = 1, θ = 0)] (2.5)

and finding the optimal decision rule (τ∗, d∗), called the π -Bayes decision rule, at which the
infimum in (2.5) is attained. Here Eπ[τ ] is the average cost of the observations, and aPπ[d =
0, θ = 1] + bPπ[d = 1, θ = 0] is the average loss due to a wrong terminal decision, where a > 0
and b > 0 are some given constants.

2.2. By means of standard arguments (see [19; pages 166-167]) one can reduce the Bayesian
problem (2.5) to the optimal stopping problem:

V (π) = inf
τ

Eπ[τ + ga,b(πτ )] (2.6)

for the a posteriori probability process πt = Pπ[θ = 1 | FX
t ] for t ≥ 0 with Pπ[π0 = π] = 1.

Here ga,b(π) = aπ∧ b(1−π) for π ∈ [0, 1], and the optimal decision function is given by d∗ = 1
if πτ∗ ≥ c , and d∗ = 0 if πτ∗ < c , where here and in the sequel we set c = b/(a + b).

2.3. Since for i = 0, 1 condition (2.3) is assumed to be satisfied, by applying Girsanov’s
theorem for diffusion-type processes [11; Theorem 7.19] we get that the loglikelihood ratio
process Z = (Zt)t≥0 defined as logarithm of the Radon-Nikodym derivative:

Zt = log
d(P1|FX

t )

d(P0|FX
t )

(2.7)

(here Pi|FX
t denotes the restriction of Pi to FX

t for i = 0, 1) takes the form:

Zt =

∫ t

0

µ1(Xs)− µ0(Xs)

σ2(Xs)
dXs −

1

2

∫ t

0

µ2
1(Xs)− µ2

0(Xs)

σ2(Xs)
ds (2.8)
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for all t ≥ 0. According to the arguments in [19; pages 180-181], the a posteriori probability
process (πt)t≥0 can be expressed as:

πt =

(
π

1− π
eZt

) /(
1 +

π

1− π
eZt

)
(2.9)

and, by virtue of Itô’s formula (see, e.g., [11; Chapter IV, Theorem 4.4]), it solves the equation:

dπt =
µ1(Xt)− µ0(Xt)

σ(Xt)
πt(1− πt) dW t (π0 = π) (2.10)

where, by means of P. Lévy’s theorem [17; Chapter IV, Theorem 3.6], the innovation process
W = (W t)t≥0 defined by:

W t =

∫ t

0

dXs

σ(Xs)
−

∫ t

0

(
µ0(Xs)

σ(Xs)
+ πs

µ1(Xs)− µ0(Xs)

σ(Xs)

)
ds (2.11)

is a standard Wiener process under the measure Pπ with respect to the filtration (FX
t )t≥0 .

Therefore, from (2.11) it follows that the process X = (Xt)t≥0 admits the representation:

dXt = [µ0(Xt) + πt(µ1(Xt)− µ0(Xt))] dt + σ(Xt) dW t (X0 = x). (2.12)

Let us suppose that the signal/noise ratio function r(x) defined by:

r(x) =
µ1(x)− µ0(x)

σ(x)
(2.13)

is also Lipschitz continuous, that is, there exists a constant C ′ > 0 such that condition:

[r(x)− r(x′)]2 ≤ C ′[x− x′]2 (2.14)

holds for all x, x′ ∈ E , and there are constants r∗ and r∗ such that the inequalities:

0 < r∗ ≤ r(x) ≤ r∗ < ∞ (2.15)

are satisfied for all x ∈ E . Hence, by means of Remark to [11; Chapter IV, Theorem 4.6]
(see also [13; Theorem 5.2.1]), we conclude that the process (πt, Xt)t≥0 turns out to be a
unique strong solution of the (two-dimensional) stochastic differential equation (2.10)+(2.12),
and thus, by virtue of [13; Theorem 7.2.4], it is a (time-homogeneous strong) Markov process
with respect to its natural filtration which obviously coincides with (FX

t )t≥0 . Therefore, the
infimum in (2.6) is taken over all stopping times of (πt, Xt)t≥0 being a Markovian sufficient
statistic in the problem (see [19; Chapter II, Section 15]).

2.4. For the problem (2.6) let us consider the following extended optimal stopping problem
for the Markov process (πt, Xt)t≥0 :

V (π, x) = inf
τ

Eπ,x[τ + ga,b(πτ )] (2.16)

where Pπ,x is a measure of the diffusion process (πt, Xt)t≥0 starting at the point (π, x) and
solving the (two-dimensional) equation (2.10)+(2.12), and the infimum in (2.16) is taken over
all stopping times τ of the process (πt, Xt)t≥0 such that Eπ,x[τ ] < ∞ for all (π, x) ∈ [0, 1]×E .
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2.5. Let us now determine the structure of the optimal stopping time in the problem (2.16).

(i) First, by applying applying Itô-Tanaka-Meyer formula (see, e.g., [8; Chapter V, (5.52)]
or [16; Chapter IV, Theorem 51]) to the function ga,b(π) = aπ ∧ b(1− π), we get:

ga,b(πt) = ga,b(π) +

∫ t

0

(ga,b)π(πs) ds +
1

2

∫ t

0

∆π(ga,b)π(πs) d`c
s(π) + N c

t (2.17)

where
∫ t

0
∆π(ga,b)π(πs)d`c

s(π) = (−b−a)`c
t(π), the process (`c

t(π))t≥0 is the local time of (πt)t≥0

at the point c given by:

`c
t(π) = lim

ε↓0

1

2ε

∫ t

0

I(c− ε < πs < c + ε) r2(Xs)π
2
s(1− πs)

2 ds (2.18)

as a limit in probability, and for any (FX
t )t≥0 -stopping time τ satisfying Eπ,x[τ ] < ∞ the

process (N c
τ∧t,FX

t , Pπ,x)t≥0 defined by N c
τ∧t =

∫ τ∧t

0
(ga,b)π(πs)I(πs 6= c)r(Xs)πs(1−πs)dW s is a

continuous (uniformly integrable) martingale under Pπ,x .
Let us fix some (π, x) from the continuation region C and let τ∗ = τ∗(π, x) denote the

optimal stopping time in the problem (2.16). By applying Doob’s optional sampling theorem
(see, e.g., [9; Chapter I, Theorem 1.39] or [17; Chapter II, Theorem 3.1]) and by using (2.17),
it follows that:

V (π, x) = Eπ,x[τ∗ + ga,b(πτ∗)] = ga,b(π) + Eπ,x

[
τ∗ −

1

2
(a + b)`c

τ∗(π)

]
(2.19)

and hence, by virtue of general optimal stopping theory for Markov processes (see [19; Chap-
ter III]), we have:

V (π, x)− ga,b(π) = Eπ,x

[
τ∗ −

1

2
(a + b)`c

τ∗(π)

]
< 0. (2.20)

Then taking any π′ such that π < π′ ≤ c or c ≤ π′ < π and using the explicit expression (2.9),
from (2.17)-(2.18) we obtain:

V (π′, x)− ga,b(π
′) ≤ Eπ′,x

[
τ∗ −

1

2
(a + b)`c

τ∗(π
′)

]
≤ Eπ,x

[
τ∗ −

1

2
(a + b)`c

τ∗(π)

]
(2.21)

and thus, by means of (2.20), we see that (π′, x) ∈ C . Therefore, according to the general
optimal stopping theory (see, e.g., [19] and [15]), these arguments (together with the easily
proved concavity of the function π 7→ V (π, x) on [0, 1], see also [10] or [19; pages 168-169])
show that there exists a couple of functions (g0(x), g1(x)), x ∈ E , such that 0 ≤ g0(x) ≤ c ≤
g1(x) ≤ 1, and the continuation region for the optimal stopping problem (2.16) is an open set
of the form:

C = {(π, x) ∈ [0, 1]× E | π ∈ 〈g0(x), g1(x)〉} (2.22)

and the stopping region is the closure of the set:

D = {(π, x) ∈ [0, 1]× E | π ∈ [0, g0(x)〉 ∪ 〈g1(x), 1]}. (2.23)
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(ii) Now for given (π, x) ∈ C let us take x′ ∈ E such that x′ < x if x < c or x < x′ if x > c .
Then using the facts that (πt, Xt)t≥0 is a time-homogeneous Markov process and τ∗ = τ∗(π, x)
does not depend on x′ , from (2.17)-(2.18) we obtain:

V (π, x′)− ga,b(π) ≤ Eπ,x′

[
τ∗ −

1

2
(a + b)`c

τ∗(π)

]
(2.24)

≤ Eπ,x

[
τ∗ −

1

2
(a + b)`c

τ∗(π)

]
= V (π, x)− ga,b(π)

and hence, by means of (2.20), we see that (π, x′) ∈ C . Therefore, we may conclude that in
(2.22)-(2.23) the boundary x 7→ g0(x) is increasing (decreasing) and the boundary x 7→ g1(x)
is decreasing (increasing) on E when the function r(x) is increasing (decreasing), respectively.

(iii) Next, let us observe that the value function V (π, x) from (2.16) and the boundaries
(g0(x), g1(x)) from (2.22)-(2.23) also depend on r(x) defined in (2.13) and denote them here
by V∗(x, π) and V ∗(π, x) as well as (A∗, B∗) and (A∗, B∗) when r(x) = r∗ and r(x) = r∗ for
all x ∈ E , respectively. Using the fact that x 7→ V (π, x) is an increasing (decreasing) function
when r(x) is increasing (decreasing) on E , and V (π, x) = ga,b(π) for all π ∈ [0, g0(x)]∪[g1(x), 1],
we conclude that 0 < A∗ ≤ g0(x) ≤ A∗ < c < B∗ ≤ g1(x) ≤ B∗ < 1 for all x ∈ E . Here
we note that if r∗ = r∗ then A∗ = g0(x) = A∗ and B∗ = g1(x) = B∗ for all x ∈ E , where
0 < A∗ < A∗ < c < B∗ < B∗ < 1 are uniquely determined from the system (4.85) in [19;
Chapter IV].

2.6. Summarizing the facts proved in Subsection 2.5 above we may conclude that the
following optimal decision rule is optimal in the extended problem (2.16):

τ∗ = inf{t ≥ 0 | πt /∈ 〈g0(Xt), g1(Xt)〉} (2.25)

d∗ =

{
1, if πτ∗ = g1(Xτ∗)
0, if πτ∗ = g0(Xτ∗)

(2.26)

(whenever Eπ,x[τ∗] < ∞) where the two boundaries (g0(x), g1(x)), x ∈ E , satisfy the following
properties:

g0(x) : E → [0, 1] is continuous and increasing (decreasing) (2.27)

g1(x) : E → [0, 1] is continuous and decreasing (increasing) (2.28)

A∗ ≤ g0(x) ≤ A∗ < c < B∗ ≤ g1(x) ≤ B∗ for all x ∈ E (2.29)

whenever r(x) is an increasing (decreasing) function on E , respectively. Here (A∗, B∗) and
(A∗, B∗) satisfying 0 < A∗ < A∗ < c < B∗ < B∗ < 1 are the optimal stopping points for the
corresponding infinite horizon problem with r(x) = r∗ and r(x) = r∗ for all x ∈ E , respectively,
uniquely determined from the system of transcendental equations (4.85) in [19; Chapter IV].

2.7. Let us further assume that the state space of the process X = (Xt)t≥0 under both
hypotheses (2.4) is E = 〈−ζ,∞〉 for some ζ ∈ R fixed, and under conditions of Subsections
2.1 and 2.3 the relationship:

µi(x) =
ηiσ

2(x)

x + ζ
(2.30)
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holds for all x ∈ E and some constants ηi ∈ R , i = 0, 1, such that η0 6= η1 and η0 + η1 = 1.
Let us define the process Y = (Yt)t≥0 by:

Yt = log
πt

1− πt

− 1

η
log

x + ζ

Xt + ζ
(2.31)

with η = 1/(η1 − η0). From the structure of (2.31) it is easily seen that there is a one-to-
one correspondence between the processes (πt, Xt)t≥0 and (πt, Yt)t≥0 , and thus, the latter is
also a (time-homogeneous strong) Markov process with respect to its natural filtration, which
coincides with (FX

t )t≥0 . By deriving the expression for Xt from (2.31) and by substituting it
into (2.10), we obtain:

dπt =
σ

(
(x + ζ)e−ηYt [πt/(1− πt)]

η − ζ
)

η(x + ζ)e−ηYt [πt/(1− πt)]η
πt(1− πt) dW t (π0 = π). (2.32)

By applying Itô’s formula to the expression (2.31) and by using the representations (2.10) and
(2.12) as well as the assumption (2.30) with η0 6= η1 and η0 + η1 = 1, we get dYt = 0 and thus:

Yt = log
π

1− π
(2.33)

for all t ≥ 0.

2.8. By means of standard arguments it is shown that under the assumptions of Subsection
2.7 the optimal stopping problems (2.6) and (2.16) are equivalent to:

Ṽ (π, y) = inf
τ

Eπ[τ + ga,b(πτ )] (2.34)

where the infimum is taken over all stopping times τ of the process (πt, Yt)t≥0 such that Eπ[τ ] <
∞ for all (π, y) ∈ [0, 1]× R and y = log[π/(1− π)] for each π ∈ 〈0, 1〉 and x ∈ E = 〈−ζ,∞〉
fixed. It also follows that there exists a couple of functions (h0(y), h1(y)), y ∈ R , such that
the continuation region C from (2.22) is equivalent to:

C̃ = {(π, y) ∈ [0, 1]× R | π ∈ 〈h0(y), h1(y)〉} (2.35)

and the set D from (2.23) is equivalent to:

D̃ = {(π, y) ∈ [0, 1]× R | π ∈ [0, h0(y)〉 ∪ 〈h1(y), 1]} (2.36)

for each y ∈ R and x ∈ E fixed.

2.9. If the assumption (2.30) with η0 6= η1 and η0 + η1 = 1 holds, then by means of

standard arguments it is shown that the infinitesimal operator L̃ of the process (πt, Yt)t≥0 from
(2.32)-(2.33) acts on a function F ∈ C2,0(〈0, 1〉 × R) like:

(L̃F )(π, y) =
r2(x; π, y)

2
π2(1− π)2∂2F

∂π2
(π, y) (2.37)

with

r(x; π, y) =
σ ((x + ζ)e−ηy[π/(1− π)]η − ζ)

η(x + ζ)e−ηy[π/(1− π)]η
(2.38)
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for all (π, y) ∈ 〈0, 1〉 × R and each x ∈ E = 〈−ζ,∞〉 fixed.
Now let us use the results of general theory of optimal stopping problems for continuous

time Markov processes (see, e.g., [6], [19; Chapter III, Section 8] and [15]) to formulate the

corresponding free-boundary problem for the unknown value function (π, y) 7→ Ṽ (π, y) from
(2.16) (with ga,b(π) = aπ ∧ b(1− π)) and the couple of boundaries (h0(y), h1(y)), y ∈ R , from
(2.35)-(2.36):

(L̃Ṽ )(π, y) = −1 for (π, y) ∈ C̃ (2.39)

Ṽ (π, y)
∣∣
π=h0(y)+

= ah0(y), Ṽ (π, y)
∣∣
π=h1(y)− = b(1− h1(y)) (2.40)

∂Ṽ

∂π
(π, y)

∣∣
π=h0(y)+

= a,
∂Ṽ

∂π
(π, y)

∣∣
π=h1(y)− = −b (2.41)

Ṽ (π, y) = ga,b(π) for (π, y) ∈ D̃ (2.42)

Ṽ (π, y) < ga,b(π) for (π, y) ∈ C̃ (2.43)

where C̃ and D̃ are given by (2.35) and (2.36), and the instantaneous-stopping conditions
(2.40) and the smooth-fit conditions (2.41) are assumed to be satisfied for all y ∈ R and each
x ∈ E fixed.

Note that by Dynkin’s superharmonic characterization of the value function (see [3] and

[19]) it follows that Ṽ (π, y) from (2.34) is the largest function satisfying (2.39)-(2.40) and
(2.42)-(2.43) for each y ∈ R and x ∈ E fixed.

2.10. Integrating the equation (2.39) with some h1(y) ∈ 〈c, 1〉 fixed for any given y ∈ R
and using the boundary conditions (2.40)-(2.41), we obtain:

Ṽ (π, y; h1(y)) = b(1− h1(y))−
∫ h1(y)

π

∫ h1(y)

u

2

r2(x; v, y)v2(1− v)2
dvdu (2.44)

with r(x; π, y) given by (2.38) for all π ∈ 〈0, h1(y)] and each x ∈ E = 〈−ζ,∞〉 fixed.
From (2.44) it is easily seen that for any y ∈ R given and fixed the function π 7→

Ṽ (π, y; h1(y)) is concave on 〈0, 1〉 , and hence Ṽ (h′1(y), y; h′′1(y)) < Ṽ (h′1(y), y; h′1(y)) for
0 < h′1(y) < h′′1(y) < 1. This means that for different h′1(y) and h′′1(y) the curves

π 7→ Ṽ (π, y; h′1(y)) and π 7→ Ṽ (π, y; h′′1(y)) have no points of intersection on the whole in-

terval π ∈ 〈0, h′1(y)]. From (2.44) it also follows that Ṽ (π, y; h1(y)) → −∞ as π ↓ 0 for all

h1(y) ∈ [c, 1〉 and Ṽ (π, y; 1−) < 0 for all π ∈ 〈0, 1〉 and Ṽ (1−, y; 1−) = 0. In this case, for

some h̃1(y) ∈ 〈c, 1〉 the curve π 7→ Ṽ (π, y; h̃1(y)) intersects the line π 7→ aπ at some point

h0(y) ∈ 〈0, c〉 . Since for different h′1(y) ∈ 〈c, 1〉 the curves π 7→ Ṽ (π, y; h′1(y)) do not intersect
each other on the intervals 〈0, h′1(y)〉 , we may conclude that there exists a unique point h1(y)

obtained by moving the point h′1(y) from h̃1(y) and such that in some point h0(y) ∈ 〈0, c〉 the
boundary conditions (2.40)-(2.41) hold. It thus follows that the boundaries (h0(y), h1(y)) are
uniquely determined from the system:

b + a =

∫ h1(y)

h0(y)

2

r2(x; u, y)u2(1− u)2
du (2.45)

b(1− h1(y)) = ah0(y)−
∫ h1(y)

h0(y)

∫ h1(y)

u

2

r2(x; v, y)v2(1− v)2
dvdu (2.46)
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for each y ∈ R and x ∈ E = 〈−ζ,∞〉 fixed.

2.11. Making use of the facts proved above we are now ready to formulate the main result
of the paper.

Theorem 2.1. Suppose that conditions (2.3) and (2.14)-(2.15) hold for all x ∈ E =
〈−ζ,∞〉 and some ζ ∈ R fixed, and assumption (2.30) is satisfied with η0 6= η1 and η0+η1 = 1.
Then in the Bayesian problem (2.6)+(2.16)+(2.34) of testing two simple hypotheses (2.4) for
the process (2.2) the value function has the expression:

V (π) = V (π, x) = Ṽ (π, y) =

{
Ṽ (π, y; h1(y)), if π ∈ 〈h0(y), h1(y)〉
ga,b(π), if π ∈ [0, h0(y)] ∪ [h1(y), 1]

(2.47)

and the optimal π -Bayes decision rule is explicitly given by:

τ∗ = inf{t ≥ 0 | πt /∈ 〈h0(y), h1(y)〉} (2.48)

d∗ =

{
1, if πτ∗ = h1(y)

0, if πτ∗ = h0(y)
(2.49)

where the two boundaries (h0(y), h1(y)) are characterized as a unique solution of the coupled
system of equations (2.45)-(2.46) for y = log[π/(1− π)] and each π ∈ 〈0, 1〉 and x ∈ E fixed.

Proof. It remains to show that the function (2.47) coincides with the value function (2.34)
and that the stopping time τ∗ from (2.48) with the boundaries (h0(y), h1(y)), y ∈ R , specified

above is optimal. Let us denote by Ṽ (π, y) the right-hand side of the expression (??). It

follows by construction from the previous section that the function Ṽ (π, y) solves the system

(2.39)-(2.42). Thus, applying Itô’s formula to Ṽ (πt, y), we obtain:

Ṽ (πt, y) = Ṽ (π, y) +

∫ t

0

(L̃Ṽ )(πs, y)I(πs 6= h0(y), πs 6= h1(y)) ds + M̃t (2.50)

where the process (M̃t)t≥0 defined by:

M̃t =

∫ t

0

∂Ṽ

∂π
(πs, y)I(πs 6= h0(y), πs 6= h1(y))

µ1(Xt)− µ0(Xt)

σ(Xt)
πs(1− πs) dW s (2.51)

is a continuous local martingale under Pπ with respect to (FX
t )t≥0 .

By using the arguments above it can be verified that (L̃Ṽ )(π, y) ≥ −1 for all (π, y) ∈
〈0, 1〉 × R such that π 6= h0(y) and π 6= h1(y). Moreover, by means of standard arguments

and using the construction of Ṽ (π, y) above it can be checked that the property (2.43) also

holds that together with (2.39)-(2.40)+(2.42) yields Ṽ (π, y) ≤ ga,b(π) for all (π, y) ∈ [0, 1]×R .
Observe that the time spent by the process π at the boundaries (h0(y), h1(y)), y ∈ R , is

of Lebesgue measure zero, that allows to extend (L̃Ṽ )(π, y) arbitrarily to π = h0(y) and to
π = h1(y) and thus to ignore the indicators in (2.50)-(2.51). Hence, from the expressions (2.50)
and the structure of the stopping time in (2.48) it follows that the inequalities:

τ + ga,b(πτ ) ≥ τ + Ṽ (πτ , y) ≥ Ṽ (π, y) + M̃τ (2.52)

9



hold for any stopping times τ of the process (πt)t≥0 started at π ∈ [0, 1] and for each y ∈ R .

Let (τn)n∈N be an arbitrary localizing sequences of stopping times for the processes (M̃t)t≥0 .
Taking in (2.52) the expectation with respect to the measure Pπ , by means of the optional
sampling theorem (see, e.g., [9; Chapter I, Theorem 1.39] or [17; Chapter II, Theorem 3.1]), we
get:

Eπ [τ ∧ τn + ga,b(πτ∧τn)] ≥ Eπ

[
τ ∧ τn + Ṽ (πτ∧τn , y)

]
≥ Ṽ (π, y) + Eπ

[
M̃τ∧τn

]
= Ṽ (π, y) (2.53)

for all (π, y) ∈ [0, 1] × R . Hence, letting n go to infinity and using Fatou’s lemma, for any
stopping times τ such that Eπ[τ ] < ∞ we obtain that the inequalities:

Eπ [τ + ga,b(πτ )] ≥ Eπ

[
τ + Ṽ (πτ , y)

]
≥ Ṽ (π, y) (2.54)

are satisfied for all (π, y) ∈ [0, 1]× R .

By virtue of the fact that the function Ṽ (π, y) together with the boundaries h0(y) and
h1(y) satisfy the system (2.39)-(2.43), by the structure of the stopping time τ∗ in (2.48) and
the expressions (2.50) it follows that the equalities:

τ∗ ∧ τn + ga,b(πτ∗∧τn) = τ∗ ∧ τn + Ṽ (πτ∗∧τn , y) = Ṽ (π, y) + M̃τ∗∧τn (2.55)

hold for all (π, y) ∈ [0, 1] × R and any localizing sequence (τn)n∈N of (M̃t)t≥0 . Note that,
by means of standard arguments and by using the structure of the process (2.32) and of the
stopping time (2.48), we have Eπ[τ∗] < ∞ for all π ∈ [0, 1]. Hence, letting n go to infinity
and using conditions (2.39)-(2.40), we can apply the Lebesgue bounded convergence theorem
for (2.55) to obtain the equality:

Eπ [τ∗ ∧ τn + ga,b(πτ∗∧τn)] = Ṽ (π, y) (2.56)

for all (π, y) ∈ [0, 1]× R , which together with (2.54) directly imply the desired assertion. �
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