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We study nonadditive Bayesian problems of detecting a change in drift
of an observed diffusion process where the cost function of the detection
delay has the same structure as in [27] and construct a finite-dimensional
Markovian sufficient statistic for that case. We show that when the cost
function is linear the optimal stopping time is found as the first time when
the a posteriori probability process hits a stochastic boundary depend-
ing on the observation process. It is shown that under some nontrivial
relationships on the coefficients of the observed diffusion the problem ad-
mits a closed form solution. The method of proof is based on embedding
the initial problem into a two-dimensional optimal stopping problem and
solving the equivalent free-boundary problem by means of the smooth-fit
conditions.

1. Introduction

The problem of quickest disorder detection for an observed diffusion process seeks to de-
termine a stopping time which is as close as possible to the (unknown) time of ’disorder’
(change-point) when the drift coefficient µ(x) of the observed process changes from µ0(x) to
µ1(x). This problem admits at least two different Bayesian formulations. In the ’free’ formula-
tion (below referred to as the ’Bayesian problem’) one looks for a time of ’alarm’ minimizing a
linear combination of the probability of a ’false alarm’ and the expectation of a ’delay’ in de-
tecting the time of disorder correctly with no constraint on the former. In the ’fixed false-alarm’
formulation (sometimes referred to as the ’variational problem’) one looks for a time of ’alarm’
minimizing the same linear combination under the constraint that the probability of a ’false
alarm’ cannot exceed a given value. In this paper we only study the ’Bayesian problem’ where
we also use the customary assumption that the time of disorder is exponentially distributed.

Shiryaev [25]-[26] and [28]-[29] (see also [30; Chapter IV]) derived an explicit solution of the
Bayesian and variational problem of detecting a change in drift of an observed Wiener process
by reducing the initial optimal stopping problem to a free-boundary problem for an ordinary
second order operator. Some particular cases of the Bayesian problem of detecting a change
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in the intensity of an observed Poisson process were considered by Gal’chuk and Rozovskii [10]
and Davis [6]. Peskir and Shiryaev [20] obtained a complete solution of the latter problem
by reducing the initial optimal stopping problem for a differential-difference operator. The
Bayesian and variational disorder problems for a compound Poisson process with exponentially
distributed jumps were explicitly solved in [11]. Recently, Dayanik and Sezer [7] obtained
a solution of the Bayesian disorder problem for a general compound Poisson process. In all
these problems the optimal stopping time was the first time when the a posteriori probability
process hits a constant boundary. A finite horizon version of the Bayesian and variational
Wiener disorder problem was solved in [12] by reducing a parabolic free-boundary problem to
an equivalent a nonlinear integral equation for the curved optimal stopping boundary depending
on time. The main purpose of this paper is to study the Bayesian problem of detecting a change
in local drift of an observed diffusion process and present a closed form solution of the problem
under some nontrivial relationships on coefficients of the observed diffusion. In this case the
optimal stopping time is the first time when the a posteriori probability process hits a stochastic
boundary depending on the observation process.

Shiryaev [27] studied the problem of finding finite-dimensional Markovian sufficient statis-
tics in the disorder problem with nonadditive minimizing functionals. More recently, it was
shown by Poor [22] for the case of observed sequences of random variables, by Beibel [4] for the
case of observed Wiener process, and then by Bayraktar and Dayanik [1] for the case of observed
Poisson process, that when the cost function of the detection delay has an exponential form
the Markovian sufficient statistic turns out to be one-dimensional that essentially simplifies
the solution of the related optimal stopping problem. Some other formulations of the Poisson
disorder problem were considered by Bayraktar, Dayanik and Karatzas [2]. Another ’adaptive’
formulation of the Poisson disorder problem where the arrival rate of the observed process
changes to an unobservable value and the related problem of finding finite-dimensional Marko-
vian sufficient statistics were studied by Bayraktar, Dayanik and Karatzas [3]. It was shown
that when the new arrival rate has Bernoulli distribution the Markovian sufficient statistic
turns out to be two-dimensional that makes possible to observe interesting analytic properties
of the solution of the corresponding optimal stopping problem.

The paper is organized as follows. In Section 2, after formulating the Bayesian disorder
problem for an observed diffusion processes we study the problem of finding Markovian sufficient
statistics for the case where the minimizing nonadditive functional has the same form as in [27].
In Section 3, we consider the case where the cost function of the detection delay is linear and
make an embedding of the initial Bayesian problem into an extended optimal stopping problem
for a two-dimensional (time-homogeneous strong) Markov process (consisting of the a posteriori
probability process and the observation process). We show that the continuation region (for
the a posteriori probability process) is determined by a stochastic boundary depending on the
observation process where the behavior of the boundary is characterized by the signal/noise
ratio. In order to find analytic expressions for the value function and the stopping boundary
under some special nontrivial relationships on coefficients of the observed diffusion, we formulate
an equivalent free-boundary problem. By applying smooth-fit condition we show that the free-
boundary problem admits an explicit solution and the boundary is uniquely determined from a
transcendental equation. Then we verify that the solution of the free-boundary problem turns
out to be a solution of the initial extended optimal stopping problem. The main results of the
paper are stated in Theorems 2.1 and 3.1.
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2. Formulation of the problem

In the Bayesian formulation of the problem (see [30; Chapter IV, Section 4] for the case of
Wiener process) it is assumed that we observe a trajectory of the diffusion process X = (Xt)t≥0

with drift coefficient changing from µ0(x) to µ1(x) at some random time θ taking the value 0
with probability π and being exponentially distributed with parameter λ > 0 under θ > 0.

2.1. For a precise probabilistic formulation of the Bayesian problem it is convenient to
assume that all our considerations take place on a probability space (Ω,F , Pπ) where the
probability measure Pπ has the following structure:

Pπ = πP 0 + (1− π)

∫ ∞

0

λe−λsP s ds (2.1)

for any π ∈ [0, 1] and the measures P s for s ∈ [0,∞] are specified below. Let θ be a nonnegative
random variable satisfying Pπ[θ = 0] = π and Pπ[θ > t | θ > 0] = e−λt for all t ≥ 0 and some
λ > 0, and let W = (Wt)t≥0 be a standard Wiener process started at zero under Pπ . It is
assumed that θ and W are independent.

It is further assumed that we observe a continuous process X = (Xt)t≥0 with the (open)
state space E ⊆ R and solving the stochastic differential equation:

dXt = [µ0(Xt) + I(t ≥ θ)(µ1(Xt)− µ0(Xt))] dt+ σ(Xt) dWt (X0 = x) (2.2)

where the functions µi(x) and σ(x) are Lipschitz continuous on E , that is, there exists a
constant C > 0 such that:

[µi(x)− µi(x
′)]2 + [σ(x)− σ(x′)]2 ≤ C[x− x′]2 (2.3)

for all x, x′ ∈ E and i = 0, 1. Thus, from [17; Chapter IV, Theorem 4.6] it follows that under
fixed θ = s equation (2.2) has a unique strong solution, and hence, Pπ[X ∈ · | θ = s ] =
P s[X ∈ · ] is the distribution law of a homogeneous diffusion process (starting at some fixed
point x ∈ E ) with diffusion coefficient σ2(x) and local drift changing from µ0(x) to µ1(x) at
time s ∈ [0,∞] . We will also assume that either µ0(x) < µ1(x) or µ0(x) > µ1(x) holds and
σ2(x) > 0 for all x ∈ E . It is assumed that the time of ’disorder’ is unknown (i.e., it cannot
be observed directly).

Being based upon the continuous observation of X our task is to find among the stopping
times τ of X (i.e., stopping times with respect to the natural filtration FX

t = σ{Xs | 0 ≤ s ≤ t}
generated by the process X for t ≥ 0) an optimal stopping time (a time of ’alarm’) being ’as
close as possible’ to the unknown time θ . More precisely, the problem consists of computing
the risk function:

V (π) = inf
τ

(
Pπ[τ < θ] + Eπ[f(τ − θ)I(τ ≥ θ)]

)
, (2.4)

and finding the optimal stopping time τ∗ , called the π -Bayes time, at which the infimum in
(2.4) is attained. Here Pπ[τ < θ] is the probability of a ’false alarm’, Eπ[f(τ − θ)I(τ ≥ θ)] is
the ’average cost of delay’ in detecting disorder correctly (i.e., when τ ≥ θ), so that the cost
function f(t) of the detection delay satisfies f(t) ≥ 0 for t ≥ 0 and f(t) = 0 for t ≤ 0.

2.2. Following the schema of arguments in [27], one can easily show that the Bayesian
problem (2.4) is reduced to the optimal stopping problem:

V (π) = inf
τ
Eπ

[
1− πτ,τ + f(τ)π0,τ +

∫ τ

0

f(τ − u) duπu,τ

]
(2.5)
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for the conditional probability πu,t = Pπ[θ ≤ u | FX
t ] for each 0 ≤ u ≤ t and all t ≥ 0 with

π0,0 = π (Pπ -a.s.).
It follows by definition of the measures P s above that:

d(P s|FX
t )

d(P∞|FX
t )

= I(s ≤ t) +
Lt

Ls

I(s > t) (2.6)

for each s ∈ [0,∞] , where by applying Girsanov’s theorem for diffusion-type processes [17;
Chapter VII, Theorem 7.19], we have:

Lt = exp

(∫ t

0

µ1(Xu)− µ0(Xu)

σ2(Xu)
dXu −

1

2

∫ t

0

µ2
1(Xu)− µ2

0(Xu)

σ2(Xu)
du

)
(2.7)

for all t ≥ 0. Then, by means of generalized Bayes’ formula [17; Chapter VII, Lemma 7.4], for
the conditional probability πu,t = Pπ[θ ≤ u | FX

t ] we get:

πu,t =
πLt + (1− π)

∫ u

0
(Lt/Ls)λe

−λs ds

πLt + (1− π)
∫ t

0
(Lt/Ls)λe−λs ds+ (1− π)e−λt

(2.8)

for each 0 ≤ u ≤ t and all t ≥ 0. Hence, after setting πt = πt,t , we obtain:

πu,t

1− πt

=
Lt

e−λt

(
π

1− π
+

∫ u

0

λe−λs

Ls

ds

)
(2.9)

for each 0 ≤ u ≤ t and all t ≥ 0. Thus, by means of standard arguments it follows that the
value function (2.5) takes the form:

V (π) = inf
τ
Eπ

[
(1− πτ )

(
1 +

Lτ

e−λτ

(
f(τ)

π

1− π
+

∫ τ

0

f(τ − u)
λe−λu

Lu

du

))]
. (2.10)

2.3. Following the schema of arguments from [27], from now on we assume that the Laplace

transform f̂(z) of the function f(t) is a rational function of the form:

f̂(z) =

∫ ∞

0

f(u)e−zu du =
n∑

k=1

m(k)∑
l=1

ckl

(z − λk)l
(2.11)

for all z > 0, z 6= λ1, . . . , z 6= λn , where ckl , l = 1, . . . ,m(k), k = 1, . . . , n , are some real
constants. Let us denote by e−Su the shift operator acting on an arbitrary function a(t) like
e−Su [a(t)] = a(t − u) for all t ≥ 0 and some u ≥ 0 fixed. In this case, by virtue of the
assumption (2.11) we may set:

f̂(S) [ · ] =

∫ ∞

0

f(u)e−Su [ · ] du =
n∑

k=1

m(k)∑
l=1

ckl

(S − λk)l
[ · ] (2.12)

and thus, we have:

f̂(S)

[
λe−λt

Lt

]
=

∫ ∞

0

f(u)
λe−λ(t−u)

Lt−u

du =
n∑

k=1

m(k)∑
l=1

ckl

(S − λk)l

[
λe−λt

Lt

]
(2.13)
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for all t ≥ 0. By means of standard arguments from [8], we get:

1

(S − λk)l

[
λe−λt

Lt

]
= ψkl

t

e−λt

Lt

≡
∫ ∞

0

eλku ul−1

(l − 1)!

λe−λ(t−u)

Lt−u

du (2.14)

for each 0 ≤ u ≤ t and all t ≥ 0, where the process (ψkl
t )t≥0 is defined by:

ψkl
t =

Lt

e−λt

∫ t

0

eλk(t−u) (t− u)l−1

(l − 1)!

λe−λu

Lu

du (2.15)

for every l = 1, . . . ,m(k) and k = 1, . . . , n . By using the fact that:∫ t

0

f(t− u)
λe−λu

Lu

du =

∫ ∞

0

f(u)
λe−λ(t−u)

Lt−u

du (2.16)

for each 0 ≤ u ≤ t and all t ≥ 0, we therefore conclude that the value function (2.10) admits
the representation:

V (π) = inf
τ
Eπ

(1− πτ )

1 +
Lτf(τ)

e−λτ

π

1− π
+

n∑
k=1

m(k)∑
l=1

cklψ
kl
τ

 . (2.17)

2.4. Let us now introduce the likelihood ratio process (ϕt)t≥0 defined by ϕt = πt/(1− πt),
and thus, by virtue of (2.9), taking the expression:

ϕt =
Lt

e−λt

(
π

1− π
+

∫ t

0

λe−λs

Ls

ds

)
(2.18)

for all t ≥ 0. Then, by applying Itô’s formula [17; Chapter IV, Theorem 4.4] to the expressions
(2.18), (2.7) and (2.15), and by using the fact that:

πt =
ϕt

1 + ϕt

(2.19)

we obtain the following representations:

dπt = λ(1− πt) dt+
µ1(Xt)− µ0(Xt)

σ(Xt)
πt(1− πt) dW t (π0 = π) (2.20)

dLt =
µ1(Xt)− µ0(Xt)

σ(Xt)
Lt dW t (L0 = 1) (2.21)

dψk1
t =

[
λ+ (λ+ λk)ψ

k1
t

]
dt+

µ1(Xt)− µ0(Xt)

σ(Xt)
ψk1

t dW t (ψk1
0 = 0) (2.22)

dψkl
t =

[
ψ

k(l−1)
t + (λ+ λk)ψ

kl
t

]
dt+

µ1(Xt)− µ0(Xt)

σ(Xt)
ψkl

t dW t (ψkl
0 = 0) (2.23)

for every l = 2, . . . ,m(k) and k = 1, . . . , n , where, by means of P. Lévy’s theorem [24; Chap-
ter IV, Theorem 3.6], the innovation process W = (W t)t≥0 defined by:

W t =

∫ t

0

dXs

σ(Xs)
−
∫ t

0

(
µ0(Xs)

σ(Xs)
+ πs

µ1(Xs)− µ0(Xs)

σ(Xs)

)
ds (2.24)
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is a standard Wiener process under the measure Pπ with respect to the filtration (FX
t )t≥0 .

Therefore, from (2.24) it follows that the process X = (Xt)t≥0 admits the representation:

dXt = [µ0(Xt) + πt(µ1(Xt)− µ0(Xt))] dt+ σ(Xt) dW t (X0 = x). (2.25)

Let us suppose that the signal/noise ratio function defined by:

r(x) =
µ1(x)− µ0(x)

σ(x)
(2.26)

is also Lipschitz continuous, that is, there exists a constant C ′ > 0 such that condition:

[r(x)− r(x′)]2 ≤ C ′[x− x′]2 (2.27)

holds for all x, x′ ∈ E , and there are constants r∗ and r∗ such that the inequalities:

0 < r∗ ≤ r(x) ≤ r∗ <∞ (2.28)

are satisfied for all x ∈ E . Hence, by means of Remark to [17; Chapter IV, Theorem 4.6] (see
also [18; Chapter V, Theorem 5.2.1]) we conclude that the process (πt, Lt, ψt, Xt)t≥0 where we
denote ψt = (ψkl

t , l = 1, . . . ,m(k), k = 1, . . . , n) turns out to be a unique strong solution of
the multi-dimensional stochastic differential equation (2.20)-(2.23)+(2.25), and thus, by virtue
of [18; Chapter VII, Theorem 7.2.4], it is a (time-homogeneous strong) Markov process with
respect to its natural filtration, which obviously coincides with (FX

t )t≥0 . Therefore, the infimum
in (3.2) is taken over all stopping times of (πt, Lt, ψt, Xt)t≥0 playing the role of a Markovian
sufficient statistic in the problem.

2.5. Summarizing the facts proved above we now formulate the following assertion.

Theorem 2.1. Suppose that condition (2.3) holds and the Laplace transform f̂(z) of the
cost of delay f(t) takes the form (2.11). Then in the Bayesian problem (2.4)-(2.5) the value
function admits the representation (2.17), where the processes (πt)t≥0 , (Lt)t≥0 and (ψkl

t )t≥0 ,
l = 1, . . . ,m(k), k = 1, . . . , n, defined in (2.19), (2.7) and (2.15) solve the stochastic dif-
ferential equations (2.20)-(2.23). Moreover, if the conditions (2.27)-(2.28) are satisfied, then
(πt, Lt, ψt, Xt)t≥0 turns out to be a Markovian sufficient statistic in the problem (2.4)-(2.5).

Remark 2.2. The Laplace transform f̂(z) has the form (2.11) if, for example, the func-
tion f(t) satisfies a homogeneous ordinary differential equation of the order q =

∑n
k=1m(k):

f (q)(t) + a1f
(q−1)(t) + . . .+ aq−1f

′(t) + aqf(t) = 0 with the initial conditions f(0) = c0, f
′(0) =

c1, . . . , f
(q−1)(0) = cq−1 , where a1, . . . , aq and c0, c1, . . . , cq−1 are some real constants (see, e.g.,

[8]).

Example 2.3. Assume that f(t) = ct for all t ≥ 0 and some c > 0 given and fixed.
Then it is easily shown (see, e.g., [30; Chapter IV]) that the value function (2.4) takes the form
(3.1)-(3.2) below, so that (πt)t≥0 turns out to be a one-dimensional sufficient statistic.

Example 2.4. Assume that f(t) = ctα for all t ≥ 0 and some α > 0 and c > 0 given

and fixed. In this case, the Laplace transform takes the form f̂(z) = cΓ(α + 1)/zα+1 for

z > 0, where Γ is the Euler Gamma function. If α ∈ N then f̂(z) is of the type (2.11), from
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where, by means of the arguments above we obtain that the value function (2.10) admits the
representation:

Lπ(τ) = Eπ

[
(1− πτ )

(
1 +

Lτcτ
α

e−λτ

π

1− π
+ cΓ(α+ 1)

α+1∑
l=1

ψl
τ

)]
. (2.29)

Otherwise, if α > 0 but α /∈ N then the function f̂(z) cannot be expressed in the form (2.11)
with finite number of summands.

3. The case of linear cost of delay

In this section we study the case considered in Example 2.3 above where the cost of delay
is a linear function.

3.1. Assume that in (2.4) we have f(t) = ct for all t ≥ 0 and some c > 0 fixed. In this
case the value function admits the representation:

V (π) = inf
τ

(
Pπ[τ < θ] + cEπ[τ − θ]+

)
(3.1)

where the infimum is taken over all stopping time of the process X . By means of standard
arguments (see [30; pages 195-197]) one can easily show that the Bayesian problem (3.1) is
reduced to the optimal stopping problem:

V (π) = inf
τ
Eπ

[
1− πτ + c

∫ τ

0

πt dt

]
(3.2)

for the a posteriori probability process πt = Pπ[θ ≤ t | FX
t ] for t ≥ 0 with π0 = π (Pπ -a.s.).

3.2. For the problem (3.2) let us consider the following extended optimal stopping problem
for the Markov process (πt, Xt)t≥0 :

V (π, x) = inf
τ
Eπ,x

[
1− πτ + c

∫ τ

0

πt dt

]
(3.3)

where Pπ,x is a measure of the diffusion process (πt, Xt)t≥0 starting at the point (π, x) and
solving the (two-dimensional) equation (2.20)+(2.25), and the infimum in (3.3) is taken over
all stopping times τ of the process (πt, Xt)t≥0 such that Eπ,x[τ ] <∞ for all (π, x) ∈ [0, 1]×E .

3.3. Let us now determine the structure of the optimal stopping time in the problem (3.3).

(i) First, by applying Itô’s formula we get:

1− πt = 1− π − λ

∫ t

0

(1− πs) ds+Nt (3.4)

where for any (FX
t )t≥0 -stopping time τ satisfying Eπ,x[τ ] < ∞ the process (Nτ∧t)t≥0 defined

by Nτ∧t = −
∫ τ∧t

0
r(Xs)πs(1− πs)dW s is a continuous (uniformly integrable) martingale under
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Pπ,x . It follows from (3.4) using the optional sampling theorem (see, e.g., [24; Chapter II,
Theorem 3.2]) that:

Eπ,x

[
1− πσ + c

∫ σ

0

πu du

]
= 1− π + Eπ,x

[∫ σ

0

(c πt − λ(1− πt)) du

]
(3.5)

for each (FX
t )t≥0 -stopping time σ . Choosing σ to be the exit time from a small ball, we see

from (3.5) that it is never optimal to stop when πt < λ/(λ + c) for t ≥ 0. In other words,
this shows that all points (π, x) for x ∈ E with 0 ≤ π < λ/(λ+ c) belong to the continuation
region:

C = {(π, x) ∈ [0, 1]× E | V (π, x) < 1− π}. (3.6)

Since π 7→ V (π, x) with x ∈ E given and fixed is concave on [0, 1] (this is easily deduced
using the same arguments as in [30; pages 197-198]), it follows that there exists a function g(x)
satisfying 0 < λ/(λ+ c) ≤ g(x) < 1 for all t ≥ 0 such that the continuation region is an open
set of the form:

C = {(π, x) ∈ [0, 1]× E | π < g(x)} (3.7)

and the stopping region is the closure of the set:

D = {(π, x) ∈ [0, 1]× E | π > g(x)}. (3.8)

(ii) Now for given (π, x) ∈ C let us take x′ ∈ E such that x′ < x or x > x′ . Then using
the facts that (πt, Xt)t≥0 is a time-homogeneous Markov process and τ∗ = τ∗(π, x) does not
depend on x′ , from (3.4) we obtain:

V (π, x′)− (1− π) ≤ Eπ,x′

[∫ τ∗

0

(c πt − λ(1− πt))dt

]
(3.9)

≤ Eπ,x

[∫ τ∗

0

(c πt − λ(1− πt))dt

]
= V (π, x)− (1− π)

and hence, by means of (3.6), we see that (π, x) ∈ C . Therefore, we may conclude that in
(3.7)-(3.8) and the boundary x 7→ g(x) is decreasing (increasing) on E when the function r(x)
is increasing (decreasing), respectively.

(iii) Next, let us observe that the value function V (π, x) from (3.3) and the boundary g(x)
from (3.7)-(3.8) also depend on r(x) defined in (2.26) and denote them here by V∗(π, x) and
V ∗(π, x) as well as A∗ and A∗ when r(x) = r∗ and r(x) = r∗ for all x ∈ E , respectively.
Using the fact that x 7→ V (π, x) is an increasing (decreasing) function when r(x) is increasing
(decreasing) on E , and V (π, x) = 1 − π for all g(x) ≤ π ≤ 1, we conclude that 0 < A∗ ≤
g(x) ≤ A∗ < 1 for all x ∈ E . Here we note that if r∗ = r∗ then A∗ = g(x) = A∗ for all x ∈ E ,
where 0 < λ/(c + λ) < A∗ < A∗ < 1 are uniquely determined from the system (4.147) in [30;
Chapter IV].

3.4. Summarizing the facts proved in Subsection 3.3 above we may conclude that the
following optimal decision rule is optimal in the extended problem (3.3):

τ∗ = inf{t ≥ 0 | πt ≥ g(Xt)} (3.10)
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(whenever Eπ,x[τ∗] <∞) where the boundary g(x), x ∈ E , satisfies the following properties:

g(x) : E → [0, 1] is continuous and decreasing (increasing) (3.11)

A∗ ≤ g(x) ≤ A∗ for all x ∈ E (3.12)

whenever r(x) is an increasing (decreasing) function on E , respectively. Here A∗ and A∗

satisfying 0 < λ/(c+ λ) < A∗ < A∗ < 1 are the optimal stopping points for the corresponding
infinite horizon problem with r(x) = r∗ and r(x) = r∗ for all x ∈ E , respectively, uniquely
determined from the system of transcendental equations (4.147) in [30; Chapter IV].

3.5. Let us further assume that the state space of the process X = (Xt)t≥0 under θ = s for
all s ∈ [0,∞] is E = 〈−ζ,∞〉 for some ζ ∈ R fixed, and under conditions of Subsections 2.1
and 2.4 as well as of the Example 2.3 the relationship:

µi(x) =
ηiσ

2(x)

x+ ζ
(3.13)

holds for all x ∈ E and some constants ηi ∈ R , i = 0, 1, such that η0 6= η1 and η0 + η1 = 1.
Let us define the process Y = (Yt)t≥0 by:

Yt = log
πt

1− πt

− 1

η
log

x+ ζ

Xt + ζ
(3.14)

with η = 1/(η1 − η0). From the structure of (3.14) it is easily seen that there is a one-to-
one correspondence between the processes (πt, Xt)t≥0 and (πt, Yt)t≥0 , and thus, the latter is
also a (time-homogeneous strong) Markov process with respect to its natural filtration, which
coincides with (FX

t )t≥0 . By deriving the expression for Xt from (3.14) and by substituting it
into (2.20), we obtain:

dπt = λ(1− πt) dt+
σ
(
(x+ ζ)e−ηYt [πt/(1− πt)]

η − ζ
)

η(x+ ζ)e−ηYt [πt/(1− πt)]η
πt(1− πt) dW t (π0 = π). (3.15)

By applying Itô’s formula to the expression (3.14) and by using the representations (2.20) and
(2.25) as well as the assumption (3.13) with η0 6= η1 and η0 + η1 = 1, we get dYt = 0 and thus:

Yt = log
π

1− π
(3.16)

for all t ≥ 0.

3.6. By means of standard arguments it is shown that under the assumptions of Subsection
3.5 the optimal stopping problems (3.2) and (3.3) are equivalent to:

Ṽ (π, y) = inf
τ
Eπ

[
1− πτ + c

∫ τ

0

πt dt

]
(3.17)

where the infimum is taken over all stopping times τ of the process (πt, Yt)t≥0 such that Eπ[τ ] <
∞ for all (π, y) ∈ [0, 1]× R and y = log[π/(1− π)] for each π ∈ 〈0, 1〉 and x ∈ E = 〈−ζ,∞〉
fixed. It also follows that there exists a function h(y), y ∈ R , such that the continuation region
C from (3.7) is equivalent to:

C̃ = {(π, y) ∈ [0, 1]× R | π < h(y)} (3.18)
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and the set D from (3.8) is equivalent to:

D̃ = {(π, y) ∈ [0, 1]× R | π > h(y)} (3.19)

for each y ∈ R and x ∈ E fixed.

3.7. If the assumption (3.13) with η0 6= η1 and η0 + η1 = 1 holds, then by means of

standard arguments it is shown that the infinitesimal operator L̃ of the process (πt, Yt)t≥0 from
(3.15)-(3.16) acts on a function F ∈ C2,0(〈0, 1〉 × R) like:

(L̃F )(π, y) =

(
λ(1− π)

∂F

∂π
+
r2(x; π, y)

2
π2(1− π)2∂

2F

∂π2

)
(π, y) (3.20)

with

r(x; π, y) =
σ ((x+ ζ)e−ηy[π/(1− π)]η − ζ)

η(x+ ζ)e−ηy[π/(1− π)]η
(3.21)

for all (π, y) ∈ 〈0, 1〉 × R and each x ∈ E = 〈−ζ,∞〉 fixed.
Now let us use the results of general theory of optimal stopping problems for continuous

time Markov processes (see, e.g., [13], [30; Chapter III, Section 8] and [21]) to formulate the

corresponding free-boundary problem for the unknown value function (π, y) 7→ Ṽ (π, y) from
(3.3) and the boundary h(y), y ∈ R , from (3.18)-(3.19):

(L̃Ṽ )(π, y) = −c π for (π, y) ∈ C̃ (3.22)

Ṽ (π, y)
∣∣
π=h(x)− = 1− h(x) (3.23)

∂Ṽ

∂π
(π, y)

∣∣
π=h(x)− = −1 (3.24)

∂Ṽ

∂π
(π, y)

∣∣
π=0+

= 0 (3.25)

Ṽ (π, y) = 1− π for (π, y) ∈ D̃ (3.26)

Ṽ (π, y) < 1− π for (π, y) ∈ C̃ (3.27)

where C̃ and D̃ are given by (3.18) and (3.19), and the instantaneous-stopping condition (3.23)
and the smooth-fit condition (3.24) as well as the normal-entrance condition (3.25) are assumed
to be satisfied for all y ∈ R and each x ∈ E fixed.

Note that by Dynkin’s superharmonic characterization of the value function (see [9] and

[30]) it follows that Ṽ (π, y) from (3.17) is the largest function satisfying (3.22)-(3.23) and
(3.26)-(3.27) for each y ∈ R and x ∈ E fixed.

3.8. By integrating the equation (3.22) and by using the boundary conditions (3.23)-(3.25),
we obtain:

Ṽ (π, y;h(y)) = 1− h(y) (3.28)

−
∫ h(y)

π

∫ z

0

exp

(
−
∫ h(y)

u

2λ

r2(x; v, y)v2(1− v)
dv

)
2c

r2(x;u, y)u(1− u)2
dudz
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with r(x; π, y) given by (3.21) for all π ∈ 〈0, h(y)] and each y ∈ R and x ∈ E = 〈−ζ,∞〉 fixed.
By means of the arguments similar to [30; pages 203-204] it follows that the boundary h(y) is
uniquely determined from the equation:∫ h(y)

0

exp

(
−
∫ h(y)

u

2λ

r2(x; v, y)v2(1− v)
dv

)
2c

r2(x;u, y)u(1− u)2
dudz = 1 (3.29)

for each y ∈ R and x ∈ E = 〈−ζ,∞〉 fixed.

3.9. Making use of the facts proved above we are now ready to formulate the main result
of the paper.

Theorem 3.1. Suppose that conditions (2.3) and (2.27)-(2.28) hold for all x ∈ E =
〈−ζ,∞〉 and some ζ ∈ R fixed, and assumption (3.13) is satisfied with η0 6= η1 and η0+η1 = 1.
Then in the Bayesian problem (3.2)+(3.3)+(3.17) of quickest disorder detection for the process
(2.2) the value function has the expression:

V (π) = V (π, x) = Ṽ (π, y) =

{
Ṽ (π, y;h(y)), if π ∈ [0, h(y)〉
1− π, if π ∈ [h(y), 1]

(3.30)

and the optimal π -Bayes stopping time is explicitly given by:

τ∗ = inf{t ≥ 0 | πt ≥ h(y)} (3.31)

where the boundary h(y) is characterized as a unique solution of the equation (3.29) for y =
log[π/(1− π)] and each π ∈ 〈0, 1〉 and x ∈ E fixed.

Proof. It remains to show that the function (3.30) coincides with the value function (3.17)
and that the stopping time τ∗ from (3.31) with the boundary h(y), y ∈ R , specified above is

optimal. Let us denote by Ṽ (π, y) the right-hand side of the expression (3.30). It follows by

construction from the previous section that the function Ṽ (π, y) solves the system (3.22)-(3.26).

Thus, applying Itô’s formula to Ṽ (πt, y), we obtain:

Ṽ (πt, y) = Ṽ (π, y) +

∫ t

0

(L̃Ṽ )(πs, y)I(πs 6= h(y)) ds+ M̃t (3.32)

where the process (M̃t)t≥0 defined by:

M̃t =

∫ t

0

∂Ṽ

∂π
(πs, y)I(πs 6= h(y))

µ1(Xt)− µ0(Xt)

σ(Xt)
πs(1− πs) dW s (3.33)

is a continuous local martingale under Pπ with respect to (FX
t )t≥0 .

By using the arguments above it can be verified that (L̃Ṽ )(π, y) ≥ −cπ for all (π, y) ∈
〈0, 1〉 × R such that π 6= h(y). Moreover, by means of standard arguments and using the

construction of Ṽ (π, y) above it can be checked that the property (3.27) also holds that together

with (3.22)-(3.23)+(3.26) yields Ṽ (π, y) ≤ 1 − π for all (π, y) ∈ [0, 1] × R . Observe that the
time spent by the process π at the boundary h(y), y ∈ R , is of Lebesgue measure zero, that
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allows to extend (L̃Ṽ )(π, y) arbitrarily to π = h(y) and thus to ignore the indicators in (3.32)-
(3.33). Hence, from the expressions (3.32) and the structure of the stopping time in (3.31) it
follows that the inequalities:

1− πτ + c

∫ τ

0

πs ds ≥ Ṽ (πτ , y) + c

∫ τ

0

πs ds ≥ Ṽ (π, y) + M̃τ (3.34)

hold for any stopping times τ of the process (πt)t≥0 started at π ∈ [0, 1] and for each y ∈ R .

Let (τn)n∈N be an arbitrary localizing sequences of stopping times for the processes (M̃t)t≥0 .
Taking in (3.34) the expectation with respect to the measure Pπ , by means of the optional
sampling theorem (see, e.g., [15; Chapter I, Theorem 1.39] or [24; Chapter II, Theorem 3.1]),
we get:

Eπ

[
1− πτ∧τn + c

∫ τ∧τn

0

πs ds

]
≥ Eπ

[
Ṽ (πτ∧τn , y) + c

∫ τ∧τn

0

πs ds

]
(3.35)

≥ Ṽ (π, y) + Eπ

[
M̃τ∧τn

]
= Ṽ (π, y)

for all (π, y) ∈ [0, 1] × R . Hence, letting n go to infinity and using Fatou’s lemma, for any
stopping times τ such that Eπ[τ ] <∞ we obtain that the inequalities:

Eπ

[
1− πτ + c

∫ τ

0

πs ds

]
≥ Eπ

[
Ṽ (πτ , y) + c

∫ τ

0

πs ds

]
≥ Ṽ (π, y) (3.36)

are satisfied for all (π, y) ∈ [0, 1]× R .

By virtue of the fact that the function Ṽ (π, y) together with the boundary h(y) satisfy the
system (3.22)-(3.27), by the structure of the stopping time τ∗ in (3.31) and the expressions
(3.32) it follows that the equalities:

1− πτ∗∧τn + c

∫ τ∗∧τn

0

πs ds = Ṽ (πτ∗∧τn , y) + c

∫ τ∗∧τn

0

πs ds = Ṽ (π, y) + M̃τ∗∧τn (3.37)

hold for all (π, y) ∈ [0, 1] × R and any localizing sequence (τn)n∈N of (M̃t)t≥0 . Note that,
by means of standard arguments and by using the structure of the process (3.15) and of the
stopping time (3.31), we have Eπ[τ∗] < ∞ for all π ∈ [0, 1]. Hence, letting n go to infinity
and using conditions (3.22)-(3.23), we can apply the Lebesgue bounded convergence theorem
for (3.37) to obtain the equality:

Eπ

[
1− πτ∗∧τn + c

∫ τ∗∧τn

0

πs ds

]
= Ṽ (π, y) (3.38)

for all (π, y) ∈ [0, 1]× R , which together with (3.36) directly imply the desired assertion. �
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