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PREFACE TO THE CLASSICS EDITION

The first edition of this book was published by Academic Press in 1992

as a volume in the series Computer Science and Scientific Computing edited

by Werner Rheinboldt. As the most up-to-date and comprehensive pub-

lication on the Linear Complementarity Problem (LCP), the book was a

relatively instant success. It shared the 1994 Frederick W. Lanchester Prize

from INFORMS as one of the two best contributions to operations research

and the management sciences written in the English language during the

preceding three years. In the intervening years, The Linear Complementar-

ity Problem has become the standard reference on the subject. Despite its

popularity, the book went out of print and out of stock around 2005. Since

then, the supply of used copies offered for sale has dwindled to nearly zero at

rare-book prices. This is attributable to the substantial growth of interest

in the LCP coming from diverse fields such as pure and applied mathemat-

ics, operations research, computer science, game theory, economics, finance,

and engineering. An important development that has made this growth

possible is the availability of several robust complementarity solvers that

allow realistic instances of the LCP to be solved efficiently; these solvers can

be found on the Website http://neos.mcs.anl.gov/neos/solvers/index.html.

The present SIAM Classics edition is meant to address the grave imbal-

ance between supply and demand for The Linear Cornplementarity Prob-

lem. In preparing this edition, we have resisted the temptation to enlarge

an already sizable volume by adding new material. We have, however,

xin
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PREFACE TO THE CLASSICS EDITION

corrected a large number of typographical errors, modified the wording of

some opaque or faulty passages, and brought the entries in the Bibliogra-

phy of the first edition up to date. We warmly thank all those who were

kind enough to report ways in which the original edition would benefit from

such improvements.

In addition, we are grateful to Sara Murphy, Developmental and Acqui-

sitions Editor of SIAM, and to the Editorial Board of the SIAM Classics

in Applied Mathematics for offering us the opportunity to bring forth this

revised edition. The statements of gratitude to our families expressed in

the first edition still stand, but now warrant the inclusion of Linda Stone.

Richard W. Cottle	 Stanford, California

Jong-Shi Pang	 Urbana, Illinois

Richard E. Stone	 Eagan, Minnesota

 



PREFACE

The linear complementarity problem (LCP) refers to an inequality sys-

tem with a rich mathematical theory, a variety of algorithms, and a wide

range of applications in applied science and technology. Although diverse

instances of the linear complementarity problem can be traced to publica-

tions as far back as 1940, concentrated study of the LCP began in the mid

1960's. As with many subjects, its literature is to be found primarily in

scientific journals, Ph.D. theses, and the like. We estimate that today there

are nearly one thousand publications dealing with the LCP, and the num-

ber is growing. Only a handful of the existing publications are monographs,

none of which are comprehensive treatments devoted to this subject alone.

We believe there is a demand for such a book—one that will serve the

needs of students as well as researchers. This is what we have endeavored

to provide in writing The Linear Complementarity Problem.

The LCP is normally thought to belong to the realm of mathematical

programming. For instance, its AMS (American Mathematical Society)

subject classification is 90C33, which also includes nonlinear complemen-

tarity. The classification 90xxx refers to economics, operations research,

programming, and games; the further classification 90Cxx is specifically

for mathematical programming. This means that the subject is normally

identified with (finite-dimensional) optimization and (physical or economic)

equilibrium problems. As a result of this broad range of associations, the

xv

 



xvi	 PREFACE

literature of the linear complementarity problem has benefitted from con-

tributions made by operations researchers, mathematicians, computer sci-

entists, economists, and engineers of many kinds (chemical, civil, electrical,

industrial, and mechanical).

One particularly important and well known context in which linear com-

plementarity problems are found is the first-order optimality conditions of

quadratic programming. Indeed, in its infancy, the LCP was closely linked

to the study of linear and quadratic programs. A new dimension was

brought to the LCP when Lemke and Howson published their renowned al-

gorithm for solving the bimatrix game problem. These two subjects played

a major role in the early development of the linear complementarity prob-

lem. As the field of mathematical programming matured, and the need for

solving complex equilibrium problems intensified, the fundamental impor-

tance of the LCP became increasingly apparent, and its scope expanded

significantly. Today, many new research topics have come into being as a

consequence of this expansion; needless to say, several classical questions

remain an integral part in the overall study of the LCP. In this book, we

have attempted to include every major aspect of the LCP; we have striven

to be up to date, covering all topics of traditional and current importance,

presenting them in a style consistent with a contemporary point of view,

and providing the most comprehensive available list of references.

Besides its own diverse applications, the linear complementarity prob-

lem contains two basic features that are central to the study of general

mathematical and equilibrium programming problems. One is the concept

of complementarity. This is a prevalent property of nonlinear programs;

in the context of an equilibrium problem (such as the bimatrix game), this

property is typically equivalent to the essential equilibrium conditions. The

other feature is the property of linearity; this is the building block for the

treatment of all smooth nonlinear problems. Together, linearity and com-

plementarity provide the fundamental elements needed for the analysis and

understanding of the very complex nature of problems within mathematical

and equilibrium programming.

Preview

All seven chapters of this volume are divided into sections. No chapter

has fewer than seven or more than thirteen sections. Generally speaking,

 



PREFACE	 xvii

the chapters are rather long. Indeed, each chapter can be thought of as a

part with its sections playing the role of chapters. We have avoided the

latter terminology because it tends to obscure the interconnectedness of

the subject matter presented here.

The last two sections of every chapter in this book are titled "Exercises"

and "Notes and References," respectively. By design, this organization

makes it possible to use The Linear Complementarity Problem as a text-

book and as a reference work. We have written this monograph for read-

ers with some background in linear algebra, linear programming, and real

analysis. In academic terms, this essentially means graduate student sta-

tus. Apart from these prerequisites, the book is practically self-contained.

Just as a precaution, however, we have included an extensive discussion

of background material (see Chapter 2) where many key definitions and

results are given, and most of the proofs are omitted. Elsewhere, we have

supplied a proof for each stated result unless it is obvious or given as an

exercise.

In keeping with the textbook spirit of this volume, we have attempted

to minimize the use of footnotes and literature citations in the main body

of the work. That sort of scholarship is concentrated in the notes and ref-

erences at the end of each chapter where we provide some history of the

subjects treated, attributions for the results that are stated, and pointers to

the relevant literature. The bibliographic details for all the references cited

in The Linear Complementarity Problem are to be found in the comprehen-

sive Bibliography at the back of the book. For the reader's convenience, we

have included a Glossary of Notation and what we hope is a useful Index.

Admittedly, this volume is exceedingly lengthy as a textbook for a one-

term course. Hence, the instructor is advised to be selective in deciding the

topics to include. Some topics can be assigned as additional reading, while

others can be skipped. This is the practice we have followed in teaching

courses based on the book at Stanford and Johns Hopkins.

The opening chapter sets forth a precise statement of the linear com-

plementarity problem and then offers a selection of settings in which such

problems arise. These "source problems" should be of interest to readers

representing various disciplines; further source problems (applications of

the LCP) are mentioned in later chapters. Chapter 1 also includes a num-

ber of other topics, such as equivalent formulations and generalizations
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of the LCP. Among the latter is the nonlinear complementarity problem

which likewise has an extensive theory and numerous applications.

Having already described the function of Chapter 2, we move on to

the largely theoretical Chapter 3 which is concerned with questions on the

existence and multiplicity of solutions to linear complementarity problems.

Here we emphasize the leitmotiv of matrix classes in the study of the LCP.

This important theme runs through Chapter 3 and all those which follow.

We presume that one of these classes, the positive semi-definite matrices,

will already be familiar to many readers, and that most of the other classes

will not. Several of these matrix classes are of interest because they charac-

terize certain properties of the linear complementarity problem. They are

the answers to questions of the form "what is the class of all real square

matrices such that every linear complementarity problem formulated with

such a matrix has the property ... ?" For pedagogical purposes, the LCP

is a splendid context in which to illustrate concepts of linear algebra and

matrix theory. The matrix classes that abound in LCP theory also provide

research opportunities for the mathematical and computational investiga-

tion of their characteristic properties.

In the literature on the LCP, one finds diverse terminology and notation

for the matrix classes treated in Chapter 3. We hope that our systematic

treatment of these classes and consistent use of notation will bring about

their standardization.

Algorithms for the LCP provide another way of studying the existence of

solutions, the so-called "constructive approach." Ideally, an LCP algorithm

will either produce a solution to a given problem or else determine that

no solution exists. This is called processing the problem. Beyond this, the

ability to compute solutions for large classes of problems adds to the utility

of the LCP as a model for real world problems.

There are two main families of algorithms for the linear complementar-

ity problem: pivoting methods (direct methods) and iterative methods (in-

direct methods). We devote one chapter to each of these. Chapter 4 covers

the better-known pivoting algorithms (notably principal pivoting methods

and Lemke's method) for solving linear complementarity problems of vari-

ous kinds; we also present their parametric versions. All these algorithms

are specialized exchange methods, not unlike the familiar simplex method

of linear programming. Under suitable conditions, these pivoting methods
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are finite whereas the iterative methods are convergent in the limit. Algo-

rithms of the latter sort (e.g., matrix splitting methods, a damped Newton

method, and interior-point methods) are treated in Chapter 5.

Chapter 6 offers a more geometric view of the linear complementarity

problem. Much of it rests on the concept of complementary cones and the

formulation of the LCP in terms of a particular piecewise linear function,

both of which are introduced in Chapter 1. In addition, Chapter 6 features

the application of degree theory to the study of the aforementioned piece-

wise linear function and, especially, its local behavior. Ideas from degree

theory are also brought to bear on the parametric interpretation of Lemke's

algorithm, which can be viewed as a homotopy method.

The seventh and concluding chapter focuses on sensitivity and stability

analysis, the study of how small changes in the data affect various aspects

of the problem. Under this heading, we investigate issues such as the lo-

cal uniqueness of solutions, the local solvability of the perturbed problems,

continuity properties of the solutions to the latter problems, and also the

applications of these sensitivity results to the convergence analysis of al-

gorithms. Several of the topics treated in this chapter are examples of the

recent research items alluded to above.

Some comments are needed regarding the presentation of the algorithms

in Chapters 4 and 5. Among several styles, we have chosen one that suits

our taste and tried to use it consistently. This style is neither the terse

"pidgeon algol" (or "pseudo code") nor the detailed listing of FORTRAN

instructions. It probably lies somewhere in between. The reader is cau-

tioned not to regard our algorithm statements as ready-to-use implemen-

tations, for their purpose is to identify the algorithmic tasks rather than

the computationally sophisticated ways of performing them. With regard

to the pivotal methods, we have included a section in Chapter 4 called

"Computational Considerations" in which we briefly discuss a practical al-

ternative to pivoting in schemas (tableaux). This approach, which is the

counterpart of the revised simplex method of linear programming, paves

the way for the entrance of matrix factorizations into the picture. In terms

of the iterative methods, several of them (such as the point SOR method)

are not difficult to implement, while others (such as the family of interior-

point methods) are not as easy. A word of caution should perhaps be

offered to the potential users of any of these algorithms. In general, special
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care is needed when dealing with practical problems. The effective man-

agement of the data, the efficient way of performing the computations, the

precaution toward numerical round-off errors, the termination criteria, the

problem characteristics, and the actual computational environment are all

important considerations for a successful implementation of an algorithm.

The exercises in the book also deserve a few words. While most of them

are not particularly difficult, several of them are rather challenging and may

require some careful analysis. A fair number of the exercises are variations

of known results in the literature; these are intended to be expansions of

the results in the text.

An apology

Though long, this book gives short shrift (or no shrift at all) to several

contemporary topics. For example, we pay almost no attention to the area

of parallel methods for solving the LCP, though several papers of this kind

are included in the Bibliography; and we do not cover enumerative methods

and global optimization approaches, although we do cite a few publications

in the Notes and References of Chapter 4 where such approaches can be

seen. Another omission is a summary of existing computer codes and com-

putational experience with them. Here, we regret to say, there is much

work to be done to assemble and organize such information, not just by

ourselves, but by the interested scientific community.

In Chapter 4, some discussion is devoted to the worst case behavior

of certain pivoting methods, and two special polynomially bounded pivot-

ing algorithms are presented in Sections 7 and 8. These two subjects are

actually a small subset of the many issues concerning the computational

complexity of the LCP and the design of polynomial algorithms for certain

problems with special properties. Omitted in our treatment is the family

of ellipsoid methods for a positive semi-definite LCP. The interior-point

methods have been analyzed in great detail in the literature, and their

polynomial complexity has been established for an LCP with a positive

semi-definite matrix. Our presentation in Section 9 of Chapter 5 is greatly

simplified and, in a way, has done an injustice to the burgeoning litera-

ture on this topic. Research in this area is still quite vigorous and, partly

because of this, it is difficult to assemble the most current developments.

We can only hope that by providing many references in the Bibliography,
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we have partially atoned for our insensitivity to this important class of

methods.
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GLOSSARY OF NOTATION

Spaces

Rn real n-dimensional space

R the real line

Rn X Tn the space of n x m real matrices

R+ the nonnegative orthant of Rn

R++ the positive orthant of Rn

Vectors

zT the transpose of a vector z

{zv} a sequence of vectors z 1 , z2 , z3 , .. .

eM an m-dimensional vector of all ones

(m is sometimes omitted)

HI anormonRm

xT y the standard inner product of vectors in Rn

x > y the (usual) partial ordering: x i > y2 , i = 1, ... n
x > y the strict ordering: x z > yz, i = 1, ... n
x >- y x is lexicographically greater than y

x >- y x is lexicographically greater than or equal to y

min(x, y) the vector whose i-th component is min(x, yz)

max(x, y) the vector whose i-th component is max(x, y2)
x * y (xjyj), the Hadamard product of x and y

z I the vector whose i-th component is I zz

z+ max(O, z), the nonnegative part of a vector z

z — max(O, —z), the nonpositive part of a vector z

z - the sign pattern of the components of z is
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xxiv	 GLOSSARY OF NOTATION

Matrices

A = (az^) a matrix with entries aid

det A the determinant of a matrix A

A- ' the inverse of a matrix A

a norm of a matrix A

p(A) the spectral radius of a matrix A

AT the transpose of a matrix A

I the identity matrix

Aß (aid )jca, E,Q, a submatrix of a matrix A

Aa . (aij)jca,all j, the rows of A indexed by cti

A.ß (aid )all Z, Eß, the columns of A indexed by ß

diag (a,,. 	 , a) the diagonal matrix with elements al, ... , an,

laa (AT)ctia = (A a a) T

the transpose of a principal submatrix of A

`A-i
(A
Aaa)-1

the inverse of a principal submatrix of A
A-T (A- i)T = (AT) - i

the inverse transpose of a matrix A

(A/Aaa) Aca — A,,Actia `Lctia

the Schur complement of A. in A

A ^ the sign pattern of the entries of A is
A<B a2^ <b 3 for all i and j
A<B az^ < bz3 for all i and j
pa (M) the principal transform of M relative to Maa

Index sets

^ the complement of an index set ci

i the complement of the index set {i}
supp z {i : z2	 0}, the support of a vector z

a(z) f i : zi > (q + Mz)z}
ß(z) {i : z = (q + Mz)z}
ry(z) {i : zz < (q + Mz)2}

Signs

nonnegative

S	 nonpositive

 



GLOSSARY OF NOTATION

Sets

E element membership

not an element of

the empty set

C set inclusion

C proper set inclusion

U, n, x union, intersection, Cartesian product

Sl \ S2 the difference of sets Si and S2

S1 O S2 (51 \'S2) U (S2 \ Sl) _ (S1 U S2) \ (S1 n S2) ,

the symmetric difference of Sl and S2

Sl + Sz the (vector) sum of Sl and S2

the cardinality of a finite set S

SC the complement of a set S

dim S the dimension of a set S

bd S the (topological) boundary of a set S

cl S the (topological) closure of a set S

int S the topological interior of a set S

ri S the relative interior of a set S

rb S the relative boundary of a set S

S* the dual cone of S

O+S the set of recession directions of S

affn S the affine hull of S

cony S the convex hull of S

pos A the cone generated by the matrix A
[A] see 6.9.1

g(f) the graph of the function f

Sn-1 the unit sphere in Rn

£[x, y] the closed line segment between x and y

£(x, y) the open line segment between x and y

B(x, S) an (open) neighborhood of x with radius S

N(x) an (open) neighborhood of r

arg minx f (x) the set of x attaining the minimum of f (x)

arg maxi f (a) the set of x attaining the maximum of f (x)
[a, b] a closed interval in R

(a, b) an open interval in R
S the unit sphere

23 the closed unit ball

xxv
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Functions

f : D -* 1Z a mapping with domain D and range R

Vf (8 f2 /axe ), the m x n Jacobian of a mapping
f:Rn-^Rm. (m > 2)

V ßfa (aff /äxß )ZEä , a submatrix of Vf

VO (OOB/öaj ), the gradient of a function 0 : RTh 	3 R

f'(,) directional derivative of the mapping f
f -1 the inverse of f
0(t) any function such that limt_^o	 = 0
0(n) any function such that sup 	)' < oc

HK(X) the projection of x on the set K

inf f (x) the infimum of the function f

sup f (x) the supremum of the function f

sgn(x) the "sign" of x E R, 0, +1, or -1

LCP symbols

(q, M) the LCP with data q and M

(q, d, M) the LCP (q + dzo , M), see (4.4.6)

fM (x) x+ - Mx-

Hq ,M(x) min(x, q + Mx)
FEA(q, M) the feasible region of (q, M)
SOL(q, M) the solution set of (q, M)

r(x, q, M) a residue function for (q, M)

deg M the degree of M

deg(q) the local degree of M at q

CM(ct) complementary matrix corresponding to index

set a (M is sometimes omitted)

K(M) the closed cone of q for which SOL(q, M))4 0

K(M) see 6.1.5

G(M) see 6.2.3

ind(pos Cm (a)) the index of the complementary cone pos Cm (a)
indM index (can be applied to a point, an orthant,

a solution to the LCP, or a complementary cone)

see 6.1.3

(B, C) the matrix splitting of M as B + C

 



NUMBERING SYSTEM

The chapters of this book are numbered from 1 to 7; their sections are

denoted by decimal numbers of the type 2.3 (which means Section 3 of

Chapter 2). Many sections are further divided into subsections. The latter

are not numbered, but each has a heading.

All definitions, results, exercises, notes, and miscellaneous items are

numbered consecutively within each section in the form 1.3.5, 1.3.6, mean-

ing Items 5 and 6 in Section 3 of Chapter 1. With the exception of the

exercises and the notes, all items are also identified by their types (e.g.

1.4.1 Proposition., 1.4.2 Remark.). When an item is being referred to

in the text, it is called out as Algorithm 5.2.1, Theorem 4.1.7, Exercise

2.10.9, etc. At times, only the number is used to refer to an item.

Equations are numbered consecutively in each section by (1), (2), etc.

Any reference to an equation in the same section is by this number only,

while equations in another section are identified by chapter, section, and

equation. Thus, (3.1.4), means Equation (4) in Section 1 of Chapter 3.
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Chapter 1

INTRODUCTION

1.1 Problem Statement

The linear complementarity problem consists in finding a vector in a

finite-dimensional real vector space that satisfies a certain system of in-

equalities. Specifically, given a vector q E Rn and a matrix M E RnXT

the linear complementarity problem, abbreviated LCP, is to find a vector

z E R such that

	z > 0	 (1)

	

q -I- Mz 0	 (2)

	z T(q + Mz) = 0	 (3)

or to show that no such vector z exists. We denote the above LCP by the

pair (q, M).

Special instances of the linear complementarity problem can be found

in the mathematical literature as early as 1940, but the problem received

little attention until the mid 1960's at which time it became an object of

study in its own right. Some of this early history is discussed in the Notes

and References at the end of the chapter.

1

 



2	 1 INTRODUCTION

Our aim in this brief section is to record some of the more essential

terminology upon which the further development of the subject relies.

A vector z satisfying the inequalities in (1) and (2) is said to be feasible.

If a feasible vector z strictly satisfies the inequalities in (1) and (2), then

it is said to be strictly feasible. We say that the LCP (q, M) is (strictly)

feasible if a (strictly) feasible vector exists. The set of feasible vectors of

the LCP (q, M) is called its feasible region and is denoted FEA(q, M). Let

w = q + Mz .	 (4)

A feasible vector z of the LCP (q, M) satisfies condition (3) if and only if

ziwZ = 0	 for all i = 1, ... , n.	 (5)

Condition (5) is often used in place of (3). The variables z2 and wi are

called a complementary pair and are said to be complements of each other.

A vector z satisfying (5) is called complementary. The LCP is therefore

to find a vector that is both feasible and complementary; such a vector is

called a solution of the LCP. The LCP (q, M) is said to be solvable if it

has a solution. The solution set of (q, M) is denoted SOL(q, M). Observe

that if q > 0, the LCP (q, M) is always solvable with the zero vector being

a trivial solution.

The definition of w given above is often used in another way of express-

ing the LCP (q, M), namely as the problem of finding nonnegative vectors

w and z in R"'' that satisfy (4) and (5). To facilitate future reference to

this equivalent formulation, we write the conditions as

w >0, z >0	 (6)

w = q + Mz	 (7)

zTw = 0.	 (8)

This way of representing the problem is useful in discussing algorithms for

the solution of the LCP.

For any LCP (q, M), there is a positive integer n such that q E R' and

M E RT "Th. Most of the time this parameter is understood, but when we

wish to call attention to the size of the problem, we speak of an LCP of

 



1.2 SOURCE PROBLEMS	 3

order n where n is the dimension of the space to which q belongs, etc. This

usage occasionally facilitates problem specification.

The special case of the LCP (q, M) with q = 0 is worth noting. This

problem is called the homogeneous LCP associated with M. A special

property of the LCP (0, M) is that if z E SOL(0, M), then Az e SOL(0, M)

for all scalars A > 0. The homogeneous LCP is trivially solved by the zero

vector. The question of whether or not this special problem possesses any

nonzero solutions has great theoretical and algorithmic importance.

1.2 Source Problems

Historically, the LCP was conceived as a unifying formulation for the

linear and quadratic programming problems as well as for the bimatrix

game problem. In fact, quadratic programs have always been—and con-

tinue to be—an extremely important source of applications for the LCP.

Several highly effective algorithms for solving quadratic programs are based

on the LCP formulation. As far as the bimatrix game problem is concerned,

the LCP formulation was instrumental in the discovery of a superb con-

structive tool for the computation of an equilibrium point. In this section,

we shall describe these classical applications and several others. In each of

these applications, we shall also point out some special properties of the

matrix M in the associated LCP.

For purposes of this chapter, the applications of the linear complemen-

tarity problem are too numerous to be listed individually. We have chosen

the following examples to illustrate the diversity. Each of these problems

has been studied extensively, and large numbers of references are available.

In each case, our discussion is fairly brief. The reader is advised to consult

the Notes and References (Section 1.7) for further information on these and

other applications.

A word of caution

In several of the source problems described below and in the subsequent

discussion within this chapter, we have freely used some basic results from

linear and quadratic programming, and the theory of convex polyhedra, as

well as some elementary matrix-theoretic and real analysis concepts. For

those readers who are not familiar with these topics, we have prepared a

 



4	 1 INTRODUCTION

brief review in Chapter 2 which contains a summary of the background ma-

terial needed for the entire book. It may be advisable (for these readers) to

proceed to this review chapter before reading the remainder of the present

chapter. Several other source problems require familiarity with some topics

not within the main scope of this book, the reader can consult Section 1.7

for references that provide more details and related work.

Quadratic programming

Consider the quadratic program (QP)

minimize f (x) = cTx + ZxTQx

subject to	 Ax > b	 (1)

x >0

where Q E RT " Th is symmetric, c E R, A E Rm" and b E R. (The case

Q = 0 gives rise to a linear program.) If x is a locally optimal solution

of the program (1), then there exists a vector y E Rm such that the pair

(x, y) satisfies the Karush-Kuhn-Tucker conditions

u = c +Qx—ATy> 0, x>0, xTU =O,

v =—b +Ax>0, y >0, yTV =0. (2)

If, in addition, Q is positive semi-definite, i.e., if the objective function f (x)

is convex, then the conditions in (2) are, in fact, sufficient for the vector x

to be a globally optimal solution of (1).

The conditions in (2) define the LCP (q, M) where

c	 Q —AT

q=	 andM=	 (3)
—b	 A 0

Notice that the matrix M is not symmetric (unless A is vacuous or equal

to zero), even though Q is symmetric; instead, M has a property known

as bisymmetry. (In general, a square matrix N is bisymmetric if (perhaps

after permuting the same set of rows and columns) it can be brought to

the form
G —A'

A H
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where both G and H are symmetric.) If Q is positive semi-definite as in

convex quadratic programming, then so is M. (In general, a square matrix

M is positive semi-definite if zTMz > 0 for every vector z.)

An important special case of the quadratic program (1) is where the

only constraints are nonnegativity restrictions on the variables x. In this

case, the program (1) takes the simple form

minimize f (x) = cTx + zxTQx

subject to x > 0. (4)

If Q is positive semi-definite, the program (4) is completely equivalent to

the LCP (c, Q), where Q is symmetric (by assumption). For an arbitrary

symmetric Q, the LCP (c, Q) is equivalent to the stationary point problem

of (4). As we shall see later on, a quadratic program with only nonneg-

ativity constraints serves as an important bridge between an LCP with a

symmetric matrix and a general quadratic program with arbitrary linear

constraints.

A significant number of applications in engineering and the physical

sciences lead to a convex quadratic programming model of the special type

(4) which, as we have already pointed out, is equivalent to the LCP (c, Q).

These applications include the contact problem, the porous flow problem,

the obstacle problem, the journal bearing problem, the elastic-plastic tor-

sion problem as well as many other free-boundary problems. A common fea-

ture of these problems is that they are all posed in an infinite-dimensional

function space setting (see Section 5.1 for some examples). The quadratic

program (4) to which they give rise is obtained from their finite-dimensional

discretization. Consequently, the size of the resulting program tends to be

very large. The LCP plays an important role in the numerical solution of

these applied problems. This book contains two lengthy chapters on algo-

rithms; the second of these chapters centers on methods that can be used

for the numerical solution of very large linear complementarity problems.

Bimatrix games

A bimatrix game F(A, B) consists of two players (called Player I and

Player II) each of whom has a finite number of actions (called pure strate-

gies) from which to choose. In this type of game, it is not necessarily the
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case that what one player gains, the other player loses. For this reason, the

term bimatrix game ordinarily connotes a finite, two-person, nonzero-sum

game.
Let us imagine that Player I has m pure strategies and Player II has

n pure strategies. The symbols A and B in the notation F(A, B) stand

for m x n matrices whose elements represent costs incurred by the two

players. Thus, when Player I chooses pure strategy i and Player II chooses

pure strategy j, they incur the costs aid and b2^, respectively. There is no

requirement that these costs sum to zero.

A mixed (or randomized) strategy for Player I is an m-vector x whose

i-th component x. represents the probability of choosing pure strategy i.

Thus, x > 0 and E?" 1 xi = 1. A mixed strategy for Player II is defined

analogously. Accordingly, if x and y are a pair of mixed strategies for

Players I and II, respectively, then their expected costs are given by xTAy

and xTBy, respectively. A pair of mixed strategies (x *, y*) with x* E R""'

and y* E R' is said to be a Nash equilibrium if

(x *) TAy* < x`I'Ay* for all x > 0 and E2" 1 xi = 1

(x *) T'By* < (x *) TBy for all y> 0 and Ej i y = 1.

In other words, (x*, y*) is a Nash equilibrium if neither player can gain (in

terms of lowering the expected cost) by unilaterally changing his strategy.

A fundamental result in game theory states that such a Nash equilibrium

always exists.

To convert F(A, B) to a linear complementarity problem, we assume

that A and B are (entrywise) positive matrices. This assumption is totally

unrestrictive because by adding the same sufficiently large positive scalar

to all the costs aid and b2^, they can be made positive. This modification

does not affect the equilibrium solutions in any way. Having done this, we

consider the LCP

u =— e,,,, +Ay>0, x>0, xTu =0
(5)

v =—en +BTx>0, y >0, yTv =0,

where, for the moment, em and e 7z are m- and n-vectors whose components

are all ones. It is not difficult to see that if (x *, y*) is a Nash equilibrium,

then (x', y') is a solution to (5) where

x' = x * /(x*) TBy* and y = y* /(x * ) TAy * •	 (6)
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Conversely, it is clear that if (x', y') is a solution of (5), then neither x' nor

y' can be zero. Thus, (x*, y*) is a Nash equilibrium where

x* = x'/ex' and y* = /eT y .n

The positivity of A and B ensures that the vectors x' and y' in (6) are

nonnegative. As we shall see later, the same assumption is also useful in

the process of solving the LCP (5).

The vector q and the matrix M defining the LCP (5) are given by

—em 	0 A
q=	 and M=	 (7)

—en 	BT 0

In this LCP (q, M), the matrix M is nonnegative and structured, and the

vector q is very special.

Market equilibrium

A market equilibrium is the state of an economy in which the demands

of consumers and the supplies of producers are balanced at the prevailing

price level. Consider a particular market equilibrium problem in which

the supply side is described by a linear programming model to capture

the technological or engineering details of production activities. The mar-

ket demand function is generated by econometric models with commodity

prices as the primary independent variables. Mathematically, the model is

to find vectors p* and r* so that the conditions stated below are satisfied:

(i) supply side

minimize	 cTx

subject to Ax > b	 (8)

Bx > r*	 (9)

x>0

where c is the cost vector for the supply activities, x is the vector of produc-

tion activity levels, condition (8) represents the technological constraints

on production and (9) the demand requirement constraints;

(ii) demand side

r* = Q(p*) = Dp* + d	 (10)
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where Q(.) is the market demand function with p* and r* representing the

vectors of demand prices and quantities, respectively, Q(•) is assumed to

be an affine function;

(iii) equilibrating conditions

p* _ 7r*	 (11)

where ir* denotes the (dual) vector of shadow prices (i.e., the market supply

prices) corresponding to the constraint (9).

To convert the above model into a linear complementarity problem,

we note that a vector x* is an optimal solution of the supply side linear

program if and only if there exists a vector v* such that

y* = c — ATv * — BTrr * > 0, x * > 0, (y * ) Tx * = 0,

	u* = —b + Ax* > 0,	 v* > 0, (u*) Tv* = 0,	 (12)

b* = —r* + Bx* > 0,	 > 0, (8*)TTr* = 0.

Substituting the demand function (10) for r* and invoking the equilibrating

condition (11), we deduce that the conditions in (12) constitute the LCP

(q, M) where

c	 0 _AT —BT

q= —b	 and	 M= A 0	 0	 (13)

d	 B 0 —D

Observe that the matrix M in (13) is bisymmetric if the matrix D is sym-

metric. In this case, the above LCP becomes the Karush-Kuhn-Tucker

conditions of the quadratic program:

maximize dTp + 1 pTDp + bTv

	subject to	 ATv + BTp < c	 (14)

p>0, v>0.

On the other hand, if D is asymmetric, then M is not bisymmetric and

the connection between the market equilibrium model and the quadratic

program (14) fails to exist. The question of whether D is symmetric is

related to the integrability of the demand function Q(.). Regardless of the

symmetry of D, the matrix M is positive semi-definite if —D is so.
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Optimal invariant capital stock

Consider an economy with constant technology and nonreproducible

resource availability in which an initial activity level is to be determined

such that the maximization of the discounted sum of future utility flows

over an infinite horizon can be achieved by reconstituting that activity

level at the end of each period. The technology is given by A E

B E R+ x n and b E Rm where:

•	 denotes the amount of good i used to operate activity j at unit

level;

• Bz3 denotes the amount of good i produced by operating activity j

at unit level;

• bi denotes the amount of resource i exogenously provided in each time

period (bi < 0 denotes a resource withdrawn for subsistence).

The utility function U: Rn —f R is assumed to be linear, U(x) = cTx. Let

Xt E Rn (t = 1, 2,...) denote the vector of activity levels in period t. The

model then chooses x E R so that Xt = x (t = 1, 2,...) solves the problem

P(Bx) where, for a given vector b0 e RT", P(b0) denotes the problem of

finding a sequence of activity levels {xt }i° in order to

maximize	 Et=1 at-l U(xt)

subject to Axt < bo + b

Ax t <Bx t _1 +b, t = 2,3,...

X t > 0,	 t = 1,2,...

where ce E (0, 1) is the discount rate. The vector x so obtained then

provides an optimal capital stock invariant under discounted optimization.

It can be shown (see Note 1.7.7) that a vector x is an optimal invariant

capital stock if it is an optimal solution of the linear program

maximize	 cTx

subject to Ax < Bx + b	 (15)

x >0.
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Further, the vector y is a set of optimal invariant dual price proportions if

x and y satisfy the stationary dual feasibility conditions

ATy>aBTy+c, y>0,	 (16)

in addition to the condition

YT(b — (A — B)x) = XT«AT — uB^y — c) = 0.

Introducing slack variables u and v into the constraints (15) and (16), we

see that (x, y) provides both a primal and dual solution to the optimal

invariant capital stock problem if x solves (15) and if (x, y, u, v) satisfy

u=b+(B—A)x>0,	 y>O, uTy=0,

v=—c+(AT —aB^y>0, x>0, vTx=O.

The latter conditions define the LCP (q, M) where

E b 1 	r	 0	 B—A
q = I	 , and M= I	 I.	 (17)L

—C	
L 

A i —aBT 	0

The matrix M in (17) is neither nonnegative nor positive semi-definite. It

is also not symmetric. Nevertheless, M can be written as

0	 B—A	 00
M=	 + (1 — a)

AT — BT 0	 BT 0

which is the sum of a skew-symmetric matrix (the first summand) and a

nonnegative matrix (the second summand). Developments in Chapters 3

and 4 will show why this is significant.

Optimal stopping

Consider a Markov chain with finite state space E = {l, ... , u} and

transition probability matrix P. The chain is observed as long as desired.

At each time t, one has the opportunity to stop the process or to continue.

If one decides to stop, one is rewarded the payoff ri, if the process is in state

i U E, at which point the "game" is over. If one decides to continue, then

the chain progresses to the next stage according to the transition matrix P,

and a new decision is then made. The problem is to determine the optimal

time to stop so as to maximize the expected payoff.
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Letting vZ be the long-run stationary optimal expected payoff if the

process starts at the initial state i E E, and v be the vector of such payoffs,

we see that v must satisfy the dynamic programming recursion

v = max (aPv, r) (18)

where "max (a, b)" denotes the componentwise maximum of two vectors a

and b and a E (0, 1) is the discount factor. In turn, it is easy to deduce

that (18) is equivalent to the following conditions:

v>aPv, v>r, and (v —r) T(v—aPv) =0. (19)

By setting u = v — r, we conclude that the vector v satisfies (18) if and

only if u solves the LCP (q, M) where

q = (I—aP)r and M =I—aP.

Here the matrix M has the property that all its off-diagonal entries are

nonpositive and that Me > 0 where e is the vector of all ones.

Incidentally, once the vector v is determined, the optimal stopping time

is when the process first visits the set {i E E : vz = r}.

ConvexConvex hulls in the plane

An important problem in computational geometry is that of finding the

convex hull of a given set of points. In particular, much attention has been

paid to the special case of the problem where all the points lie on a plane.

Several very efficient algorithms for this special case have been developed.

Given a collection {(xi, y)}1 of points in the plane, we wish to find

the extreme points and the facets of the convex hull in the order in which

they appear. We can divide this problem into two pieces; we will first find

the lower envelope of the given points and then we will find the upper

envelope. In finding the lower envelope we may assume that the xZ are

distinct. The reason for this is that if xi = a and yz < yj , then we

may ignore the point (xi, yj) without changing the lower envelope. Thus,

assume xo <x1 < • • • < xn < xn+l-

Let f (x) be the lower envelope which we wish to determine. Thus,

f (x) is the pointwise maximum over all convex functions g(x) in which

g(xi) <p. for all i = 0, ... , n+l. The function f (x) is convex and piecewise
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Figure 1.1

linear. The set of breakpoints between the pieces of linearity is a subset of

{(xi, yz) }i of . Let ti = f (xi) and let zz = y2 — tz for i = 0, ..., n + 1. The

quantity zz represents the vertical distance between the point (xi, yz) and

the lower envelope. With this in mind we can make several observations

(see Figure 1.1). First, z0 = z^,, + l = 0. Second, suppose the point (xi, y)

is a breakpoint. This implies that ti = yz and zi = 0. Also, the segment

of the lower envelope between (xi-1, ti-1) and (xi, ti) has a different slope

than the segment between (xi, tz) and (xi+i, t2+1). Since f (x) is convex,

the former segment must have a smaller slope than the latter segment. This

means that strict inequality holds in

t2 - ti
-1 < t2+1 - ti 	(20)

xi - x2-1 
<
 xi+1 - Xi

Finally, if zi > 0, then (xi, yz) cannot be a breakpoint of f (x). Thus,

equality holds in (20).

Bringing the above observations together shows that the vector z =

{z1} 1 must solve the LCP (q, M) where M E Rn < Th and q E Rn are
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defined by

ai -1 + cq if j = 2,

qj = ßZ - ßj-i	 and

and where

—ai	 if j = i + 1,
mit _ (21)

—ctij	 if j = i — 1,

0	 otherwise,

nj= 1 /(xi+1 — x2) and /3 = ai(y1+i — y2) for i = 0, ... , n.

It can be shown that the LCP (q, M), as defined above, has a unique

solution. (See 3.3.7 and 3.11.10.) This solution then yields the quantities

{zz }z 1 which define the lower envelope of the convex hull. The upper

envelope can be obtained in a similar manner. Thus, by solving two linear

complementarity problems (having the same matrix M) we can find the

convex hull of a finite set of points in the plane. In fact, the matrix M

associated with this LCP has several nice properties which can be exploited

to produce very efficient solution procedures. This will be discussed further

in Chapter 4.

Nonlinear complementarity and variational inequality problems

The linear complementarity problem is a special case of the nonlinear

complementarity problem, abbreviated NCP, which is to find an n-vector

z such that

z > 0, f (z) > 0, and zT f (z) = 0 (22)

where f is a given mapping from R" into itself. If f (z) = q + Mz for

all z, then the problem (22) becomes the LCP (q, M). The nonlinear

complementarity problem (22) provides a unified formulation for nonlinear

programming and many equilibrium problems. In turn, included as special

cases of equilibrium problems are the traffic equilibrium problem, the spa-

tial price equilibrium problem, and the n-person Nash-Cournot equilibrium

problem. For further information on these problems, see Section 1.7.

There are many algorithms for solving the nonlinear complementarity

problem (22). Among these is the family of linear approximation meth-

ods. These call for the solution of a sequence of linear complementarity
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problems, each of which is of the form

z > 0, w = f (z k ) + A(zk )(z — z k ) > 0, zTw = 0

where z k is a current iterate and A(z k ) is some suitable approximation

to the Jacobian matrix V f (z k ). When A(zk ) = V f (z k ) for each k, we

obtain Newton's method for solving the NCP (22). More discussion of

this method will be given in Section 7.4. The computational experience of

many authors has demonstrated the practical success and high efficiency of

this sequential linearization approach in the numerical solution of a large

variety of economic and network equilibrium applications.

A further generalization of the nonlinear complementarity problem is

the variational inequality problem Given a nonempty subset K of R and a

mapping f from RTh into itself, the latter problem is to find a vector x* E K
such that

(y — x*) Tf(x*) > 0 for all y E K.	 (23)

We denote this problem by VI(K, f). It is not difficult to show that when

K is the nonnegative orthant, then a vector x* solves the above variational

problem if and only if it satisfies the complementarity conditions in (22). In

fact, the same equivalence result holds between the variational inequality

problem with an arbitrary cone K and a certain generalized complemen-

tarity problem. See Proposition 1.5.2.

Conversely, if K is a polyhedral set, then the above variational inequal-

ity problem can be cast as a nonlinear complementarity problem. To see

this, write

K={xER"':Ax>b, x>0}.

A vector x* solves the variational inequality problem if and only if it is an

optimal solution of the linear program

minimize	 yT f (x* )

subject to Ay > b

y > 0.

By the duality theorem of linear programming, it follows that the vector x*

solves the variational inequality problem if and only if there exists a (dual)
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vector u* such that

w * = f (x * ) - ATu * > 0, x * > 0, (w * ) Tx * = 0,
(24)

	v* _ —b + Ax* > 0,	 u* > 0, (v* )Tu* = 0.

The latter conditions are in the form of a nonlinear complementarity prob-

lem defined by the mapping:

z
F(x u) = f (x) 

+ 0 —A	 x	
(25)

	

—b	 A 0	 u

In particular, when f (x) is an affine mapping, then so is F(x, u), and the

system (24) becomes an LCP. Consequently, an affine variational inequality

problem VI(K, f), where both K and f are affine, is completely equivalent

to a certain LCP. More generally, the above conversion shows that in the

case where K is a polyhedral set (as in many applications), the variational

inequality problem VI(K, f), is equivalent to a nonlinear complementarity

problem and thus can be solved by the aforementioned sequential linear

complementarity technique.

Like the LCP, the variational inequality problem admits a rich theory

by itself. The connections sketched above serve as an important bridge

between these two problems. Indeed, some very efficient methods (such as

the aforementioned sequential linear complementarity technique) for solv-

ing the variational inequality problem involve solving LCPs; conversely,

some important results and methods in the study of the LCP are derived

from variational inequality theory.

A closing remark

In this section, we have listed a number of applications for the linear

complementarity problem (q, M), and have, in each case, pointed out the

important properties of the matrix M. Due to the diversity of these matrix

properties, one is led to the study of various matrix classes related to the

LCP. The ones represented above are merely a small sample of the many

that are known. Indeed, much of the theory of the LCP as well as many

algorithms for its solution are based on the assumption that the matrix M

belongs to a particular class of matrices. In this book, we shall devote a

substantial amount of effort to investigating the relevant matrix classes, to
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examining their interconnections and to exploring their relationship to the

LCP.

1.3 Complementary Matrices and Cones

Central to many aspects of the linear complementarity problem is the

idea of a cone.

1.3.1 Definition. A nonempty set X in RTh is a cone if, for any x E X

and any t > 0, we have tx E X. (The origin is an element of every cone.)

If a cone X is a convex set, then we say that X is a convex cone. The cone

X is pointed if it contains no line. If X is a pointed convex cone, then an

extreme ray of X is a set of the form S = {tx: t E R+ } where x 0 is a

vector in X which cannot be expressed as a convex combination of points

in X \ S.

A matrix A E R X P generates a convex cone (see 1.6.4) obtained by

taking nonnegative linear combinations of the columns of A. This cone,

denoted pos A, is given by

posA= {gERt':q=Av for some vER+}.

Vectors q E pos A have the property that the system of linear equations

Av = q admits a nonnegative solution v. The linear complementarity

problem can be looked at in terms of such cones.

The set pos A is called a finitely generated cone, or more simply, a

finite cone. The columns of the matrix A are called the generators of

pos A. When A is square and nonsingular, pos A is called a simplicial cone.

Notice that in this case, we have

posA= {geRt :A— 'q>0}

for A E R''''; this gives an explicit representation of pos A in terms of a

system of linear inequalities.

In the following discussion, we need certain matrix notation and con-

cepts whose meaning can be found in the Glossary of Notation and in

Section 2.2.
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Let M be a given n x n matrix and consider the n x 2n matrix (I, —M).

In solving the LCP (q, M), we seek a vector pair (w, z) E Ren such that

1w — Mz = q

w, z > 0	 (1)

wjz2 =0	 fori= 1,...,n.

This amounts to expressing q as an element of pos (I, —M), but in a special

way.

In general, when q = Av with vi	 0, we say the representation uses

the column A. of A. Thus, in solving (q, M), we try to represent q as an

element of pos (I, —M) so that not both I.  and —M.Z are used.

1.3.2 Definition. Given M C RT >< and a C {l, ..., n}, we will define

CM(c) E Rn"n as

—M., if i E a,
CM(^)•i =	 (2)

I. 	 ifi0a.

CM(c) is then called a complementary matrix of M (or a complemen-

tary submatrix of (I, —M)). The associated cone, pos CM(a), is called a

complementary cone (relative to M). The cone pos CM (a).I is called a

facet of the complementary cone CM(ce), where i E {1,...,n}. If CM(a)

is nonsingular, it is called a complementary basis. When this is the case,

the complementary cone pos CM (a) is said to be full. The notation C(a)

is often used when the matrix M is clear from context.

In introducing the above terminology, we are taking some liberties with

the conventional meaning of the word "submatrix." Strictly speaking, the

matrix CM(n) in (2) need not be a submatrix of (I, —M), although an

obvious permutation of its columns would be. Note that a complementary

submatrix CM(a) of M is a complementary basis if and only if the principal

submatrix Maa is nonsingular.

For an n x n matrix M, there are 2n (not necessarily all distinct) com-

plementary cones. The union of such cones is again a cone and is denoted

K(M). It is easy to see that

K(M) = {q: SOL(q, M) 0}.
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Moreover, K(M) always contains pos CM(0) = R+ = pos I and pos( —M),

and is contained in pos (I, —M), the latter being the set of all vectors q for

which the LCP (q, M) is feasible. Consequently, we have

(pos I U pos(—M)) C K(M) C pos(I, —M).

In general, K(M) is not convex for an arbitrary matrix M E Rn"n; its

convex hull is pos (I, —M).

Theoretically, given a vector q, to decide whether the LCP (q, M) has a

solution, it suffices to check whether q belongs to one of the complementary

cones. The latter is, in turn, equivalent to testing if there exists a solution

to the system

C(cti)v = q (3)

v>0

for some C {1, ..., n}. (If C(a) is nonsingular, the system (3) reduces

to the simple condition: C(n) —l q > 0.) Since the feasibility of the system

(3) can be checked by solving a linear program, it is clear that there is a

constructive, albeit not necessarily efficient, way of solving the LCP (q, M).

The approach just outlined presents no theoretical difficulty. The prac-

tical drawback has to do with the large number of systems (3) that would

need to be processed. (In fact, that number already becomes astronomical

when n is as small as 50.) As a result, one is led to search for alternate

methods having greater efficiency.

1.3.3 Definition. The support of a vector z E R', denoted supp z, is the

index set {i : z2 54 0}.

It is a well known fact that if a linear program has a given optimal

solution, then there is an optimal solution that is an extreme point of the

feasible set and whose support is contained in that of the given solution.

Using the notion of complementary cones, one can easily derive a similar

result for the LCP.

1.3.4 Theorem. If z E SOL(q, M), with w = q + Mz, then there exists

a z E SOL(q, M), with w = q + Mz, such that z is an extreme point of

FEA(q, M) and the support of the vector pair (z, w) contains the support

of (z, iv), or more precisely,

supp z x supp w C supp z x supp w.
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Proof. There must be a complementary matrix C(n) of M such that

v = z + w is a solution to (3). As in the aforementioned fact from linear

programming, the system (3) has an extreme point solution whose support

is contained in the support of z + w. This yields the desired result. ❑

This theorem suggests that since a solvable LCP must have an extreme

point solution, a priori knowledge of an "appropriate" linear form (used

as an objective function) would turn the LCP into a linear program. The

trouble, of course, is that an appropriate linear form is usually not known

in advance. However, in a later chapter, we shall consider a class of LCPs

where such forms can always be found rather easily.

If the LCP (q, M) arises from the quadratic program (1.2.1), then we

can extend the conclusion of Theorem 1.3.4.

1.3.5 Theorem. If the quadratic program (1.2.1) has a locally optimal

solution x, then there exist vectors y, u, and v such that (x, y, u, v) satisfies

(1.2.2). Furthermore, there exist (possibly different) vectors x, y, ii, v
where Jr has the same objective function value in (1.2.1) as x and such that

(x, y, ü, v) satisfies (1.2.2), forms an extreme point of the feasible region of

(1.2.2), and has a support contained in the support of (.x, y, u, v).

Proof. The first sentence of the theorem is just a statement of the Karush-

Kuhn-Tucker theorem applied to the quadratic program (1.2.1). The sec-

ond sentence follows almost entirely from Theorem 1.3.4. The one thing

we must prove is that x and x have the same objective function value in

(1.2.1).

From the complementarity conditions of (1.2.2), we know

xTU=yTV =0,

(4)xTÜ=yTV=0. 

As the support of (x, y, ü, v") is contained in the support of (x, y, u, v), and

all these vectors are nonnegative, we have

xTii=yTV =0,

(5)xTu = üTv = 0.
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Consequently, it follows from (1.2.2), (4) and (5) that

0 = (x — x) T(u — ü) = (x — j) TQ(x — i) — (x — x)TAT(y — )

(x - x)TQ(x -) - (v - v)T(y - )

= (x — x)TQ(x — x).

Thus, for A E R we have

f(x + A(x — x)) = f(x) + A(c + Qx) T( — x),

which is a linear function in .A. Clearly, as the support of (x, y, u, v) contains

the support of (x, y, ü, v), there is some E > 0 such that x + )(x — x) is

feasible for (1.2.1) if A < e. Thus, as f (x + )(x — x)) is a linear function

in .A and x is a local optimum of (1.2.1), it follows that f (x + )(Jv — x)) is

a constant function in A. Letting A = 1 gives f (x) = f() as desired. ❑

1.3.6 Remark. Notice, if x is a globally optimal solution, then so is .

The following example illustrates the idea of the preceding theorem.

1.3.7 Example. Consider the (convex) quadratic program

minimize 2 (x1 + x2) 2 — 2(x1 + X2)

	subject to	 x1 + x2 < 3

xi, x2 > 0

which has (xl, x2) _ (1, 1) as a globally optimal solution. In this instance

we have ul = u2 = 0, y = 0, and v = 1. The vector (x, y, u, v) satisfies

the Karush-Kuhn-Tucker conditions for the given quadratic program which

define the LCP below, namely

u l 	—2	 1	 11	 x1

u2 = —2 +	 1	 1 1	 X2

v	 3	 —1 —1 0	 p

x, u, y, v > 0, x TU = yTv = 0;
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but this (x, y, u, v) is not an extreme point of the feasible region of the LCP

because the columns

1 1 0

1 1, 0

—1 —1 1

that correspond to the positive components of the vector (x, y, u, v) are

linearly dependent. However, the vector (fl, , ii, v) = (2, 0, 0, 0, 0, 1) sat-

ifies the same LCP system and is also an extreme point of its feasible

region. Moreover, the support of (x, , ii, v) is contained in the support of

(x, y, u, v)

For a matrix M of order 2, the associated cone K(M) can be rather

nicely depicted by drawing in the plane, the individual columns of the

identity matrix, the columns of —M, and the set of complementary cones

formed from these columns. Some examples are illustrated in Figures 1.2

through 1.7. In these figures we label the (column) vectors  1.1, 1.2, —M. 1 ,

and —M.2 as 1, 2, 1, and 2, respectively. The complementary cones are

indicated by arcs around the origin. The significance of these figures is as

follows.

Figure 1.2 illustrates a case where (q, M) has a unique solution for every

q E R2 . Figure 1.3 illustrates a case where K(M) = R2 , but for some

q E R2 the problem (q, M) has multiple solutions. Figure 1.4 illustrates a

case where K(M) is a halfspace. For vectors q that lie in one of the open

halfspaces, the problem (q, M) has a unique solution, while for those which

lie in the other open halfspace, (q, M) has no solution at all. All q lying

on the line separating these halfspaces give rise to linear complementarity

problems having infinitely many solutions. Figure 1.5 illustrates a case

where every point q E R2 belongs to an even number—possibly zero—of

complementary cones. Figure 1.6 illustrates a case where K(M) = R2 and

not all the complementary cones are full-dimensional. Figure 1.7 illustrates

a case where K(M) is nonconvex.
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Figure 1.2	 Figure 1.3

Figure 1.4	 Figure 1.5

Figure 1.6	 Figure 1.7
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1.4 Equivalent Formulations

The linear complementarity problem admits a number of equivalent

formulations, some of which have appeared in the previous sections. In

what follows, we shall expand on these earlier discussions and introduce

several new formulations. Many of these alternative formulations not only

provide insights into the LCP, but also form the basis for the development

of various methods for its solution.

Quadratic programming formulation

The connection between a quadratic program and the linear comple-

mentarity problem has been briefly mentioned in Section 1.2. In particular,

we noted there that if the matrix M is symmetric, the LCP (q, M) consti-

tutes the Karush-Kuhn-Tucker optimality conditions of quadratic programs

with simple nonnegativity constraints on the variables, that is:

minimize f (x) = qTx + ZxTMx (1)

subject to x> 0.

If M is asymmetric, this relation between the LCP (q, M) and the quadratic

program (1) ceases to hold. In this case, we can associate with the LCP

(q, M) the following alternate quadratic program:

minimize zT(q + Mz)

subject to q + Mz > 0 (2)

z>0.

Notice that the objective function of (2) is always bounded below (by zero)

on the feasible set. It is trivial to see that a vector z is a solution of the

LCP (q, M) if and only if it is a global minimum of (2) with an objective

value of zero.

In the study of the LCP, one normally does not assume that the matrix

M is symmetric. The formulation (2) is useful in that it allows one to

specialize the results from quadratic programming theory to the general

LCP. On the other hand, the formulation (1) is valuable for the reverse

reason; namely, it allows one to apply the results for a symmetric LCP to

quadratic programs. Combined together, the two formulations (1) and (2)

form a two-way bridge connecting the LCP and quadratic programming.
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Fixed-point formulations

A fixed-point of a mapping h :	 —+ RTh is a vector z such that z = h(z).

Obviously, finding a fixed-point of the mapping h is equivalent to finding

a zero of the mapping g(z) = z — h(z). Conversely, finding a zero of the

mapping g : Rh —> RTh is easily translated into finding a fixed point of the

mapping h(z) = z —g(z). We describe several ways of transforming a linear

complementarity problem into either a fixed-point or zero-finding problem.

The simplest zero-finding formulation of the LCP (q, M) is gotten by

defining

g(z) = min (z, q + Mz)	 (3)

where "min(a,b)" denotes the componentwise minimum of two vectors a

and b. Obviously, a vector z is a solution of the LCP (q, M) if and only

if g(z) = 0. The corresponding fixed-point formulation is defined by the

mapping

h(z) = z — g(z) = max (0, —q + (I — M)z) .	 (4)

Note that h(z) can be interpreted as the projection of —q + (I — M)z onto

the nonnegative orthant.

There are several variations of the formulations (3) and (4). We mention

one which is obtained by scaling the vectors z and w = q + Mz. Let D and

E be two n x n diagonal matrices with positive diagonal entries. Define

g(z) = min (Dz, E(q + Mz)) .	 (5)

Again, a vector z E SOL(q, M) if and only if g(z) = 0. In this case the

associated fixed-point mapping

h(z) = z — g(z)	 (6)

can no longer be interpreted as a projection.

Another formulation of the LCP as a zero-finding problem involves the

use of a strictly increasing function. We state this in the following result.

1.4.1 Proposition. Let 6 : R —* R be any strictly increasing function

such that 6(0) = 0. A vector z* will then solve the LCP (q, M) if and only

if H(z*) = 0 where H : R —# R' is defined by

Hz (z)= 0 ( 1(q +Mz) i -zI)- 0((q +Mz) z )-B(z^),	 i =l,...,n. (7)
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Proof. Write w* = q+ Mz*. Suppose that H(z*) = 0. If z2 <0 for some

i, then since 0 is strictly increasing, we have

0 > 9(zz)= 9 (1wz —zi1)-9(wz)>-9(wz).

Thus, wi > 0 which implies wi — zi > wi > 0. Consequently,

0 (^w2 — z2 1) = B(wZ — zz) > B(w2 )

contradicting the fact that Hz(z*) = 0. Therefore, we must have z* > 0.

Similarly, one can deduce that w* > 0. If z? > 0 and wi > 0 for some i,
then by the strict increasing property of 0, we must have H(z*) < 0, again

a contradiction. Consequently, z* solves the LCP (q, M). The converse is

easy to prove. ❑

1.4.2 Remark. It is not difficult to see that by taking 6(t) = t, the map-

ping H defined by (7) reduces to H(z) = —2 min (z, q + Mz) = —2g(z)

where g is the mapping in (3).

In general, the mappings g and H defined in (3) and (7) respectively are

not Frechet-differentiable. (See Section 2.1 for a review of differentiability

concepts.) In connection with the differentiability of these mappings, we

introduce the following terminology.

1.4.3 Definition. Let Hq ,M (z) = min (z, q + Mz). A vector z E R"'' is

said to be nondegenerate with respect to Hq ,M if zi (q + Mz) i for each

i E {1,...,n}.

If z is a solution of the LCP (q, M) which is a nondegenerate vector

with respect to Hq ,M, we call z a nondegenerate solution and say that

strict complementarity holds at z. Note that if z E SOL(q, M) , then z is

a nondegenerate solution if and only if z + q + Mz > 0, i.e., if exactly n of

the 2n components of the pair (z, w) are positive, where w = q + Mz. In

this case supp z and supp w are complementary index sets in {1, ... , n}.

Clearly, if z is a nondegenerate vector with respect to Hq ,M, then all

vectors sufficiently close to z will also be nondegenerate in the same sense.

In this case, the functions g and H in (3) and (7) become differentiable in

a neighborhood of z (in the case of H, it is assumed from the start that 0 is
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a. differentiable function). An implication of this observation is that if the

LCP (q, M) has a nondegenerate solution z, then some (locally convergent)

gradient-based zero-finding algorithm (like Newton's method) can be used

to approximate the solution z by finding a zero of the (now differentiable)

mappings g and H.
In the above fixed-point (or zero-finding) formulations of the LCP, the

coordinate space in which the LCP is defined is not altered. In particular,

the results presented all state that a vector z solves the LCP if and only

if the same vector z is a zero of a certain mapping. We next discuss an

alternate formulation of the LCP which involves a change of variables.

Define the mapping f (x) _ Ei' 1 fi (xi) where each

Lixi	 if Xi > 0,

f (xi) _	 (8)
M.ixi if xi < 0.

In other words, f (x) = x+ — Mx — . We have the following result.

1.4.4 Proposition. If z* E SOL(q, M), then the vector

x* = w* — z*

where w* = q + Mz*, satisfies f (x*) = q. Conversely, if x* is a vector

satisfying f (x *) = q, then the vector z* _ (x *) — solves the LCP (q, M).

Proof. Suppose z* E SOL(q, M). Write w* = q + Mz*. We have

q=w*—Mz*

=	 I.iwi - M•izi
i:w >0 i:zz*>0

fi(xi) + E fi(xi)
i:x^ >0 i:x <0

=f(x*).

The reverse statement can be proved in a similar way. ❑

In essence, the above transformation of the LCP (q, M) into the system

of equations f (x) = q involves the combination of the 2n variables (z2, wi)
into the n variables x i by means of the complementarity condition ziwi = 0.
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The transformation is quite similar to the idea of expressing q as an element

of a complementary cone relative to M.

As a result of the equivalence given in Proposition 1.4.4, K(M) is the

range of the above function f : RTh — R"' and SOL(O, M) is its kernel. For

this reason, we refer to K(M) and SOL(0, M) as the complementary range

and complementary kernel of M, respectively.

Piecewise linear functions

The functions g(z) in (3) and f (z) in (8) are functions of a special kind;

they are examples of piecewise affine functions. We formally introduce this

class of functions in the following definition.

1.4.5 Definition. A function f : D -f R' where D C R is said to be

piecewise linear (affine) if f is continuous and the domain D is equal to the

union of a finite number of convex polyhedra Pi, called the pieces of f, on

each of which f is a linear (affine) function.

Thus, the preceding discussion has established that the LCP can be

formulated as an equivalent square system of equations defined by a piece-

wise affine function. Such an equivalent formulation of the LCP has several

analytical and computational benefits. For instance, in Section 5.8, a so-

lution method for the LCP (q, M) will be developed that is based on the

formulation

min (z, q + Mz) = 0; (9)

much of the geometric development in Chapter 6 will make heavy use of

the formulation

q+Mz--z+=0. (10)

The relationship between the class of piecewise linear (affine) functions

and the LCP extends beyond the formulation of the latter as a system of

piecewise affine equations. As a matter of fact, the reverse of this formu-

lation is also valid; that is to say, if f : Rn —> R' is an arbitrary piecewise

affine function, then (under a mild "nonsingularity" assumption) the sys-

tem f (z) = 0 is equivalent to a certain LCP (whose order is typically larger

than n). Since the proof requires knowledge of conjugate dual functions

and is not particularly relevant to the topics of this book, we refer the

reader to 1.7.13 for more information.
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Besides providing a useful formulation of the LCP, the class of piecewise

affine functions is related to the LCP in another way. The next result shows

that the solution of the LCP (q, M), if it exists and is unique, is a piecewise

linear function of the constant vector q when the matrix M is kept fixed.

Before stating this result, we point out that the class of matrices M for

which (q, M) has a unique solution for all q plays a central role in the study

of the LCP. This class of matrices will be formally defined and analyzed in

Section 3.3.

1.4.6 Proposition. Let M E R"' be such that the LCP (q, M) has a

unique solution for all vectors q C R'. Then, the unique solution of the

LCP (q, M) is a piecewise linear function in q C Rn.

The proof of 1.4.6 consists of two parts: one part is to show the con-

tinuity of the (unique) solution as a function in the constant vector, and

the other part is to exhibit the pieces and to establish the linearity of the

solution on each piece. In turn, these can be demonstrated by means of a

characterizing property of the matrix M satisfying the assumption of the

proposition (see 3.3.7). In what follows, we give a proof of the second

part by exhibiting the required pieces of linearity, and refer the reader to

Lemma 7.3.10 for the proof of continuity of the solution function.

Partial proof of 1.4.6. Suppose that M is such that the LCP (q, M) has

a unique solution for all q. It follows from 3.3.7 that for each index set

a C {1, ..., n}, the principal submatrix Maa is nonsingular. For each such

a, let

Pa = I q E R: (M)1qa < 0, q„ — MIX a (M„) —l qa i 0}.

Then, this collection of convex polyhedral cones Pa for a ranging over all

index subsets of {1, ..., n} constitutes the required pieces of linearity of

the solution function. As a matter of fact, if z(q) is the unique solution to

(q, M), then clearly q C Psupp z( q) and, thus,

U P,
= R •

a

Moreover, it is easy to deduce the form of the solution function on the

polyhedral cones Pa , In particular, we have

z(q)a = —(M) 'q, z(q)a = 0 for q E P. ❑
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1.5 Generalizations

The LCP admits a number of interesting generalizations. Two of these

have already been introduced, namely, the nonlinear complementarity and

the variational inequality problems. In particular, the affine variational

inequality problem, i.e., the problem VI(K, f) where K is polyhedral and

f is affine, is like a twin problem of the LCP in many respects.

In this section, we discuss a few more generalizations of the LCP. Our

discussion is brief in each case. The intention is simply to draw the reader's

attention to these generalized problems and to relate them to the LCP. Like

the nonlinear complementarity and variational inequality problems, several

of these generalizations have an extensive theory of their own, and it would

not be possible for us to present them separately in this book.

Mixed LCPs

We start with the mixed linear complementarity problem which is de-

fined as follows. Let A and B be real square matrices of order n and m

respectively. Let C E Rn"m, D E R"'"n, a E Rn and b E R"' be given.

The mixed linear complementarity problem is to find vectors u E Rn and

v E R' such that
a + Au + Cv = 0

b+Du+Bv>_0
(1)

v>0

vT (b + Du + Bv) = 0.

Thus, the mixed LCP is a mixture of the LCP with a system of linear

equations. Note that the variable u which corresponds to the equation

a + Au + Cv = 0 is not restricted to be nonnegative.

In the mixed LCP (1), if the matrix A is nonsingular, we may solve for

the vector u, obtaining

u = — A— ' (a + Cv).

By eliminating u in the remaining conditions of the problem (1), we can

convert this mixed LCP into the standard LCP (q, M) with

q=b—DA —la, M=B—DA -1C.
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Consequently, in the case where A is nonsingular, the mixed LCP given

in (1) can, in principle, be treated like a standard LCP; and hence, from

a theoretical point of view, there is no particular advantage in a separate

treatment of the mixed LCP. Nevertheless, computationally speaking, it

may not be always advisable to actually solve the problem (1) by converting

it to the equivalent LCP (q, M).

The mixed LCP provides a natural setting for the Karush-Kuhn-Tucker

conditions of a quadratic program with general equality and inequality

constraints. Indeed, consider the quadratic program

minimize cTx + 2 xTQx

subject to	 Ax > b

Cx = d

where Q E R X ' is symmetric, c E Rn, A E R"" x n b E R, C E R1 and

d E R 1 . The Karush-Kuhn-Tucker conditions for this program are

0= c +Qx—CTZ —ATy,

0 = —d +Cx

v =— b +Ax>0, y >0, yTV =0

which we easily recognize as a mixed LCP with x and z as the free variables

and y as the nonnegative variable.

Besides being an interesting generalization of the standard problem, the

mixed LCP (1) plays an important role in the study of the standard LCP;

several interesting properties of the latter LCP are characterized in terms

of a certain mixed LCP derived from the given problem.

Another generalization of the LCP, which is somewhat related in spirit

to the mixed LCP, is defined as follows. Let M and N be two n x n matrices,

and let q be an n-vector. This generalized complementarity problem is to

find vectors x and w such that

q +Mx—Nw =0, (x,w)>0, xTw = 0. (2)

Clearly, the standard problem (q, M) corresponds to the case N = I. In

general, if N is a nonsingular matrix, then the problem (2) can be converted

into the equivalent problem (N — 'q, N—'M).
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Complementarity problems over cones

We next discuss a generalization of the nonlinear complementarity prob-

lem which turns out to be a special case of the variational inequality prob-

lem. This generalization involves the replacement of the nonnegative or-

thant, which is the principal domain of definition for the NCP, by an ar-

bitrary cone. In order to define the complementarity problem over a cone,

we first introduce a useful concept associated with an arbitrary subset of

RTh.

1.5.1 Definition. Let K be a nonempty set in RTh. The dual cone of K,

denoted by K*, is defined as the set

K*={yERT :xTy> 0forall xEK}.

A vector y in this dual cone K* is characterized by the property that it

does not make an obtuse angle with any vector in K. It is easy to see that

K* must be a (closed) convex cone for an arbitrary set K; indeed, K* is

the intersection of (possibly infinitely many) closed halfspaces:

K*= n {yeRT':xTy> 0}.
xEK

We now define the complementarity problem over a cone. Given a cone

K in RTh and a mapping f from R into itself, this problem, denoted by

CP(K, f), is to find a vector z E K such that

f (z) E K*, and zTf(z)(z) = 0.

Geometrically, this problem seeks a vector z belonging to the given cone

K with the property that its image under the mapping f lies in the dual

cone of K and which is orthogonal to z.

Since the nonnegative orthant is self-dual, i.e., (R+)* = R+, it is easy

to see that the problem CP(R+, f) reduces to the NCP given in (1.2.22).

What is less evident is the fact that with K being a cone, the two problems,

CP(K, f) and VI(K, f), have the same solution set. We state this result

more formally as follows.

1.5.2 Proposition. Let K be a cone in RTh, and let f be a mapping from

RTh into itself. Then, a vector z* solves CP(K, f) if and only if z* solves

VI(K, f).
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Proof. Suppose that z* solves VI(K, f). Since 0 E K, by substituting

y = 0 into the inequality (1.2.23), we have f(z*)Tz* < 0. On the other

hand, since z* E K and K is a cone, 2z* E K. By substituting y = 2z*

into (1.2.23), we obtain f(z*)Tz* > 0. Consequently, f(z*)Tz* = 0. To

complete the proof that z* solves CP(K, f), it remains to be shown that

f (z*) Ty > 0 for all y E K. But this follows easily from (1.2.23) because we

have already proved f(z*)Tz*  = 0. The converse is trivial. ❑

1.5.3 Remark. The only property of K used in the above proof is the

cone feature, i.e., the implication [z E K = 'rz E K[ for all T E R+. In

particular, K need not be convex.

The vertical generalization

While the complementarity problem over a cone may be considered a

geometric generalization of the LCP, the next generalization is somewhat

more algebraic. Let M be a (rectangular) matrix of order m x n with

m > n, and let q be an rn-vector. Suppose that M and q are partitioned

in the following form

Ml ql

M2 q2
M = q=

Mn qn

where each Mi E R" >< n and qj E Rmj with Tn 1 m2 = m. The vertical

linear complementarity problem is to find a vector z E Rn such that

q +Mz>0

z>0 	 (3)

z2^ zi(gz+Mzz)^ =0 i= l,...,n.

When mi = 1 for each i, this reduces to the standard LCP (q, M).

Just like the standard LCP, the above vertical LCP also bears a close

relationship to a certain system of piecewise affine equations. Indeed, define

the mapping H: Rn —# R'  with the i-th component function given by
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Hi(z)= min(zi (gi+Miz)1 ...,(gi+Miz)m j)	 i =1,...,n.

It is not difficult to see that this mapping H is piecewise affine; moreover,

a vector z solves the problem (3) if and only if z is a zero of H.

The above vertical LCP points to one difference in the two formula-

tions, (1.4.9) versus (1.4.10) of the LCP (q, M) as a system of piecewise

affine equations. The "min" formulation can be easily extended to the ver-

tical LCP in which the complementarity relationship in each component

may involve any finite number of affine functions, whereas the (z+, z - )

formulation is more akin to the standard LCP and not so easily amenable

for extension to handle more complicated complementarity conditions.

In principle, we could define a horizontal linear complementarity prob-

lem involving a (rectangular) matrix M E RnXm with n < m and a vector

q E R. We omit this generalization, but point out that the problem (2)

belongs to this category of generalized complementarity problems.

The implicit complementarity problem

The next generalization of the LCP is called the implicit complemen-

tarity problem and is defined as follows. Let A E R >< , a E Rn and

h: Rn -+ Rn be given. This problem is to find a vector z E R' such that

a+Az > 0

z > h(z) - (4)

(a -I- Az) T(z - h(z)) = 0.

Clearly, this problem includes as special cases the standard LCP (which

corresponds to h = 0) and the nonlinear complementarity problem (which

corresponds to a = 0, A = I and h(z) = z - f (z)). Another instance of

the problem in (4) is the optimal stopping problem discussed in Section

1.2) (cf. the conditions in (1.2.19) which correspond to a = 0, A = I - P
and h(z) = r). There, by means of a simple translation of variables, the

problem was converted into a standard LCP.

Generalizing the change-of-variable idea in the optimal stopping prob-

lem, we can define a (multivalued) mapping associated with the implicit
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complementarity problem (4) that ties it closer to the standard LCP. This

mapping S : — Rn is defined as follows. For each given vector u E

S(u) is the (possibly empty) solution set of the complementarity system

a+Az > 0

z > h(u) (5)

(a + Az) T(z — h(u)) = 0.

By defining z = z' + h(u), it is easy to see that the latter problem is

equivalent to the LCP (a + Ah(u), A) with z' as the variable. As u varies,

(a + Ah(u), A) becomes an example of a multivariate parametric linear

complementarity problem; the vector u is considered as the parameter of

this problem.

The implicit complementarity problem has some important applications

in the study of free-boundary problems arising from mechanics and physics

where the problem is typically posed in an infinite-dimensional setting. The

finite-dimensional version as defined above is the outcome of a discretization

process which is designed as an approximation of the infinite-dimensional

problem for the purpose of numerical solution. The terminology "implicit

complementarity" was coined as a result of the mapping S(.) which, in most

cases, is only implicitly defined and does not have an explicit expression.

It is obvious that a vector z is a solution of (4) if and only if z is a fixed

point of S, i.e., if

z E S(z). (6)

Of course, when the system (5) has a unique solution for each vector u,

then S becomes a single-valued function, and the relation (6) reduces to

the nonlinear equation

z = S(z).

In the literature, the study of the implicit complementarity problem given

in (4) has been facilitated by consideration of this last equation and its

multivalued analog (6).
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1.6 Exercises

1.6.1 An important problem in mathematical programming is that of

finding a point in a polyhedron

P = {xeRn:Ax >b}

which is closest to a given vector y E R. This problem may be stated as

the quadratic program:

minimize 2 (x — y) T (x — y)

subject to	 Ax > b.

(a) Formulate this program as an equivalent LCP (q, M) with a symmet-

ric positive semi-definite matrix M and a certain vector q.

(b) Conversely, let (q, M) be a given LCP with a symmetric positive semi-

definite matrix M. Show that (q, M) is equivalent to the problem of

finding a point in a certain polyhedron that is closest to the origin.

1.6.2 A variant of the nonnegatively constrained quadratic program given

in (1.2.4) is the box constrained quadratic program

minimize cTx + 2 xTQx

subject to	 a > x > 0	 (1)

where Q C Rn " n is symmetric, c and a E Rn , and a > 0. Let (q, M) be the

LCP formulation of the Karush-Kuhn-Tucker conditions of the program (1).

Show that (q, M) is strictly feasible. Does (q, M) always have a solution?

Why?

1.6.3 Let {(x i , y2 )} Z of be a collection of points in the plane. We wish to

fit these n + 2 points with a piecewise linear convex function f (x) so as to

minimize the squared error between f (x) and the given points. Specifically,

let {(x i , vi ) } i of be the breakpoints of f(x), where vz = f (x i ) for each i.
The problem is to find the ordinates {vz } Z of in order to

n+1
minimize	 2 E (vz — yz) 2

—o

subject to 	vi+1 — v2 > vi — vi -1 
	 = 1,...,n.xi+1 — xi	 Xi — xi_1
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(a) Formulate this quadratic program as an equivalent LCP (q, M') with

M' E Rn x n Identify as many properties of M' as you can.

(b) Let M denote the defining matrix of the LCP obtained from the

problem of finding the lower envelope of the convex hull of the same

n + 2 points {(x2, y2) }Z ol , see (1.2.21). Show that

M' = apului + M2 + c unu

where ctii = 1/(x+1 — xi) for i = 0, ... , n, and Uk = '.k, the k-th

coordinate vector.

1.6.4 Given A E R"P, show that pos A is a convex cone. Show that

if x generates an extreme ray of pos A, then x is a positive multiple of a

column of A. Show that if the rank of A equals p, then each column of A

generates an extreme ray of pos A.

1.6.5 Describe the solution set of the LCP (q, M) with each of the fol-

lowing matrices

1 1 1 1
M1 = and M2 =

0 0 —1 0

for arbitrary vectors q. Determine, for each matrix, those vectors q for

which the solution set is connected. Determine, for each matrix, those

vectors q for which the solution set is convex. Can you say anything else

about the structure of the solution sets?

1.6.6 Determine which of the following two statements is true. Give a

proof for the true statement and a counterexample for the false statement.

(a) The LCP (q, M) is strictly feasible if there exists a vector z such that

z>0, q+Mz>0.

(b) The LCP (q, M) is strictly feasible if there exists a vector z such that

z >0, q +Mz>0.

1.6.7 Prove that if the vector x E RTh is a solution of (15), and if there

exists a vector y E R n satisfying (16) such that the vector (y, x) E R'+ Th

solves the LCP (q, M) where q and M are given in (1.2.17), then x is an

optimal invariant capital stock.
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1.6.8 Consider the problem CP(K, f) where K = pos A and f (z) = q +

Mz. Here, A e Rn>< n M e Rm"n and q E Rn'.

(a) Show that this complementarity problem is equivalent to an LCP of

order m.

(b) More generally, consider the problem VI(K, f) where f is as given

above and K = pos A + H where H is the convex hull of p vectors in

RTh . Show that this variational inequality problem is equivalent to a

mixed LCP of order m + p + 1 with one equality constraint and one

free variable corresponding to it.

1.6.9 The cone K(M) plays an important role in linear complementarity

theory. This exercise concerns two elementary properties of K(M).

(a) Prove or disprove: if M E R2x2 and if K(M) is convex, then so is

K(M + sI) for all s> 0 sufficiently small.

(b) Suppose M e R"` X fl is nonsingular. How are the two cones K(M)

and K(M') related to one another? For a given q E K(M), state

how this relation pertains to the two LCPs (q, M) and (q', M -1 ) for

some q'?

1.7 Notes and References

1.7.1 The name of the problem we are studying in this book has un-

dergone several changes. It has been called the "composite problem," the

"fundamental problem," and the "complementary pivot problem." In 1965,

the current name "linear complementarity problem" was proposed by Cot-

tle. It was later used in a paper by Cottle, Habetler and Lemke (1970a).

Probably the earliest publication containing an explicitly stated LCP is one

by Du Val (1940). This paper, part of the literature of algebraic geometry,

used a problem of the form (q, M) to find the least element (in the vector

sense) of the linear inequality system q + Mz > 0, z > 0. Ordinarily,

problems of this sort have no solution, but when the matrix M has spe-

cial properties, a solution exists and is unique. The theory pertaining to

problems with these properties is developed in Section 3.11.

1.7.2 In the very first sentence of the chapter, we described the linear

complementarity problem as a system of inequalities and then proceeded to
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write condition (1.1.3) as an equation! Two clarifications of this statement

can be given. First, an equation in real numbers is always equivalent to a

pair of inequalities. Second, and more to the point, the inequalities (1.1.1)
and (1.1.2) imply zT(q+Mz) > 0; so once these conditions are met, (1.1.3)
is satisfied if the inequality zT(q + Mz) < 0 holds. Imposing the latter in

place of (1.1.3), one has a genuine inequality system.

1.7.3 Linear complementarity problems in the context of convex quadratic

programming can be found in the work of Hildreth (1954, 1957), Barankin

and Dorfman (1955, 1956, 1958). They also appear in the paper by Frank

and Wolfe (1956). All these papers make use of the seminal paper of Kuhn

and Tucker (1951) and the (then unknown) Master's Thesis of Karush

(1939). [For an interesting historical discussion of the latter work, see

Kuhn (1976).]

1.7.4 In elementary linear programming, one learns about finite, two-

person, zero-sum games and how to solve them by the simplex method.

Such games are usually called matrix games. When the zero-sum fea-

ture is dropped, one gets what are called bimatrix games. In place of

the minimax criterion used in matrix games, the theory of bimatrix games

uses the concept of a Nash equilibrium point. See Nash (1950, 1951).
Nash's proof of the existence of equilibrium points in non-cooperative games

was based upon the (nonconstructive) Brouwer fixed point theorem. The

Lemke-Howson method (Algorithm 4.4.21), which first appeared in How-

son (1963) and Lemke and Howson (1964), is an efficient constructive pro-

cedure for obtaining a Nash equilibrium point of a bimatrix game. The

Lemke-Howson algorithm was not the first constructive procedure to have

been proposed. Others—such as Vorob'ev (1958), Kuhn (1961), and Man-

gasarian (1964)—had suggested algorithms for the problem, but none of

these proposals match the simplicity and elegance of the Lemke-Howson

method. We cover the Lemke-Howson algorithm in Chapter 4. Balas (1981)
discussed an interesting application of bimatrix games in the context of siz-

ing the strategic petroleum reserve.

1.7.5 The synthesis of linear programming, quadratic programming and

bimatrix games as instances of the "fundamental problem" (see 1.7.1) was

presented in Cottle and Dantzig (1968). Earlier publications such as Cottle
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(1964b) and Dantzig and Cottle (1967) also emphasized this synthesis, but

they included no discussion of the bimatrix game problem.

1.7.6 The investigation of market equilibrium problems has a relatively

long tradition. A paper by Samuelson (1952) did much to encourage the

analysis of (partial) equilibrium problems for spatially separated markets

through mathematical programming methods. Thus, linear and quadratic

programming—and eventually linear complementarity—entered the pic-

ture. Some of this history is recounted in the book by Takayama and Judge

(1971). The monograph by Ahn (1979) discussed applications of market

equilibrium concepts in policy analysis. A recent collection of papers on the

formulation and solution of (computable) equilibrium problems illustrates

the applicability of the LCP in the field of economics. See Manne (1985).

The issue of integrability is discussed in Carey (1977).

1.7.7 The formulation of the optimal invariant capital stock problem pre-

sented here is based on a paper by Dantzig and Manne (1974), which was,

in turn, inspired by Hansen and Koopmans (1972). For further work on

the subject, see Jones (1977, 1982).

1.7.8 For discussions of the optimal stopping problem, see cinlar (1975)

and Cohen (1975). Problems of the sort we have described possess special

properties that lend themselves to solution by methods presented in this

book.

1.7.9 Our discussion of finding the convex hull of a set of points in

the plane is based on a note by Chandrasekaran (1989). An algorithm

that achieves O(n logn) time complexity was published by Graham (1972).

LCPs of this form will be studied in Chapter 4. Exercise 4.11.10 shows

that this convex-hull problem can be solved in 0(n) time by Algorithm

4.7.3, provided that the xi's are pre-sorted.

1.7.10 The variational inequality problem first appeared in Stampacchia

(1964). The system we now know as the nonlinear complementarity prob-

lem was identified by Cottle (1964a). Soon afterwards, the relationship

between these two problems was pointed out by Karamardian (1972). Gen-

eralizations of the complementarity problem were also pioneered by Kara-

mardian (1971). For collections of papers dealing with variational inequal-

ities and complementarity problems see Cottle, Giannessi and Lions (1980)
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and Cottle, Kyparisis and Pang (1990). The latter volume contains an ex-

tensive survey of (finite-dimensional) variational inequality and nonlinear

complementarity problems by Harker and Pang (1990a).

1.7.11 The sequential linearization approach for solving variational in-

equality and nonlinear complementarity problems is related to an idea of

Wilson (1962) who used it in the context of nonlinear programming. Start-

ing with technical reports by Josephy (1979a, 1979b, 1979c), the lineariza-

tion algorithms have been studied rather extensively from the theoretical

and practical points of view. Josephy's treatment of these algorithms was

carried out in the framework of "generalized equations" as introduced by

Robinson (1979, 1980). Related work can be found in Pang and Chan

(1982) and Eaves (1983). Included among the more noteworthy applica-

tions of these algorithms to the computation of general economic equilibria,

are the work of Mathiesen (1985a, 1985b), Rutherford (1986) and Stone

(1988).

1.7.12 The interpretation of the LCP in terms of complementary cones

can be traced to Sainelson, Thrall and Wesler (1958), a paper that has

great importance for other reasons as well. (See Section 3.3.) The topic

was significantly enlarged by Murty (1972).

1.7.13 The formulation set forth in Proposition 1.4.1 is due to Mangasar-

ian (1976c). It was originally developed for the nonlinear complementarity

problem. Algorithmic work based on this formulation includes Subrama
-nian (1985), Watson (1979), and Watson, Bixler and Poore (1989). The

function Hq ,M defined in (1.4.3) was used by Aganagic (1978b). The source

of this formulation is somewhat obscure. The mapping used in Proposition

1.4.4 can be traced back to a paper of Minty (1962) dealing with monotone

operator theory. The piecewise linear formulation (1.4.10) has been used

extensively. See, for example, Eaves (1976), Eaves and Scarf (1976), and

Garcia, Gould and Turnbull (1981, 1983). The equivalence of the LCP and

a system of piecewise linear equations was the subject of discussion in the

two papers of Eaves and Lemke (1981, 1983).

1.7.14 The "vertical generalization" (see (1.5.3)) was introduced in Cottle

and Dantzig (1970), but was not designated as such. Rather little has

been done with this model. An application in tribology by Oh (1986)
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and another in stochastic control by Sun (1989) have been reported in the

literature, however. De Moor (1988) utilizes the "horizontal generalization"

of the LCP in his study on modeling piecewise linear electrical networks.

1.7.15 The mixed LCP (1.5.1) is a special case of a complementarity

problem over the cone Rn x Rig. In the case where the matrix A is singular,

the conversion of the problem (1.5.1) into a standard LCP is not an entirely

straightforward matter.

1.7.16 Capuzzo Dolcetta (1972) was among the first to investigate the

implicit complementarity problem. For other studies, see Pang (1981d,

1982) and Yao (1990).

 





Chapter 2

BACKGROUND

Our main purpose in this chapter is to collect the essential background

materials needed for the rest of the book. Four major topics are covered:

linear algebra and matrix theory, elements of real analysis, linear inequali-

ties and programming, and quadratic programming theory. Although much

of the development given in this chapter could easily be made more general,

our discussion on each topic is by necessity, brief, and intentionally limited

to those aspects relevant to the linear complementarity problem. There are

excellent textbooks written on the subjects reviewed here. Among those on

linear algebra and matrix theory are the two volumes by Horn and John-

son (1985, 1990). The classic by Ortega and Rheinboldt (1970) remains

an excellent reference on functions of several variables. Many books are

available for the theory of linear programming and inequalities; the one

by Dantzig (1963) is a classical treatise, whereas the one by Murty (1983)

gives a more contemporary treatment. Finally, the forthcoming book by

Cottle on quadratic programming is intended to provide a comprehensive

discussion of the subject.

43
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2.1 Real Analysis

In this section, we review elements of real analysis that are important

for the linear complementarity problem. Topics covered include elementary

point-set topology, basic properties of multivariate functions, some map-

ping theorems, concepts of multivalued mappings, etc. The proofs of all

the results stated in this section are omitted. The reader is asked to supply

some of the proofs in the exercises at the end of the chapter.

Vector norms

Although the topics of topology and real analysis can each be developed

in an abstract framework without relying on the finite-dimensional nature

and other specialized properties of the Euclidean space R, we base our

discussion in this review on the concept of a vector norm in R. The norm

of a vector provides a measure of the magnitude of the vector, and it can

be used to define the distance between two vectors in R.

2.1.1 Definition. A vector norm is a function	 R' — R+ satisfying

the properties for all vectors x, y E Rn,

(a) Mx = 0 if and only if x = 0, (Positivity)

(b) ()x = ^Ax for all scalars A, (Homogeneity)

(c) x+y( < )x +	 (Triangle inequality).

Given a vector norm	 in Rn, the unit sphere is the set

S = {xER:jjx1j=1},

and the (closed) unit ball is

z3= {xER':MMxli<1}.

Clearly, 0 e 8 \ S.

2.1.2 Example. Some frequently used norms are

IIXI12 =	 i 1 x?)'/2 Euclidean norm or (1 2 -norm)

lxII1 = En 1 ixd	 sum norm or (ll-norm)

ixi = max2 1 xi	 max norm or (lam-norm).
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The reader can easily verify that these are vector norms satisfying the three

axioms (a), (b) and (c) in Definition 2.1.1.

The Euclidean norm is derived from the usual Euclidean inner product;

that is,

IIXI12=XT^

Moreover, the well-known Cauchy-Schwartz inequality holds for any two

vectors x and y in R',

I x Tyl < IIXI12 IIYI12
with equality holding if and only if x and y are linearly dependent vectors.

The Euclidean norm admits a generalization. Let A be an arbitrary

n x n symmetric positive definite matrix (see Section 2.2 for a review of

matrices of this kind). The elliptic norm or A-norm is defined as

xII A 	 (XTAx) 1 f 2 ,	 x E Rn.	 (1)

The reader is asked to verify that this defines a vector norm, see Exercise

2.10.5. When A is the identity matrix, the A-norm becomes the Euclidean

norm.

All vector norms on R"' are equivalent; this means that if II • II and II • II'
are two given norms, then there exist constants cl > 0 and c2 > 0 such

that

elllxll <— IIXII' < czl1x	 (2)

for all x E R. For the three norms—the Euclidean norm, the sum norm

and the max norm—these constants are easy to obtain.

It follows immediately from (2) that if {x"} is a sequence of vectors in

R"', then

lim	 = 0	 lim lx' II' = 0.	 (3)
u_Do	 v-- 00

In view of this equivalence, one may use any vector norm in defining the

concept of convergence of a sequence of vectors.

2.1.3 Definition. A sequence of vectors  {x'} C Rn is said to converge to

the vector x* E Rn if

lim Ilx°- x*11=0
u Do
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for some vector norm	 . The vector x* is called the limit of the sequence

{x"}; we write

x* = lim x".
V -- 00

The sequence {x'} is said to be convergent if it has a limit. The limit of
a convergent subsequence of the sequence {x"} is called an accumulation
point (or limit point) of {x'}.

2.1.4 Remark. The limit of a convergent sequence must be unique.

According to the equivalence (3), it follows that a sequence of vectors

converges to a limit under a given vector norm if and only if it converges to

the same limit under any other norm. This statement can actually be used

to characterize the equivalence of vectors norms on R. More precisely, it

can be shown (see Exercise 2.10.6) that two vector norms • ^1 and •

are equivalent if and only if the condition (3) holds for all sequences {x"}

in RTh .

2.1.5 Definition. A vector norm 	 on Rn is said to be monotone if for

all x,yeR,

^x <y for all i	 ^1x^^ < ^^y^^,

and absolute if for all x E Rn, z M= x ^ 11 where x I is the vector whose

i-th component is equal to Ixjl.

2.1.6 Proposition. A vector norm	 on R' is monotone if and only if

it is absolute. ❑

The Euclidean norm, the sum norm and the max norm are all monotone.

The elliptic norms are in general not monotone (see Exercise 2.10.5).

Point set topology

In this subsection, • denotes a given vector norm defined on R'. We

start our review of various properties of point sets in Rn with the following

definition.

2.1.7 Definition. A neighborhood of a point x E R"'' is the open ball

B(x, r) with center at x and radius r > 0, that is, the set

B(x,r)={yERTh :	 —xM <r}.
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A closed neighborhood of x is the (closed) ball cl B(x, r) defined by

cl B(x, r) = {y E R: 	— x^^ < r }.

In many parts of this book, we shall omit the pair (x, r) from the nota-

tion B(x, r); it is understood that whenever we speak of a neighborhood of

a point, there is always a radius associated with the neighborhood. Also,

the closed neighborhood of a point is seldom used. Vectors in a neighbor-

hood of a point x are said to be close to x. The phrase "vectors sufficiently

close (or close enough) to a point x" refers to those vectors that lie in a

certain neighborhood of x whose radius is, typically, very small.

2.1.8 Definition. A subset X C Rn is said to be

(a) open if for every point x E X, there exists a neighorhood V of x such

that V C X,

(b) closed if its complement Xc is open,

(c) bounded if there exists a scalar r > 0 such that 	<r for all x E X,

(d) compact if X is both closed and bounded.

2.1.9 Remark. It is important to point out that although we have defined

the various properties of the set X in terms of a given vector norm, these

properties are really independent of the norm used because of the equiv-

alence of all vector norms on R". Throughout the subsequent definitions,

we shall continue to adopt this practice which the reader is asked to keep

in mind.

The closedness of a set can be characterized in terms of sequences.

Specifically, a set X C R"' is closed if and only if the limit of every con-

vergent sequence {x'} C X lies in X. A related characterization exists for

the compactness of a set; namely, a set X C R' is compact if and only if

every sequence {x"} C X contains a convergent subsequence whose limit

belongs to X.

In general, a sufficient condition for a sequence {x"} C Rn to have an

accumulation point is that it is bounded. There are various criteria for the

sequence {x"} to actually converge. For instance, if {x"} is bounded and

has a unique accumulation point, then it converges. The following result,

due to Ostrowski, generalizes this fact. The reader is asked to prove this

result in an exercise.
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2.1.10 Theorem. Suppose that the sequence {xv} C Rn satisfies the fol-

lowing three properties:

(a) it is bounded,

(b) lim	 v+1 _ xvII = 0

(c) it has only a finite number of accumulation points.

Then, {x'} converges. ❑

We review a few more concepts associated with a subset of R.

2.1.11 Definition. Let S C Rh. The (topological) interior of S, denoted

int S, is the subset of S consisting of vectors x for which there exists a

neighborhood N (of x) contained entirely in S. The (topological) closure

of S, denoted cl S, consists of all vectors which are limits of sequences of

vectors from S. The (topological) boundary of S, denoted bd S, is the set

cl S \ int S. A subset T of a set S is dense in S if S C cl T.

Clearly, we have

intSCSCc1S;

moreover, int S = S if and only if S is open, and cl S = S if and only if

S is closed. In general, the union (intersection) of a finite family of closed

(open) sets is closed (open) , and the union (intersection) of an arbitrary

family of open (closed) sets is open (closed).

Some subsets of Rn have an important property called convexity. At

this stage our discussion of convexity is extremely brief, providing only the

bare essentials. Much more will be done in Sections 2.6 and 2.7.

2.1.12 Definition. If x and y are points in R' and .A E [0, 1], the point

z = Ax+(1 —

 a convex combination of x and y. More generally, if xi, ... , xk are points

and )q, ... , Ak are nonnegative numbers such that Al + • • • + Ak = 1, then

z = A ixl + ... + A k xk

is a convex combination of x', ... , xk.
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In this definition, when k = 2 and x 1 x 2 , the set of all convex combi-

nations of x l and x 2 is called the line segment determined by x 1 and x2 , the

line segment between x 1 and x 2 , and the line segment joining x 1 and x2 .

A point x is a convex combination of x',. . , xk if and only if

[] =A []	 A^ > 0, i = 1,...,k.	 (4)
1 	z_1	 1

The usefulness of this representation will be illustrated in the sequel.

2.1.13 Definition. A set C is convex if and only if it contains the line

segment between each pair of its points.

2.1.14 Examples. We list a few simple convex sets of interest.

(a) The empty set, 0.

(b) Any linear subspace of RTh , that is, a nonempty subset L C Rn satis-

fying the conditions

(i) x+yEL for all x,yEL,

(ii) .AxeLforallAERandallxEL.

(c) The intersection of any collection of convex sets.

(d) Any translate of a convex set, i.e.,

C+{b}={y:y=x+b, xEC}

where C is a convex set. In particular, any affine subspace L + {b}

where L is a linear subspace is convex.

(e) Sets of the form

H={x:aTx=b} a^0, bER.

Such sets are called hyperplanes. They are affine subspaces and are

linear subspaces if and only if b = 0.

(f) Sets of the form

S={x:aTx>b}ands={x:aTx<b}wherea 0.

These are called (closed) halfspaces. When the inequalities are strict

(> or <), they are called (open) halfspaces.
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In Section 2.6 we study convex sets that are intersections of closed

halfspaces. Such sets play a central role in the theory of mathematical

programming. There are various generalizations of a convex set; some of

which we shall make use of later are defined below.

2.1.15 Definition. A set C C R' is path-connected if for any two points

x, y E C, there exists a continuous function  p: [0, 1] -- C such that p(0) = x

and p(l) = y. This function is called a path joining x and y. For any set

S C R' and any x E S, the path component of S containing x is the union

of all path connected sets C such that x E C C S.

2.1.16 Definition. A set C C RTh is connected if there do not exist disjoint

open sets U, V C RTh such that U n C 0, V n C zA 0, and C C U U V. For

any set S C R' and any x E S, the (connected) component of S containing

x is the union of all connected sets C such that x E C C S.

We now summarize some standard facts concerning connectedness

2.1.17 Proposition. Let S C Rn and x E S be given.

(a) The component of S containing x is connected.

(b) The path component of S containing x is path connected.

(c) The path component of S containing x is contained in the component

of S containing x.

(d) If S is open, then the path component of S containing x equals the

component of S containing x.

(e) For each y E S, the component (path component) of S containing y

is either equal to or disjoint from the component (path component)

of S containing x.

U

Functions of several variables

Although the linear complementarity problem is defined by an affine

function, nonlinear functions also play an important role in the study of this

problem. For this reason, we review some basic properties of general vector-

valued functions. Throughout this book, we use the terms: functions,

mappings and maps, interchangeably.
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2.1.18 Definition. Let D be an open set in RTh. A vector-valued function

f : D —3 R' defined on the domain D is said to be

(a) continuous at the point x E D if

lim f (y) = f (X),
y-.x

that is to say, if for every e > 0, there is a neighborhood N C D of x

such that

yEN	 =	 11f(y)—f(x)11 <e;

(b) Lipschitz continuous at x E D if there exist a constant L > 0 and a

neighborhood N C D of x such that

u, v E N	 f(u) — f(v)11 <_ L))u — vMM;

the constant L is called a Lipschitz modulus of f;

(c) directionally differentiable at x E D if for every vector d E Rn, the

limit

lim f (x
 + td) — f (x)

to	 t

exists; in this case, the above limit is denoted f (x, d) and is called

the directional derivative of f at x along the direction d;

(d) Frechet (or simply F-) differentiable at r if there exists a matrix of

order m x n, denoted V f (x) and called the Frechet (or simply, the

F-) derivative of f at x, such that

lim f (y) — f (x) — '7f (x) (y — x) = 0.
y-'x	 Ily - 4

This derivative V f (x) is also called the Jacobi an matrix of f at x.

If property (a), (c) or (d) holds at all points x E D, then we say that f
possesses the property in D. If property (b) holds at all points x E D, then

f is said to be locally Lipschitzian on D. If there exists a constant L > 0
such that for all x, y in D,

11f(x)—f(y)1 <LIIx — yll,

then f is said to be (globally) Lipschitzian on D.
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Notice that a locally Lipschitzian function is not necessarily globally

Lipschitzian. A simple example is the real-valued function f (x) = 1/x on

the interval (0, 1).

If the function f : D — Rm satisfies any one of the properties in Def-

inition 2.1.18, then so does each of its component functions f2 : D —f R

for i = 1, ... , m. In general, if the mapping f is F-differentiable at x, then

it is directionally differentiable and continuous at x; moreover, we have

f'(x, d) = V f (x)d for all d E R. Nevertheless, if f is merely directionally

differentiable, it is not necessarily true that f is continuous.

2.1.19 Remark. A word of caution about notation is in order. If the real-

valued function 0 : D —^ R is Frechet differentiable, its Frechet derivative

at a point x E D is called the gradient vector and denoted by the column

vector VO(x) E RTh . This convention is somewhat inconsistent with that

used for a vector-valued function. In particular, if f : D — R"'' is vector-

valued with component functions f2 : D -- R (i = 1, ... , m), then we

have
Vfi (x) T

Oft (x) T

Vf(x)_

Ofm(x) T

The reason for this unconventional use of notation for the Jacobian matrix

is to avoid writing the transpose when we multiply the m x n matrix V f (x)

with a vector d E RTh .

A notion about the F-derivative that is sometimes useful is introduced

below.

2.1.20 Definition. Let f : D -- Rm be F-differentiable at x E D. The

F-derivative V f (x) is said to be strong if

lim
	 f(u) — f(v) — Vf(x)(u — v)

u—v

It can be shown that if f is F-differentiable in a neighborhood of a point

x E D, then the F-derivative V f (x) is strong if and only if the derivative

mapping Vf : N — R"'' (where N is a suitable neighborhood of x) is
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continuous at x. In general, if this mapping is continuous in a domain D,

then we say that f is continuously differentiable on D.

The derivative V f (x) is sometimes called the first-order derivative of

f. It follows from Definition 2.1.18 that for all vectors y sufficiently close

to x, we have

f(y)=f(x)+Vf(x)(y - x)+o(lly - x)	 (5)

where o(t) is a (vector) quantity with the property:

lim o(t) = 0.
t->o t

The noteworthy point about the expression (5) is that in a suitable neigh-
borhood of x, the function f can be approximated by the affine mapping
g(y) = f(x) + Vf (x)(y-x) and the accuracy of the approximation is of the
first order. This affine map g is called the linearization of f at the point x.

Among the many basic results for functions of several variables, the
mean value theorems are among the most useful. There are several forms
of these theorems; the integral form says that if f : D -^ R' is continuously
differentiable on the convex domain D C Rn, then for any two vectors x
and y in D, we have

f(y) = f(x) + J r Vf(x + t(y - x))(g - x)dt.
0

As an immediate consequence of this expression, we obtain

f(y) - f(x)M < sup 1Vf(x+t(y-x)) y-x
o<t<i

(see Section 2.2 for a review of matrix norms). Another useful inequality
is the following: for any x, y, z E D,

f(y) - f(z) -Vf(x)(y-z)jj < sup Vf(z+t(y-z)) -Vf(x)jj Ily-zll. (6 )
o<t<i

In general, one can define higher-order derivatives of a mapping f and
write down a corresponding local approximation of f. Instead of doing
this in its full generality, we consider a twice continuously differentiable

real-valued function 0 : D -* R. Let 7 2 0(x) denote the Hessian matrix of
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0 at x E D, i.e., V28(x) is the n x n matrix with entries 92 0(x)/0xZ3x3 for

i, j = 1, ... , n. For such a function, the second-order analog of (5) is

0 (y) = 8 (x) + V0 (x) T(y—x) +2(y— x)TV20 (x)(y —x) +o(IIy—xMI 2) (7 )

which is valid for all vectors y sufficiently close to x. For an arbitrary vector

y E D, the second-order Taylor expansion yields

0 (y) =O(x)+VO(x)T(y —x)+ f ( 1 _t)(y—x) T V 20 (x+t(y—x))(y—x)dt
0

in which the error term o(.) is no longer present. It should be pointed

out that if 0 is a quadratic function, i.e., if 0(x) = qTx + ZxTMx for some

vector q E RTh and matrix M E R" >< that is symmetric, then the quadratic

approximation of 0 (i.e., the right-hand term in (7) without the o(.) term)

gives an exact representation of 0(y) in terms of O(x) for all vectors x and

y; in other words, for such a function 0, we have

0 (y) = 0 (x) + V0 (x)(y — x) + ä (y — x) TM(y — x)

and V0(x) = q + Mx.

If 0: R' —p R is a continuous real-valued function and if X is a compact

subset of R', then 0 attains its maximum and minimum on X; that is to

say, there exist vectors u and v, both in X, such that for all x E X,

0(u) < 0(x) < 0(v).

This is the well-known Weierstrass theorem. The vector u (v) is a global

minimum (maximum) of 0 on X.

More generally, if X is an arbitrary subset of R, and if u is a vector

in X with the property that for some neighborhood N of u, 0(u) < 0(x)

for all x E N n X, then u is called a local minimum of 0 on X. A local

maximum is defined analogously. When X = Ri' , the term "unconstrained"

is sometimes attached to these concepts.

If 0 is directionally differentiable in X, then any vector z E X satisfying

the condition that

0'(z,y —z) >0 forallyEX
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is called a stationary point of 0. The minimum principle states that if X

is convex, then any local minimum of 0 on X must be a stationary point,

but not conversely. When 0 is F-differentiable, then the problem of finding

a stationary point of 0 on X is easily seen to be the variational inequality

problem VI(X, VB); moreover, if X is open in RTh, then a stationary point

of 0 coincides with a zero of the F-derivative VB, i.e., such a vector must

satisfy the equation V0(z) = 0.

In the study of the LCP, mappings defined on subsets of R and with

their range contained in R"'' play a rather important role. In the sequel, we

review some further properties of these mappings.

2.1.21 Definition. Let f : D -# 7 be a mapping with domain D C RTh

and range 7Z C RTh. Then f is said to be

(a) injective, or an injection, if f (x) = f (y) for x, y E D, then x = y;

(b) surjective, or a surjection, if f(V) = R;

(c) bijective, or a bijection, if f is both injective and surjective;

(d) a local homeomorphism at x E D if there exist (open) neighborhoods

U of x and V of f (x) such that (i) V = f (U), (ii) f restricted to U

is continuous and injective, and (iii) the inverse of f restricted to V,

f-1 : V — U, is also continuous;

(e) a local homeomorphism on D if f is a local homeomorphism at every

point in D;

(f) a global homeomorphism from D onto f(V) if f is injective and f

and its inverse f -1 are continuous on D and f(V) respectively.

The following result, which contains a partial statement of the inverse

function theorem, gives a sufficient condition for a mapping to be a local

homeomorphism.

2.1.22 Theorem. Let f : D -* RTh have a strong F-derivative at the point

x E int D C R. If V f (x) is nonsingular, then f is a local homeomorphism

at r. ❑

Using this result, one can derive the following consequence, which is re-

lated to the open mapping theorem and the invariance of domain theorem.
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2.1.23 Corollary. Let D be an open set in RTh and f : D —* Rn be a

continuously differentiable mapping. Suppose that V f (x) is nonsingular

for all x E D. Then f(V) is an open set in R'. ❑

An important application of the inverse function theorem is the implicit

function theorem. Since we do not make direct use of the latter result, we

choose not to review it here.

A fixed-point theorem

We have seen in Section 1.4 that the LCP can be formulated as a fixed

point problem. As a matter of fact, fixed-point theory plays an important

role throughout the study of the LCP. The following fundamental result,

which provides sufficient conditions for the existence of a fixed point of a

continuous mapping, is commonly known as Brouwer's fixed-point theorem.

2.1.24 Theorem. Let X 0 be a compact convex subset of R and

f : X —+ X be continuous. Then f has a fixed point in X. ❑

A contemporary reference which summarizes many applications of this

famous theorem to mathematical economics and game theory is the mono-

graph of Border (1985). For further discussion of Brouwer's fixed-point

theorem, see 2.11.1. Later in Section 3.7, we shall use 2.1.24 to prove

the existence of a solution to a certain fundamental LCP. At this point,

we simply mention that the fixed-point formulations of the LCP described

in 1.4 do not lend themselves easily to a fruitful application of 2.1.24; the

difficulty lies in the identification of the compact set X. Indeed, a rather

different approach is needed.

Multivalued mappings

As in many topics within mathematical programming, the concept of a

multivalued mapping is also relevant in LCP theory. In general, a mapping

f : D C Rn —+ Rm is said to be multivalued if for each vector x E D,

the image f (x) is a subset (possibly the empty set) of Rm. If f (x) is a

singleton for all x, we identify the set f (x) with its sole element, and f

becomes the usual kind of mapping that we have been dealing with up

to now; occassionally, the term "single-valued" is attached to the word

"mapping" to describe a mapping of the latter kind.
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Examples of of multivalued mappings abound in the study of the LCP.

As an illustration, consider the solution mapping SQL : R' x Rn >< —> R'

that assigns to each pair (q, M) E Rn x RT' the set SOL(q, M) of solutions

to the LCP (q, M). This is clearly a multivalued mapping in general.

Variations of this mapping can also be defined.

In the following definition, we summarize several important concepts

associated with a multivalued mapping. These concepts generalize some

well known continuity properties for (single-valued) mappings.

2.1.25 Definition. Let f : D C R"' — R' be a multivalued mapping.

The graph of f is the set

c(f) = {(x,y) E D x Rm
':y E f(x)}.

This mapping f is said to be

(a) closed if its graph 9(f) is a closed set in Rn x Rm;

(b) upper semi-continuous at x E D if for every open set U C R"'' con-

taining the image f (x), there exists an open set V C R"' containing

x such that f (x) E U for every x E V f1 D;

(b') upper semi-continuous in D if f is upper semi-continuous at all points

in V;

(c) lower semi-continuous at x E D if for every open set U C R"'' for

which f (x) n U 0, there exists an open set V C R' containing x

such that f (y) f1 U 0 for every y E V n D;

(c') lower semi-continuous in D if f is lower semi-continuous at all points

in D.

Convex functions

In Section 1.2, we have seen how a convex quadratic program is directly

equivalent to a certain LCP. The validity of this result is partly the con-

sequence of certain basic properties of a general convex function. In order

to provide the background for the stated equivalence (see also Section 2.8),

we present a brief review of the class of convex functions.
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2.1.26 Definition. A real-valued function 0 : D — R defined on the con-

vex set D C Rn is said to be convex if for any two vectors x and y in D

and any scalar A E [0, 1],

0(Ax + (1 — A)y) < AB(x) + (1 — A)0(y)•

The function 0 is said to be strictly convex on D if strict inequality holds

for all vectors x y in D and all A E (0, 1); 0 is said to be strongly convex

on D if there exists a constant c> 0 such that

0(Ax + (1- A)y) - A0(x) - (1- A)0(y) <- -cA(1- A)IIx - yllz

for all vectors x, y E D and all scalars A E [0, 1].

If the domain D is also open, and 0 is F-differentiable on D, then 0 is

convex on D if and only if the gradient inequality

0(x) — B(y) >- V0 (y) T (x — y)

holds for all vectors x, y E D. In this case, if X is any convex subset of

D, then any (constrained) stationary point of 0 on X must be a global

minimum point of the mathematical program:

minimize 8(x) 
(8)

subject to x E X.

If 0 is strongly convex and X is closed, then there is a unique global min-

imum of the above program. More generally, if 0 is strictly convex, then

the program (8) has at most one global minimum.

Let 0 be a twice differentiable function defined on the open convex set

D C R1 . Then.0 is convex on D if and only if the Hessian matrix V 2 0(x)

is positive semi-definite for all x E D; if V 2 9(x) is positive definite for all

x E D, then 0(x) is strictly convex. Finally, 0 is strongly convex on D if

and only if there exists a constant c' > 0 such that for all vectors x E D
and all vectors y E R',

YT V20 (x)y ? c MMy112•
In particular, it follows that if 0 is a quadratic function, then 0 is strictly

convex on Rn if and only if it is strongly convex there; the latter property

is further equivalent to the positive definiteness of the (constant) Hessian

matrix V20(x).
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2.2 Matrix Analysis

In this section, we review elements of matrix analysis that are impor-

tant for the linear complementarity problem. Topics covered include princi-

pal submatrices, vector and matrix norms, spectral properties, and special

matrices and their characteristics. As in the previous section, we omit the

proofs of all the results and ask the reader to supply some of them in the

exercises.

Principal rearrangements and submatrices

As we saw in Section 1.3, submatrices, especially the principal ones, play

an important role in the study of the LCP. For this reason, we formally

define these concepts and some related notions.

2.2.1 Definition. Let A E R"" ' be given. For index sets a C {1, ... , m}

and ß C {1, ..., n}, the submatrix Aap of A is the matrix whose en-

tries lie in the rows of A indexed by a and the columns indexed by ß.

If a = {l, ..., m}, we denote the submatrix Aß by A.p; similarly, if

ß = 11, ... , n}, we denote A,,p by Aa.. If m = n and a = ß, the sub-

matrix A. is called a principal submatrix of A; the determinant of A a

is called a principal minor of A.

2.2.2 Definition. Let A E Rn"n be given. For a given integer k (1 < k <

n), the principal submatrix A. where a = {l, ..., k} is called a leading

principal submatrix of A. The determinant of a leading principal submatrix

of A is called a leading principal minor of A.

Let A E RT"Th and ce C {1, . .. , n} be given. Then, there exists a per-

mutation matrix P such that the principal submatrix Aaa appears as a

leading principal submatrix in the matrix PAPT which is called a princi-

pal rearrangement of A. To see what P is, let a = { k1, ... , km,} and its

complement a _ {k,,,,+ 1 i ... , k}; then P is the permutation matrix with

pik s = 1 for all i. The matrix PAPT can be written in the partitioned form:

PAPT
 = [ A,, Aas 1

L Aa A,,Cr
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Thus, given any principal submatrix A. of A, we can always principally
rearrange the rows and columns of A in such a way that A a becomes a

leading principal submatrix in the resulting rearranged matrix.

2.2.3 Example. Let A be a 4 x 4 matrix. Suppose we want to move the

principal submatrix

a22 a24

a42 a44

to the upper-left-hand corner and the principal submatrix

all a13

a31 a33

to the lower-right-hand corner. The permutation matrix which accom-

plishes this principal rearrangement is given by

0 1 0 0

0 0 0 1
P =

1 0 0 0

0 0 1 0

It is known that the principal minors of a matrix A E Rn"n appear as

coefficients in the characteristic polynomial of A which is defined as

PA(t) = det(tI — A), t E R.

More generally, by the fact that the determinant of a matrix is a multi-

linear function of its entries, one can prove the determinantal formula: for

an arbitrary diagonal matrix D E Rnxn

det(D+A) = EdetD,a detAid 	(1)
Q

where the summation ranges over subsets a of  {1,. . .  , n} (with complement

a). The reader is asked to prove this formula in Exercise 2.10.4.

Given the LCP (q, M), principally rearranging the matrix M and the

vector q will only rearrange the components of a solution to the problem,
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and will not change the solution in any other way. More specifically, if

P is the permutation matrix corresponding to the rearrangement, then x

solves (q, M) if and only if Px solves (Pq, PMPT), the latter being the

rearranged LCP.

2.2.4 Definition. A matrix A E Rn"n for n> 1 is reducible if it can be

principally rearranged into the form:

C

A. A,,,

0 A^^ (2)

for some nonempty proper subset a C {1, ... , n}. If n = 1 then A is
reducible if and only if A = 0. The matrix A is irreducible if it is not
reducible.

Irreducibility can be characterized in the following way: A E R' X n is
irreducible if and only if for any two distinct indices 1 < i, j < n, there is
a sequence of nonzero elements of A of the form

{a 1 , a 12 , ...

The matrix M arising from the convex-hull problem (see (1.2.21) in

Section 1.2) is irreducible but is very sparse, i.e., contains relatively few

nonzero entries. Incidentally, the structure of this matrix is known as

tridiagonality; more precisely, a matrix A E Rnxn is tridiagonal if aid = 0

for all i — j > 1.

It is possible for a reducible matrix to be very dense, i.e., to contain a

large proportion of nonzero entries. For example, in the partitioned matrix

A given in (2), the index set a may contain just a few indices and the

three submatrices Aa,, Aas , could be completely dense. In general,

the property of reducibility of a matrix is not related to its density, but

rather to the decomposability of systems of equations involving the matrix

of concern.

Matrix norms

2.2.5 Definition. Let A be a given m x n matrix, and let • and 11 • )' be

two vector norms on R'"'' and RTh respectively. The matrix norm induced
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by these vector norms is

All	 (3)Ilmaxl IIAxMI 

or equivalently,

JIAxII
AID

__

 -/O 1IxJI'	 (4)

2.2.6 Remark. If A is a square matrix, we say, unless otherwise stated,

that the matrix norm IAII is induced by the vector norm	 to mean

11 • 1I' = 1I • 1I in the above definition.

The maximum in (3) is well-defined and actually attained because of

the compactness of the unit ball {x E Rn : I I x I I' = 1} and the continuity

of the norm IIAxMI as a function in x. (See Section 2.1 for a review of

the continuity of a function; see also Exercise 2.10.8.) The equivalence

between (3) and (4) is rather obvious.

It can be shown that the function A H IAII indeed defines a norm on

the m x n matrices in the sense that the three axioms in Definition 2.1.1

are satisfied. Moreover, by the definition, we have

Ax( < )AJI IIxMI'
for all x E RTh. It follows from this last inequality that if A and B are given

m x n and n x p matrices and II • II, I1 • II' and II ' II" are vector norms defined

on R, R' and R° respectively, then

IIABM < IIAII' IIBII"	 (5)

where the matrix norms are induced by the corresponding vector norms.

In particular, if A is square, then IIA 2 II < IIAII 2 .

2.2.7 Remark. One may define an abstract matrix norm on Rn"n as a

function Rn x n —j R+ satisfying the axioms (a), (b), and (c) in Definition

2.1.1 and the submultiplicativity condition (5). There are matrix norms

which are not induced by vector norms. For our purpose in this book, all

matrix norms are induced by vector norms.

If A is an n x n matrix, we write IAII P to denote the matrix norm

induced by the vector norm II • II ' for p = 1, 2, no; that is

Allp = IImPx1 
IlAxllP•

 



2.2 MATRIX ANALYSIS
	

63

It is not difficult to show

n

All 1 = max 
1<^<n

i=1

n

A= max V ^a;
1 <i<n

j=1

these are called the maximum column sum matrix norm and maximum row

sum matrix norm respectively.

Eigenvalues and eigenvectors

So far, we have been dealing with vectors and matrices whose entries

are real numbers. Although complex numbers are rarely encountered in the

study of the linear complementarity problem, it would be appropriate for

us to temporarily enlarge the field of real numbers to include the complex

scalars in order to give a meaningful discussion on the subject of eigenvalues

and eigenvectors. Norms of complex vectors and matrices are defined in

the same way as in the real case.

2.2.8 Definition. Let A be an n x n complex matrix. A complex number

A is an eigenvalue of A if there exists a nonzero, complex n-vector v, called

an eigenvector of A associated with A, such that

Av = Av.

Every complex, square matrix A of order n has exactly n eigenvalues;

they are the n roots of the characteristic equation

detI — A) = 0.

If A is a multiple root of this equation, then A is an eigenvalue of "multiplic-

ity" greater than one. If A is a simple root of the characteristic equation,

we say that it is algebraically simple.'

'In general, there are two kinds of multiplicity of an eigenvalue: algebraic and geo-

metric. These multiplicity concepts are rarely used in the study of the linear comple-

mentarity problem.
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2.2.9 Definition. The set of all eigenvalues of a complex square matrix

A is called its spectrum and is denoted by cr(A). The spectral radius of A

is the nonnegative real number

p(A) = max{ : A E or(A){.

When A is a real square matrix, its spectrum may contain complex

elements. If A is a real square matrix and A is a real eigenvalue (i.e.,

A E R), then A has a real eigenvector v E Rn associated with A. All

eigenvalues of a real symmetric matrix are real. Moreover, the largest and

smallest eigenvalues of such a matrix A play a special role in connection

with the quadratic form xTAx. We summarize these statements in the

result below.

2.2.10 Proposition. Let A E R'^ x n be symmetric. Then,

(a) all eigenvalues of A are real, and there exists an orthonormal basis of

Rn which is comprised of eigenvectors of A;

(b) there exists an orthogonal matrix U E Rnxn (UT U = I) whose

columns are eigenvectors of A such that

A = UDUT 	(6)

where D is the diagonal matrix whose diagonal entries are the eigen-

values of A (expression (6) is called a spectral decomposition of A);

(c) if the eigenvalues of A are arranged as Al < ... < A,, then

A1xTx < XTAx < AxTx

forallxeRn. ❑

The following result summarizes two important properties of the spec-

tral radius of a square matrix, see also Exercise 2.10.9.

2.2.11 Proposition. Let A be a given complex square matrix. Then,

(a) p(A)	 AM for any matrix norm;

(b) for every e > 0, there exists at least one matrix norm	 (induced

by some vector norm) such that

))AJJ	 p(A) +E. ❑
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The matrix norm A 2 induced by the Euclidean vector norm is some-

times called the spectral norm. This terminology is due to the following

result.

2.2.12 Proposition. Let A E Rn"n be given. Then

JJ A 11 2 = 
11
	 ^max ^j Ax((2 = [p( ATA)] l/2

In particular, if A is symmetric, then A 2 = p(A). ❑

2.2.13 Definition. A complex square matrix A is said to be convergent if

lim Ak = 0;
k-.00

i.e., if all the entries of Ak approach zero as k

Convergent matrices play an important role in the convergence analysis

of iterative methods, see Section 2.5. These matrices can be characterized

in terms of their spectral radii.

2.2.14 Proposition. A complex square matrix A is convergent if and only

if p(A) < 1. If A is convergent, then I — A is nonsingular, and

00

(I—A) — ' =	 Ak . ❑
k=o

Special matrix classes

Matrix classes play an important role in the study of the linear comple-

mentarity problem. For this reason, it is is useful to review some fundamen-

tal matrix classes which will form the basis for subsequent generalizations.

2.2.15 Definition. A matrix A E R"' is said to be positive semi-definite

if xTAx > 0 for all x E R'. It is positive definite if xTAx > 0 for all

x E R \ {0}.

In many matrix theory textbooks, a positive definite (semi-definite)

matrix is restricted to be symmetric; however, the matrices encountered in

the context of the LCP are frequently asymmetric (see e.g. (1.2.3)), hence
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our extended definition. Notice that an asymmetric matrix A is positive

definite (semi-definite) if its symmetric part, i.e., 2 (A + AT ), is so.

Clearly, principal submatrices of positive definite (semi-definite) ma-

trices are positive definite (semi-definite). Thus, the property of positive

definiteness (semi-definiteness) of a matrix is inherited by its principal sub-

matrices.

Symmetric positive definite matrices can be characterized in a number

of ways. We list several of these characterizations in the result below.

2.2.16 Proposition. Let A E Rfl X f be symmetric. The statements below

are equivalent.

(a) A is positive definite.

(b) All principal minors of A are positive.

(c) All leading principal minors of A are positive.

(d) All eigenvalues of A are positive.

(e) There exists a nonsingular matrix G such that A = GTG.

Moreover, if A is symmetric positive definite, there exists a unique sym-

metric positive definite matrix denoted by A l / 2 such that A = (A'!2)2

This matrix A l / 2 is called the square root of A. ❑

We have the following similar result for a symmetric positive semi-

definite matrix.

2.2.17 Proposition. Let A E Rn X fl be symmetric. The statements below

are equivalent.

(a) A is positive semi-definite.

(b) All principal minors of A are nonnegative.

(d) All eigenvalues of A are nonnegative.

(e) There exists a matrix G such that A = GTG.

(f) For every e > 0, A + eI is positive definite.

Moreover, if A is symmetric positive semi-definite, there exists a unique

symmetric positive semi-definite matrix denoted by A l / 2 such that A =

(A 1 ! 2 ) 2 . This matrix A l / 2 is called the square root of A. ❑

 



2.2 MATRIX ANALYSIS	 67

2.2.18 Remark. The analogue of part (c) in Proposition 2.2.16 fails to

characterize positive semi-definiteness. This explains the absence of part

(c) in 2.2.17. For example, the matrix

	0 	 0
A=

0 —1

satisfies the analogue of part (c) in 2.2.16 but fails part (b).

Next, we define the class of diagonally dominant matrices.

2.2.19 Definition. A matrix A E RTh>< is row diagonally dominant if

uii	 Iaij1,	 i =1,...,n, 	(7)
j ^i

and strictly row diagonally dominant if strict inequality holds for all i.
The matrix A is irreducibly row diagonally dominant if it is irreducible,

diagonally dominant and strict inequality holds in (7) for at least one i.

The matrix A is column diagonally dominant if its transpose is row

diagonally dominant. The concepts of column strictly diagonally dominant

and column irreducibly diagonally dominant are defined analogously.

Clearly, the property of (strict) diagonal dominance of a matrix is in-

herited by it principal submatrices. Other properties of these matrices are

listed in the result below.

2.2.20 Proposition. Let A E Rn"n. The statements below hold.

(a) If A is either (row or column) strictly or irreducibly diagonally dom-

inant, then A is nonsingular.

(b) If A is symmetric, strictly or irreducibly diagonally dominant, and

has positive diagonal entries, then A is positive definite.

(c) If A is symmetric, diagonally dominant and has nonnegative diagonal

entries, then A is positive semi-definite. ❑

Finally, we shall review the class of nonnegative matrices. A matrix A

is nonnegative if all its entries are nonnegative real numbers, and is positive
if all its entries are positive. We note that an n x n nonnegative matrix
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is irreducible if and only if (I + A)n — ' is positive. In particular, a square,

positive matrix must be irreducible.

The eigen-theory of nonnegative matrices, also known as the Perron-

Frobenius theory, has a wide range of applications; in particular, it plays

an important role in the convergence of iterative methods as well as in other

topics within matrix theory. We summarize some properties pertaining to

these special matrices.

2.2.21 Theorem. Let A E Rnxn be positive. Then,

(a) p(A) > 0;

(b) p(A) is an algebraically simple eigenvalue of A, greater than the mag-

nitude of any other eigenvalue;

(c) A has a positive eigenvector corresponding to p(A).

If A is nonnegative and irreducible, then,

(a') p(A) > 0;

(b') p(A) is an algebraically simple eigenvalue of A; moreover, if A is an-

other eigenvalue with .) = p(A), then A is also algebraically simple;

(c') A has a positive eigenvector corresponding to p(A); this eigenvector

is the only nonnegative eigenvector of A (up to scalar multiples).

If A is nonnegative, then, p(A) is an eigenvalue of A and A has a nonneg-

ative eigenvector corresponding to p(A). ❑

The above Perron-Frobenius theorem has many consequences. We give

one comparison result for the spectral radii of two nonnegative matrices.

2.2.22 Corollary. If A, B E Rn"fl and 0 < A < B, then p(A) < p(B);

moreover if A is irreducible, then p(A) = p(B) implies A = B. ❑

2.3 Pivotal Algebra

In this section, we focus on the mechanics of pivoting and some impor-

tant facts about the effects that the process of pivoting has upon certain

matrices. The development here continues to center around the linear com-

plementarity problem. As a matter of fact, we deal with the specific system
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of linear equations

	w = q + Mz	 (1)

where q E Rn and M E R >< . Of course, one recognizes (1) as a defining

equation for the LCP (q, M). The alternative representation

	Iw — Mz = q	 (2)

is also used, but to a lesser extent.

Just as in elementary treatments of linear programming, it is helpful to

record the data of an equation like (1) in a tableau or schema

1	 z

(3)
w q M

Elementwise, this tableau looks like

1	 z1	 •••	 zn

	w1 qi mil	 ...	 min

wn qn mni ... mnn

In the system of equations represented by (1), we think of wl, . .. , wn

as basic variables and z1, ... , z, as nonbasic variables. These terms (which

are borrowed from linear programming) have the synonyms dependent vari-

ables and independent variables, respectively. The same terminology ap-

plies to (2) and (3).

The essential point about the basic variables is that the columns asso-

ciated with them are linearly independent as is clearly the case in (1) and

(2). The matrix of columns associated with a maximal set of basic variables

is called a basis (in the matrix from which the columns are drawn).

For the most part, the basis matrices used here will be square and

nonsingular. When this is so, the system can be put into canonical form

with respect to any given basis. That is, we may write the system with the

vector of basic variables appearing by itself on one side of the equation.
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For example, the system (1) is in canonical form with respect to the basic

variables w (the associated basis being the identity matrix I). Similarly,

if the matrix M is nonsingular, the system (1) can be put into canonical

form with respect to the variables z. Doing so yields

z = -M- 'q + M-lw. (4)

In this representation of the system, the z-variables are basic and the w-

variables are nonbasic. Pivoting refers to changing the basic/nonbasic roles

of variables and to the process whereby the system of equations is put into

canonical form with respect to the new basis. Thus, the status of a variable

as basic or nonbasic is not necessarily fixed.

An exchange of two variables—one basic, the other nonbasic—is called

a simple pivot. Consider the system (1) and assume that mrs 0. Then

(and only then) the basic variable Wr can be exchanged with the nonbasic

variable zs . This amounts to a two-step procedure: first, solving the wr

equation for zs in terms of wr and the other variables; second, using this

new equation to substitute for z, in the other equations. Thus, in the first

step we have

-m 1zs = _ qr + r zj + wr. (5)
Mrs jzAs mrs mrs

This expression can then be used to eliminate z s from the other equations

of the system, thereby making the dependence of each basic variable on the

independent nonbasic variables explicit. This second step leads to

mis mis mis
wi = qj — ^lr + ^(mij — mrj )zj+ wr, i r. (6 )

mrs is mrs mrs

In this pivoting process, the nonzero scalar mrs is called the pivot element

and the operation is referred to as pivoting on mrs . We denote the pivotal

exchange by (Wr , zs). When r = s and the matrix M is square, the oper-

ation (wr , Zr ) is called a simple principal pivot in recognition of the fact

that the pivot element mrr is a principal submatrix of M.

Simple pivoting leads to a transformation of the problem data. To be

precise, we have
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qr = — gr/mrs

Ali = qj — (mis/mrs)gr	 (i r)

mrs = 1 /mrs

,nbgs = mis/mrs	 (i r)	
(7)

Tn/r = mr.7 /mrs	 (.i	 s)7

my^ = mij — (mis/mrs)mrj ( i r, j s).

Block pivoting is done in the analogous way. In a block pivot operation,

a set of basic variables is exchanged for a set of nonbasic variables of the

same cardinality. The analogue of a pivot element is a nonsingular sub-

matrix, called the pivot matrix or pivot block. The case where the pivot

block is a principal submatrix of M is called a block principal pivot and

the operation is called principal pivoting.

Principal pivotal transforms

Consider a system like (1) where q E Rn and M E Rn X n. Let a be a

subset of {1, ..., n} and suppose the principal submatrix M, is nonsingu-

lar. By means of a principal rearrangement, we may assume that M. is

a leading principal submatrix of M. Now write the equation w = q + Mz

in partitioned form:

wa=qa+Maaza+Maäzä
(8)

wä=qä+Mäaza+Mze•

Since Maa is nonsingular by hypothesis, we may exchange the roles of

wa and za thereby obtaining a system of the form

za = q + Mäawa + M^a zä
(9)

wd = qa + Mäaw ,  + Ma ze

where

qcY = — Maa qa
(10)

qä = q,, — M,,,,,	 qa

 



72	 2 BACKGROUND

and

Macy = Maa	 Maä = — Maa Ma x
(11)

Mä = M00, Maa Mää = Mää — M5a Maa Mad

The resulting matrix

M' M'M^ _ JL as	 ace	
(12)

Mc a Mcea

is called a principal pivotal transform of M with respect to the index set

a (and the nonsingular principal submatrix Maa ). Similarly, the vector

q

= f qa 1
r

q^

is called a principal pivotal transform of q with respect to the same index

set (and principal submatrix). The system (9) is the result of the principal

pivot operation applied to the original system (8) with Maa as the pivot

block.

To indicate that the system (9)

w'=q' +M'z'

is obtained from (1) by a principal pivot transformation with respect to

the index set a (and the nonsingular principal submatrix MMa ), we write

(q ' , M ' ) _ pa (q, M)

We also use this to express the fact that the LCP(q', M') is obtained from

the LCP (q, M) by pivoting on M. In the homogeneous case, where

q = 0, we abbreviate the notation to

M r =

This notation is useful in stating the following theorem. Before we come to

it, though, we wish to introduce the notion of a sign-changing matrix. Such

a matrix is diagonal, and each of its diagonal entries equals +1. For any

a C {1, . .. , n} let E5 denote the sign-changing matrix such that e ii = —1
if and only if i E a.
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2.3.1 Example. To illustrate the effect of pre- and post-multiplication by

E^ as in the next theorem, we consider the case of an n x n matrix M and

a leading index set a. Then

Maa Maä	 Macy — McaäEaMEa = Ea 	E^ _
M. Mßä	 — MäM. Mää

In general, for an arbitrary index set a, we have

m2^

mZ^
(E„MEa ) jj _

m2^

if i e a, and j Ea

if i e i, and j e^

if i e a, and j Ea

if iEa, and j Ea

2.3.2 Theorem. Let M E R^ X ”' have the nonsingular principal submatrix

M. Then

(P^'(M))T = Ea(a(MT ))Ea.	 (13)

Proof. This formula follows from an essentially routine calculation that

makes use of the following facts:

1. Pre- and post-multiplication by Ea changes the signs of the of

diagonal blocks but not the diagonal blocks.

2. (MT)ca = (M
aa )`I' _:M äa .

3. (Ma)T= (M )'.

4. (Maß) T = (MT )ßa.

(Note: Mßä = (M)'.) ❑

It is useful to note that principal pivots can destroy symmetry. More

precisely, if the matrix M is symmetric, a principal pivotal tranform of M
need no longer be symmetric (cf. (11) and (12)). Actually, the principal

pivotal transform M' of a symmetric matrix M has the bisymmetric prop-

erty (defined in Section 1.2). Up to a principal rearrangement, it is of the

form (12) where

Maa = (M)T, M
	 (Mää)T, M

	 _(M)T.
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It can be shown, in general, that every principal pivotal transform of a

bisymmetric matrix is again bisymmetric. Furthermore, as we shall show

in Section 4.1, principal pivoting preserves positive semi-definiteness, defi-

niteness, and several other properties of interest.

It is important to realize that a given linear complementarity problem

(q, M) and its principal pivotal transforms pa (q, M) are equivalent in the

sense that from a (feasible) solution of (q, M) one can obtain a correspond-

ing (feasible) solution of g. (q, M).

2.3.3 Proposition. Let (q', M') = g (q, M). If z is a (feasible) solution

of the LCP (q, M) and zu = q + Mz, then a (feasible) solution of (q', M')

is given by

wj ifiea
zi =	 ❑

z2 ifiEa.

This simple observation can sometimes be advantageously used in con-

nection with existence results or with algorithms.

Principal pivoting is closely connected with complementary matrices

and cones. (See Section 1.3.) For instance, consider the complementary

matrix
—Maa 0

B = —Maa I

with respect to the index set a. If q E Rn is such that B—l q > 0, then q is

an element of the complementary cone pos B. Thus, the LCP (q, M) has

the solution (w, z) with

w =(0,qä—MäaM„„ga) and z =(—M qa, 0 )•

The thing to notice is that if we (block) pivot on MMa in (1) and then set

the nonbasic variables of the resulting system to zero (i.e., wa = 0 and

za = 0), we obtain exactly the above displayed solution of the LCP.

In summary, if a principal pivotal transform of (1) gives a vector q' (see

(10)) that is nonnegative, then we immediately obtain a solution to the

LCP (q, M). Hence, principal pivoting can be looked upon as a strategy

for solving the LCP (q, M) by attempting to achieve a nonnegative principal

pivotal transform of the vector q. This is not to say that the strategy always
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works, but when it does, a solution of the LCP is easily identified. Much

of Section 4.1 is devoted to developing results that support this solution

strategy.

The Schur complement

The matrix M . = M — MM IX in (11) is an instance of

a Schur complement, a type of matrix that arises in many contexts in

numerical linear algebra. It is of considerable importance in the linear

complementarity problem. The notion of a Schur complement is actually

a bit more general than the one just illustrated.

2.3.4 Definition. Let A ll be a nonsingular submatrix of the R"Z" matrix

All A l 2
A =

A2 1 A22

Then A22 — A21Ali Al2 is the Schur complement of All in A, denoted

(A/All) .

Notice that the matrix A in this definition need not be square as our ma-

trices M of the LCP are. Actually, the case of a square matrix helps to

motivate the quotient-like notation just introduced.

Expression (12) shows that the Schur complement of Maa in the square

matrix M appears as a principal submatrix of the principal pivotal trans-

form yea (M).

The next result shows how the nonsingularity of a square matrix is

related to the nonsingularity of the Schur complement of any one of its

nonsingular principal submatrices, and how the inverse of M (if it exists)

can be expressed in terms of the Schur complement.

2.3.5 Proposition. If M is a square matrix having the block partitioned

form
M11 M12

M=
M21 1422

where det M11 0, then

det M/ det Mll = det(M22 — M21M j'M12) = det(M/M11).	 (14)
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If, in addition, N = (MIMII ) is nonsingular, then

	M- - Mll 1 +Mii1M,2N-'M21M111 -M111M12N
-1	

151	 (	 )

-N- 1M21Mii1	
N-1	 j

Proof. Direct multiplication shows that

I	 0	 Mll M12	 Mll M12
=	 (16)

-M21 M, j' I	 M21 M22	 0	 N

Taking determinants on both sides of the above equation, we obtain

det M = (det M,1) (det N),

which clearly implies (14).
If both M11 and N are nonsingular, then M-1 exists by (14). To derive

the inverse formula (15), we note that

I -M12N-1 	M1, M12	 M,1 0

0	 I	 0 N	 0 N

This equation, together with (16), easily establish the desired inverse ex-

pression (15). ❑

Equation (14) is called Schur's determinantal formula. It is clear that

under the hypotheses of 2.3.5, M is nonsingular if and only if (M/MI,) is
nonsingular.

We come next to another property of the Schur complement.

2.3.6 Proposition. Let M be a square matrix with block partitioned form

All Ail A13
it'll , M12

M =	 = A21 A22 A23
M21 M22

A3, A32 A33

where

All Al2
=

A21 A22
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If M11 and All are nonsingular, then

(M/M11) = ((M/A11)/(M11/A11)). 	 (17)

Proof. Consider the systems

Ui = M11v1 + M12v2	
(18)

U2 = M21v1 + M22v2

and
Y1 = A11z1 + Al2z2 + A13z3

P2 = A21z1 + A22z2 + A23z3	 (19)

Y3 = A31z1 + A32z2 + A33z3•

In conformity with the relationships between the blocks 	(i, j = 1, 2)

and Ak,1 (k, 1 = 1, 2, 3), we have

u1 = (Y1, y2)	 V1 = (zi, z2)

u2 =Y3	 v2=z3

The Schur complement (M/M1 1) is produced by (ul, v 1 ), i.e., by pivoting

on M11 in (18). The same effect is produced by performing two block pivots

in (19), namely (y1, zl) followed by (y2 , z2 ). The pivot block for (y2, z2) is

the leading principal submatrix of (M/A ll ) given by (M11/A11). Thus, we

have (17). ❑

Equation (17) is called the quotient formula for the Schur complement.

One feature to notice is how it formally resembles the algebraic rule used

for simplifying a complex fraction.

Principal pivoting in conjunction with the quotient formula leads to a

technique for determining whether the leading principal minors of a square

matrix are positive (or are nonzero). Let the given matrix be M. If m11

is nonpositive (zero), we stop. Otherwise we pivot on mii. The lead-

ing entry of (M/rnll) is the leading principal minor of order 2 divided by

mi l. Checking this ratio, we decide whether or not to continue. For exam-

ple, suppose we are interested in positive leading principal minors. Since

det m11 = m11, we can ascertain by inspection whether the leading princi-

pal minor of order 1 is positive. Suppose it is. Next, we want to find out
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whether the leading principal minor of order 2 is positive. We note that

when m11 > 0:

71111 m12
det 	>0

m21 m22

if and only if

m11 m12
(M/mll)11 = (1 /detmi1)det 	>0.

m21 m22

If we obtain an affirmative answer, we then proceed to test the leading

principal minor of order 3. This is done by performing a simple principal

pivot on the leading entry of the previously obtained Schur complement,

that is, (M/rnll). The leading entry of the new Schur complement is the

leading principal minor of order 3 divided by the leading principal minor of

order 2. The procedure continues in this manner. If M is of order n, then

at most n — 1 simple principal pivots are required to complete the test.

With each successive step, the order of the matrix in which the pivoting is

done is one less than in the preceding step.

To make this more precise, let Mk denote the leading k x k principal

submatrix of M, and let

M (k) = (M/Mk).

This is the same as the Schur complement on hand after k simple principal

pivots as described above. The leading entry of M (k) is

m11 = (Mk +1 /Mk),

and we have

m(k) = det m ik) =
 det Mk _{_ 1

11	 11	 det Mk

In theory, this test can be used to determine whether a symmetric ma-

trix M E Rn"Th is positive definite. In practice, however, one can run

into the problem of round-off error when implementing the procedure on a

computer.
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Lexicographic ordering of vectors

An unfortunate fact of life is that the usual linear ordering of the real

number system does not hold in higher dimensions. For instance, we can

say that (1, 0) > (0, 0) and (0, 1) > (0, 0) but there is no such relationship

between (1, 0) and (0, 1). The notion of lexicographic ordering of vectors

remedies this problem in a particular way.

2.3.7 Definition. The nonzero vector x E Rn is lexicographically positive

(negative) if and only if its first (i.e., lowest indexed) nonzero component

is positive (negative). If x is lexicographically positive (negative) we write

x >- 0 (x - 0). A vector x is lexicographically nonnegative (nonpositive)

if and only if it is either zero or lexicographically positive (negative). The

symbols for the latter conditions are x 0 and x 0, respectively.

It is clear from this definition that every vector in R' is either lexi-

cographically positive, lexicographically negative, or zero. This is not the

case with the ordinary partial ordering of vectors through the relations >

and <.

2.3.8 Definition. Let x and y be arbitrary vectors in R. Then x is lexi-

cographically greater than (less than) p if and only if x — y >- 0 (x — y - 0).

In the former case, we write x >- y whereas in the latter we write x - y.

In general, for vectors r and p in Rn we have precisely one of the fol-

lowing three cases: x -< y, x >- y, or x = y. By analogy with the previously

defined notation, we have the two possibilities: either x - y or x h p.

2.3.9 Proposition. Every nonempty finite subset of R' has a unique lex-

icographic maximum and a unique lexicographic minimum. ❑

In this proposition it is understood that the elements of the finite set

are all distinct from each other. Finding the lexicographic maximum (or

minimum) of such a set is a simple matter. Let {b', ... , b} be a finite set

of vectors in Rn, no two of which are equal. The first step is to compute

µ l = arg max{bi : i = 1,... , m}.

If µ l is a singleton, say r, then bT >.- bz for all i	 r, so bT is the lexicographic

maximum of the set. If ui contains more than one element, compute

µ2 = arg max{bz : i E µi }.
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The process is repeated in this manner component by component until a

(necessarily unique) lexicographic maximum is found. Needless to say, the

search for the lexicographic minimum is done analogously.

A common procedure in simplex-like methods of mathematical pro-

gramming is the minimum ratio test. It arises in connection with systems

of equations of the form

xa z + ai,xs = bi i = 1, ... , m	 (20)

in which bi > 0 for all i. We call (the nonbasic variable) x, a driving

variable as it "drives" the values of (the basic variables) X ai . One wants to

know the largest value of x 5 for which xa^ > 0 for all i; this value is given

by

s = sup{x s : bi — a2 1x s > 0, for all i = 1, ... , m}.

It is evident that § s = oc if and only if aZ 8 <0 for all i. On the other hand,

if ai 8 > 0 for some i, then

x,s = min{ b2 : ai8 > 0 }.
als

Finding r such that ars > 0 and s = b / a,.8 is the minimum ratio test.

We call xa ,r a blocking variable as it blocks the increase of the driving

variable x 8 . However, if s = oc, we say that x S is unblocked. Making x s a

basic variable in place of xa ,r preserves the nonnegativity of the constants

on the right-hand side of equation (20).

There is an analogous development in terms of lexicographic ordering.

Let B denote a nonsingular m x m matrix with the property that the

m x (m+ 1) matrix [b, B] has lexicographically positive rows. (For instance,

when b> 0 one can choose B = I, the identity matrix of order m.) Suppose

the pivoting is to be done so as to preserve the lexicographic positivity of

the transform of [b, B]. Again, under the assumption that a28 > 0 for some

i, this can be accomplished by finding

lexico min { 1 [bi z Bi.] : a2 8 > 0 }.
ais

Doing this identifies an index r such that

I [br , Br .]	 1 [bi, Bi.]	 for all i r.
a,s	 ai5
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Pivoting on ars transforms the matrix [b, B] into another matrix [b', B']

for which
1

[br Br. ][ br Br.
ars

and

[bz BZ.] = 1 [arsbi — a25br arsBi. — ai 5 Br.] for all i r.
ars

2.3.10 Proposition. The rows of [b', B'] are linearly independent and

lexicographically positive. ❑

2.4 Matrix Factorization

Many solution methods for the linear complementarity problem are

based on the solution of linear equations. As a matter of fact, the pivot-

ing process discussed in Section 2.3 is, in practice, implemented by solving

systems of linear equations. For this reason, it is important to understand

the algorithms and underlying theory of this aspect of linear algebra.

In this section, we focus on the topic of matrix factorizations which

forms the theoretical foundation of the finite elimination methods for solv-

ing linear equations. There are many kinds of matrix factorizations; we

review only the LU and Cholesky factorizations. The reader can find an

extensive discussion of these and other matrix computations in the text by

Golub and Van Loan (1989).

2.4.1 Theorem. Let A E R"'. Suppose that the first n — 1 leading

principal minors of A are nonzero. Then, there exist a lower triangular

matrix L with unit diagonal entries, and an upper triangular matrix U
such that

A = LU. ❑ 	 (1)

The representation (1) is called the LU (or triangular) factorization

of A. The assumption about the principal minors in Theorem 2.4.1 is

essential for this factorization to be valid. For example, the matrix

A=01110

 



82	 2 BACKGROUND

has no LU factorization. This assumption about the leading principal mi-

nors can be dropped provided that one allows permutations of the rows and

columns of the matrix A. This is the assertion of the following generalized

triangular factorization result.

2.4.2 Theorem. Let A E R"". Then, there exist permutation matrices

P and Q, a lower triangular matrix L with unit diagonal entries, and an

upper triangular matrix U such that

PAQ = LU. ❑ 	 (2)

Both Theorems 2.4.1 and 2.4.2 can be proved constructively, i.e., by

means of an algorithm which actually produces the desired factorization.

The proof itself is quite insightful and reveals several interesting facts about

the factorization. In what follows, we sketch the proof of 2.4.1.

Let El denote the elementary matrix

1	 0	 0

—a21/ali	 1 ... 0

Ei =

—an l/all 0 ... 1

which is well defined because all is nonzero. Premultiplying the matrix A

by El yields the product matrix

Ai
E 1 A =

all 

0	 (A/ali)

where Ai denotes the first row of A with all deleted. Note that in the

matrix El A, the first column of A is reduced to a unit vector with all

entries below the main diagonal equal to zero, and the Schur complement

(A /all) appears in the lower right block; this Schur complement is of order

n — 1 and has the property that its first n — 2 leading principal minors are

nonzero; the latter property follows from the Schur determinantal formula

(2.3.14) and the quotient formula (2.3.17).
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Repeating the above elimination process n -1 times, we deduce there ex-

ist elementary matrices El , E2 , ... , En _ 1 such that for each k = 1,...,n- 1,

Ek ...El A =
Ail	 Ai2

0 (A/Ak)

where A1 1 is upper triangular and Ak is the k-th leading principal Subma-

trix of A; moreover, each Ek is a lower triangular elementary matrix with

unit diagonal entries and all entries equal to zero except for those below

the k-th column. The desired factorization (1) is given by:

An -1	 An -1

	L = (E_1... ,,1)-1, 	U =	
11	 12

0 	(A/An_1)

Several observations can be drawn from the above argument: one, the

factorization can be written in the form LA = U where L -1 is the

product of n — 1 special elementary matrices; two, the lower triangular

factor L is itself the product of elementary matrices; and three, if A is

written in the partitioned form:

rAll A l2	A — 	1
IL A21 A22 

JI

where A ll is nonsingular and if L and U are similarly partitioned:

L11	 0	 U11 U12
L=	 , U=

	L21 L22	 0 U22

then L11U11 and L22U22 are, respectively, the LU factorization of A ll and

that of the Schur complement (A/A 11 ). It follows from this last observation

that the determinantal formulas below are valid:

det A ll = det U11 det(A/A ll ) = det U22 i	 (3)

in particular, det A = det U.

The representation of the matrix L as a product of elementary matrices

is useful when dealing with large-scale sparse matrices. This is because

when A contains many zero entries, the nonzero entries in each elementary

matrix Ek will tend to be relatively few, whereas the product Ek ... El
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will typically be much denser. Thus, by storing only the nonzero entries of

the individual elementary matrices, one can substantially reduce the total

amount of storage and therefore can handle sparse problems of large size

more effectively.

The Cholesky factorization

A particular instance in which the assumption of Theorem 2.4.1 is sat-

isfied occurs in the case of a symmetric positive definite matrix. Indeed, if

A is such a matrix, then according to Proposition 2.2.16, all the leading

principal minors of A are positive. Thus, 2.4.1 is applicable. Moreover,

in this case, the diagonal entries of U are all positive (this follows from

the determinantal expressions in (3) and an inductive argument); by fac-

toring out the diagonal entries of U, we can show that the resulting upper

triangular factor is actually equal to the transpose of L. We state this fac-

torization more precisely in the result below which provides an additional

characterization of a symmetric positive definite matrix (cf. Proposition

2.2.16).

2.4.3 Proposition. Let A E R"i"n be symmetric. Then A is positive

definite if and only if there exist a unique diagonal matrix D with positive

diagonal entries and a unique lower triangular matrix L with unit diagonal

entries such that

A = LDLT. ❑ 	 (4)

2.4.4 Definition. The factorization (4) is known as the Cholesky factor-

ization of the symmetric positive definite matrix A.

The Cholesky factorization of a symmetric positive definite matrix A

is not difficult to compute. Indeed, the following recursion defines the

diagonal entries of D and the lower off-diagonal entries of L:

d11 = all

and for i= 2, ... , n,

al/d11	 if j = 1

lZ^	 (aij — Ek<j likdkkljk)/djj if 2 < j <i

2
dii = aii — Ek<i likdkk-
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The Gaussian elimination method

The basic method for solving a system of linear equations

Ax = b	 (5)

where A E Rf"Th and b E Rn are given, is Gaussian elimination. This

method is based on the triangular factorization of A as the product of a

lower triangular and an upper triangular matrix. To simplify our discus-

sion, we assume in the sequel that the determinantal assumption in Theo-

rem 2.4.1 is satisfied, and write A = LU where L and U are as specified

in that theorem. Then, the solution of the system (5) can be accomplished

in two steps.

1. Solve the lower triangular system

Ly = b.	 (6)

2. Solve the upper triangular system

Ux = Y.	 (7)

Since L is a lower triangular matrix with unit diagonal entries, the vector

y satisfying (6) is unique and can be computed by forward substitution;

similarly, a desired solution x of the system (5), if it exists, can be obtained

from (7) by backward substitution.

In the practical implementation of the Gaussian elimination process,

care must be taken to reduce the adverse effect of round-off errors. In

particular, even in cases where A has the LU factorization as specified in

Theorem 2.4.1, it is often necessary to permute some rows and columns of

A during the factorization process in order to avoid division by quantities

whose magnitude is too small. There are various strategies to accomplish a

numerically stable factorization; the discussion of these numerical schemes

is beyond the scope of this book, but can be found in many references, see

2.11.8.

Updating matrix factorizations

In many solution methods for the LCP that require the recursive solu-

tion of systems of linear equations (as well as in a host of other instances

 



86	 2 BACKGROUND

within the field of mathematical programming), it is often the case that

each system of linear equations is modified only slightly from one iteration

to the next. As a matter of fact, the change often involves a simple rank-

one, or rank-two matrix. Since the change is so minor, one would hope that

by means of a relatively easy updating procedure, it is possible to compute

the desired factorization of the modified matrix from the known factoriza-

tion of the preceding matrix. Besides saving computational effort, such a

matrix factorization updating scheme often helps to reduce round-off errors

and preserve sparsity, thus obtaining the factorization more accurately and

effectively.

Since a full description of the various factorization updating schemes is

outside the domain of this book, we choose to illustrate the main idea using

the Cholesky factorization of a symmetric positive definite matrix modified

by a symmetric rank-one matrix.

Let A E RnXn be a symmetric positive definite matrix with a given

Cholesky factorization

A = LDLT.

Let

A = A+QaaT

be positive definite. We wish to determine the factorization of A:

A = LDLT.	 (8)

The way to accomplish this is to note that

A = LDLT + uaaT = L(D + Qää^LT

where a = L'a. Due to the special structure, the Cholesky factorization

of the matrix D + aä T (which is positive definite because A is so) can be

easily computed. Writing

D + aaäT = LDLT,

we obtain the desired factorization (8) with

L =LL and D=D.

The algorithm stated below summarizes a streamlined procedure for

the computation of L and D which bypasses the explicit evaluation of L.
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In the statement of the algorithm, di ' s denote the (given) diagonal entries

of the matrix D.

2.4.5 Algorithm. (Gill-Golub-Murray-Saunders)

Step 1. Define ul = a and p l = a.

Step 2. For j = 1, 2, ... , n, compute

dj = dj+aj(p') 2

pj Uj /dj

a7+ 1 = djuj/dj ,

and for r= j +1,...,n,

1
Pr 	 = Pr — pj lrj

lrj = lrj + N pr

If the given matrix A is sufficiently positive definite, that is, if its small-

est eigenvalue is sufficiently large relative to some norm of A, then the above

algorithm is numerically stable and round-off error tends not to cause se-

rious problem. However, if a is negative and A is near singularity, it is

possible that round-off error could cause the diagonal elements dj to be-

come very small. In such cases, extreme care is needed, and some other

numerical schemes might be preferred.

2.5 Iterative Methods for Equations

In this section, we review some basic iterative methods for solving sys-

tems of equations and their convergence theory. In the case of linear equa-

tions, the emphasis of the discussion is placed on the class of iterative

methods that are derived from a matrix splitting. These methods will form

the basis for generalization to the linear complementarity problem. In the

case of nonlinear equations, we shall describe the basic Newton method

and the contraction principle. We conclude this section with a brief review

of a general descent method for unconstrained minimization and a globally

convergent Newton method for nonlinear equations.
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Linear equations

Let A E Rn x n and b E Rn be given. Consider the system of linear

equations

Ax = b.	 (1)

Suppose that A is expressed as the sum of two matrices B and C, i.e.,

A =B+C.	 (2)

This representation is called a splitting of the matrix A. Given such a

splitting of the matrix A, a sequence of vectors {x"} C Rn can be generated

as follows: let x 0 be arbitrary; in general, given x', we obtain the next

iterate x l by solving the system

Bx = b - Cxv;

thus,
xv+z = B-l b - B- 'Cx"	 (3)

provided that B is nonsingular.

In order for the above iteration to be practically effective, the matrix

B must be chosen so that the vector xv+' can be easily computed. Some

common choices of B are: a diagonal matrix with nonzero diagonal en-

tries, a nonsingular triangular matrix, and a block diagonal matrix with

nonsingular diagonal blocks. In particular, if the matrix A is written as

A =D+L+U

where D, L and U are the diagonal, strictly lower and strictly upper tri-

angular parts of A respectively, and if D is nonsingular, then the choice

B = D leads to the Jacobi iterative method in which the sequence {x"} is
defined recursively by: for v = 0, 1, 2, ...

xv" = 
(bi -	 aijx^ )1 aii,	 i = 1, ... , n.	 (4)

j=i

When B = D + L, we obtain the Gauss-Seidel method in which

v+l
=
	 —	 v-^-1 —	 v

xi	 — ( bi	 aijxj	 asjxj)/aii,	 2 = l ... n.

j<i	 j >i
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The difference between the Jacobi method and the Gauss-Seidel method

is that in the latter, the components {x l } for j < i are employed to

update the i-th component of xv+l whereas in the former, none of the

computed components of x 1 are used in the computation of the remaining

components. Thus, the Gauss-Seidel method is a sequential procedure in

the sense that the components of xv+l are updated successively, and the

Jacobi method is a parallel scheme, meaning that the components of xv+l

can be updated simultaneously.

A generalization of the Gauss-Seidel method is the family of succes-

sive overrelaxation (abbreviated as SOR) methods. In these methods, the

matrix B is given by

B=cw-1D+L

where w is a given parameter in the interval (0, 2). With the matrix B as

given, the sequence {x"} is defined by the recursion:

v+i	 —i( —	 v+i 
—	 ^)xi	 = xi

v i WQ ii bg	 Clijxi	 Clijxj	 i = 1 , .. . 7L.

j<i	 j>i

When w = 1, we recover the Gauss-Seidel method.

In general, given the splitting (2) of the matrix A, the question arises

as to when the sequence {xv} defined iteratively by the expression (3) will

converge to a solution of the basic system (1). The following theorem

provides a complete characterization of this convergence.

2.5.1 Theorem. Let (2) be a splitting of the matrix A E Rn x " with B

nonsingular. Then for an arbitrary starting vector x ° E RTh , the sequence

{x"} generated by (3) converges to the (unique) solution of the system (1)

if and only if the matrix B -1 C is convergent, i.e., if p(B -1 C) < 1. ❑

2.5.2 Remark. It follows from Proposition 2.2.14 that if B is nonsingular

and if B -1 C is convergent, then A must be a nonsingular matrix. Hence,

the system (1) has a unique solution.

When the matrix A is symmetric, some specialized convergence results

can be established. The following theorem provides a necessary and suf-

ficient condition for the matrix B -1 C to be convergent under a positive

definiteness assumption on the matrix B — C.
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2.5.3 Theorem. Let (2) be a splitting of the matrix A E Rn >< with B

nonsingular. Assume that A is symmetric and B — C is positive definite.

Then p(B -1 C) < 1 if and only if A is positive definite. ❑

Specializing this result to the SOR method, we obtain the well known

Ostrowski-Reich theorem for the convergence of this method.

2.5.4 Corollary. Let A E RTh x n be symmetric with a positive diagonal.

Then the sequence {x"} produced by the SOR method converges for all

w E (0, 2) if and only if A is positive definite. ❑

The convergence results discussed so far pertain to nonsingular systems

of linear equations. For singular systems, the following result gives an

extension of Theorem 2.5.3.

2.5.5 Theorem. Let (2) be a splitting of the matrix A E Rf X "' with B
nonsingular. Assume that A is symmetric and B — C is positive definite.

Then for any vector b in the range of A and any starting vector x0 E R', the

sequence {x"} generated by (3) converges to some solution of the system

(1) if and only if A is positive semi-definite. ❑

Nonlinear equations

In this subsection, we review Newton's method for solving a system

of nonlinear equations and the contraction principle for computing a fixed

point of a mapping. We start with the former. Consider the system:

f(x)=0 (5)

where f is a mapping from R"'' into itself. In Newton's method for solving

this system, the mapping f is assumed to be continuously differentiable.

This method generates a sequence of iterates {xv} in the following way.

Given the iterate x', we linearize f at x" and get the next iterate xv+l by

solving the resulting system of linear equations:

f(x') + 17f(x v )(x — x") = 0.

Assuming that the Jacobian matrix 7f (x") is nonsingular, we obtain x1

as
xU+1 = x" — Vf(x') —l

f(x')	 (6)
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The convergence of the Newton sequence {x"} is ensured by the following

result.

2.5.6 Theorem. Suppose that x* is a zero of f and that f is continuously

differentiable in a neighborhood of x*. Suppose also that the Jacobian

matrix V f (x*) is nonsingular. Then there exists a neighborhood of x* such

that if the initial iterate x 0 is chosen in it, the entire Newton sequence {x'}

is well defined and converges to x*. Moreover, if V f is Lipschitz continuous

at x*, then the rate of convergence is quadratic; i.e., there exists a constant

c> 0 such that for all v sufficiently large,

	x v + l — x * 11 < c((xv — x * 11 2 . 	 ❑

Two important features of the above convergence result are worth men-

tioning. First, 2.5.6 asserts only the local convergence of the sequence

{x"}; that is to say, the initial iterate x° must be chosen sufficiently close

to the solution x*. Second, under an additional Lipschitzian assumption

on the derivative Vf, the convergence rate of the method is quadratic;

the latter property is what makes Newton's method rank among the most

effective computational schemes in practice.

Both Newton's method (for nonlinear equations) and the matrix split-

ting method (for linear equations) are based on the idea of a fixed-point

iteration. This is a computational scheme for finding the (unique) fixed

point of a function of a special type. More specifically, let g : Rn —} R"' be

a mapping whose fixed point is being sought. One may generate a sequence

{x"} by choosing an arbitrary starting point x° and by letting

	x v+l = g(xv),	 u= 0,1,2  ....	 (7)

This is known as a fixed-point iteration. Clearly, the iteration (3) corre-

sponds to the iteration (7) for finding the fixed point of the affine mapping

	g(x) = B —l b — B -1 Cx.	 (8)

Similarly, the Newton iteration (6) is derived from the mapping

	g(x) = x — V f (x) —' f (x)-	 (9)

Rigorously speaking, the latter mapping g is defined only at those points

x at which the Jacobian matrix V f (x) is nonsingular. We shall return to
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more discussion of this later. For now, we introduce the following important

concept.

2.5.7 Definition. A mapping g : D C Rn —p R' is said to be nonexpan-

sive if there exist a vector norm on R and a constant c E (0, 1] such

that for all x, y E D,

IIg(X) —g(y)II <— cdlx — YII

If c < 1, g is said to be contractive, or a contraction.

Note that a nonexpansive mapping is Lipschitz continuous with modulus

given by c.

2.5.8 Theorem. (Contraction Principle) Suppose that g : R' — Rn

is a contraction (with constant c E (0, 1) and with respect to the norm

II • II). Then for any starting vector x 0 , the sequence {x"} generated by the

iteration (7) converges to the unique fixed point x* of g. Moreover, the

following error estimate holds: for v = 1, 2, 3, ...,

Xv — x* II << 1 c c II Xv — X
v-1 11 ❑

The contraction principle can be used to demonstrate the convergence of

a sequence without the explicit reference to a particular mapping g. More

specifically, we say that a sequence of vectors {x'} C Rn is a contraction

if there exist a vector norm I • I on R'' and a constant c E (0, 1) such that

for all v, 

Ilxv+l _xv11 <cIlxv— xv -1 11•
Similar to 2.5.8, one can show that every contraction sequence must con-

verge. Of course, if there is no contraction mapping associated with such

a sequence, then the limit of the sequence need not be a fixed point of a

mapping.

By Proposition 2.2.11, one can easily show that if g is an affine map-

ping, then g is a contraction if and only if p(Og(x)) < 1. Hence, specializing

the above theorem to the mapping (8), one obtains 2.5.1. To deduce the

convergence of Newton's method, we need a local version of 2.5.8.

2.5.9 Theorem. Suppose that g : D C R"' —# R"` is F-differentiable at the

fixed point x* E intD. If p(Og(x*)) < 1, then there exists a neighborhood
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N C D of x* such that for any starting vector x° chosen from N, the

sequence {xv} generated by the iteration (7) remains in N and converges

to x*. ❑

It should be pointed out that in the above result, the mapping g is

assumed to be F-differentiable at just the fixed point x*; its differentiability

at other points is not assumed. The reader is asked to show that the

mapping (9), which gives rise to Newton's method, satisfies the assumption

of this theorem; see Exercise 2.10.13.

Descent methods for equations and optimization

A practical drawback of the basic Newton method for solving the sys-

tem of equations (5) is that the initial iterate needs to be chosen close

to a solution in order to ensure the convergence of the sequence gener-

ated. There are various ways to overcome this weakness of the method;

the general idea is to devise schemes to enlarge its domain of convergence.

In what follows, we describe a commonly used approach, known as the

damped Newton method, for accomplishing this objective. Our choice of

this particular method as the subject of discussion serves two purposes.

One is as just explained; the other is to make use of this opportunity to

review a basic technique for solving optimization problems that is itself

useful in the context of the LCP.

The main idea involved in the modified Newton method is to simply

dampen the Newton step. More specifically, rather than defining the next

iterate x"+ 1 directly by (6), we let d' denote the (unique) solution of the

system of linear equations

f(x') + Vf(x v)d = 0, (10)

and then define x 1 as

xv+l = x
v + T dv

where T„ E (0, 1] is a certain scalar, called the steplength or stepsize.

Typically, this stepsize is chosen so that for a certain real-valued function

9 : — R, we have
9(xv+ 1 ) <0(x")	 (11)
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Such a function, if it exists, is called a merit or potential function for the

method. A natural question arises: for the vector d" defined above, what is

an appropriate merit function? Before answering this question, we digress

a little to discuss a basic technique for solving optimization problems.

The underlying theme of the damped Newton method outlined above

is rooted in the problem of unconstrained minimization, i.e., the problem:

minimize 0(x) : x E RTh (12)

where 0 : R — R is a real-valued function. Central to the latter problem

is the notion of descent as defined below.

2.5.10 Definition. Let 0 : Rn — R be a directionally differentiable func-

tion. A vector d E Rn is called a descent direction for 0 at a point x if

0'(x, d) < 0.

By the definition of the directional derivative (see 2.1.18), it follows

that if d is a descent direction for 0 at x, then

0(x + Td) <0(x)

for all r > 0 sufficiently small; this implies that by starting at the vector x
and moving along the direction d, then provided that the movement is not

too far away from x, a strict decrease in the value of the objective function

0 is guaranteed. Presumably, this decrease is desirable as we are trying to

minimize 0. Note that if no descent direction exists for 0 at x, then x is a

stationary point for 0.
In general, the descent property (11) of a sequence of iterates {x"} is

far from being sufficient for its convergence. An additional notion that is

important in this regard is that of sufficient decrease. More specifically, if

x is a current iterate and d is a descent direction for 0 at x, then we want

to choose a stepsize T E (0, 1] such that

0(x +Td) — 0(x) < aT0' (x, d) (13)

where a E (0, 1) is a prescribed scalar that is independent of the pair

(x, d). In practice, the required steplength 'r is chosen to equal pm where

p, like a, is a prescribed scalar in the interval (0, 1), and m is the smallest
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nonnegative integer for which the inequality (13) holds (with T = ptm). The

constant p is called a backtracking factor.

When the system of equations (5) is cast as a minimization problem, a

natural objective function is

0 (x) = zf(x) Tf(x)•

Clearly, 0 is F-differentiable if f is so; in this case, we have

V0(x) =Vf(x) Tf(x)•

Hence, if d" satisfies the equation (10), then,

170(x') Tdv = —f (x)T f(x')

which is negative provided that f (xv) zA 0. Consequently, this vector d" is

a descent direction for 0 at x" if the latter is not a zero of f.
In Exercise 2.10.15, the reader is asked to establish several convergence

properties of the the descent method described above for solving the general

minimization problem (12), and to specialize the results to prove a global

convergence property of the damped Newton method for finding a zero of

the mapping f.

2.6 Convex Polyhedra

The linear complementarity problem is usually specified by a system

of linear inequalities and an orthogonality condition. (The latter can be

construed as a nonlinear equation.) In general, finite systems of linear

inequalities give rise to sets known as convex polyhedra, the main subject

of this section. Our focus here will be mainly on the geometric side of the

subject; the algebraic side is treated in the next section. Much of what we

do in these two sections is ordinarily included in books and courses dealing

with linear programming. Readers already familiar with the latter subject

(as we assume many will be) may safely skip ahead, but we advise at least

a glance at the terms, notations, and results recorded here.

Convex sets

The subject of convex sets was briefly touched on in Section 2.1. Here

we shall concentrate on convex sets of a certain type.
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2.6.1 Definition. A (convex) polyhedron is the intersection of finitely

many closed halfspaces.

A convex polyhedron is also called a polyhedral convex set. In situations

where the convexity is understood to hold, such a set is simply called a

polyhedron. As the intersection of closed sets, a convex polyhedron is itself

a closed set.

According to the preceding definition, a convex polyhedron is given as

the (possibly empty) solution set of a finite system of linear inequalities,

e.g.,

aTv>b2 i = 1,...,m.

This definition gives an external representation of the polyhedron, namely

through a finite collection of halfspaces that contain it. One of the fascinat-

ing aspects of the theory is how one also can describe a convex polyhedron

through an internal representation. We shall come to this shortly.

2.6.2 Definition. Let S be a nonempty subset of RTh . The convex hull

of S, denoted cony S, is the intersection of all convex subsets of Rn that

contain S. The affine hull of S, denoted affn S, is the intersection of all

affine subspaces in Rn that contain S.

2.6.3 Remarks. We note the following facts about the concept of convex

hull. (Similar facts hold in the case of affine hull.)

(a) Since the space in which S lies is convex, the convex hull of S is well

defined.

(b) A set S is convex if and only if S = cony S.

(c) The convex hull of a set S is defined externally, i.e., in terms of sets

that contain S.

The following theorem gives an internal characterization of a convex set

and hence also of the convex hull of a set.

2.6.4 Theorem. A set C is convex if and only if it contains every convex

combination of every finite subset of its points. ❑

It follows from the above theorem that the convex hull of a set S C

is equal to the set of all convex combinations of all finite subsets of points
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from S. In general, if a set S is not already convex, then taking the convex

hull of S is a process of filling in certain missing points in order to obtain

a set that is convex.

2.6.5 Definition. A polytope is the convex hull of a finite set of points.

The convex hull of two distinct points is a closed line segment; con-

versely, every closed line segment is the convex hull of its end points.

The convex hull of three noncollinear points is a triangle (with its inte-

rior points). Such a set is called a 2-simplex, whereas a closed line segment

is called a 1-simplex. To define simplices of higher dimension, one needs

the concept of points in general position.

2.6.6 Definition. A set of k + 1 points x ° , r 1 , ..., xYc E R" is said to be

in general position provided x 1 — X0
1
 xk — Xo are linearly independent

vectors.

The linear independence condition limits the cardinality of a set of

points in general position; in particular, no set of more than n+1 points in

n-space can be in general position. A set of k + 1 points in general position

determines a unique k-dimensional linear manifold.

2.6.7 Definition. A k-simplex is the convex hull of k +1 points in general

position.

A tetrahedron, for example, is the convex hull of 4 points in general

position. Points in general position are, in a certain sense, special. The

idea is formalized in the following definition which is of great importance

in the study of convex sets generally and convex polyhedra in particular.

2.6.8 Definition. Let C be a convex set. Then x E C is an extreme point

of C if and only if for all x 1 , x 2 E C and for all A E [0, 1],

x=Ax'+(1—A)x 2 forallx'^x 2 Ae{0,1}.

Geometrically, this definition means that an extreme point cannot lie

in the open line segment between any two distinct points of C. Nonzero

subspaces, linear manifolds, and halfspaces have no extreme points. In

general, open sets have no extreme points. Notice that the set of all extreme

points of a convex set need not be in general position.
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2.6.9 Theorem. Let S = {x', . . . ‚ } and let C = cony S. Every extreme

point of C is an element of S, and C is the convex hull of these extreme

points. ❑

The preceding theorem does not assert that every point of the generat-

ing set S is an extreme point of C; such a statement would not be true in

general.

2.6.10 Theorem. Every polytope is a compact set. ❑

We now ask the reader to recall the terms, "uses" and "support (of a

vector)" that are defined in Section 1.3. The first occurs in the paragraph

just above 1.3.2. The second is given in 1.3.3. These terms are clearly

related to one another. For example, when a vector x satisfies the system

of equations given by Ax = b, the representation b = At uses the columns

of A that are indexed by the elements of supp x. These terms lend precision

to one of the central concepts of linear programming and its extensions.

2.6.11 Definition. A basic solution of the system of equations Ax = b is

a solution that uses only linearly independent columns of A.

2.6.12 Theorem. If the system Ax = b has a nonnegative solution, then

the system has a nonnegative basic solution. ❑

The intimate connection between nonnegative basic solutions and ex-

treme points is summarized by the following result.

2.6.13 Theorem. Let t E X = {x : Ax = b, x > 0}. Then x is an

extreme point of X if and only if x is a basic solution of Ax = b. ❑

It follows from the above theorem that a convex polyhedron can have

only finitely many extreme points.

We close this subsection by introducing the important concept of rela-

tive interior of a set.

2.6.14 Definition. Let S be a subset of R. A vector x E S is called a

relative interior point of S if there exists an (open) neighborhood N of x

such that N f1 affn S C S. The relative interior of S, denoted ri S, is the set

of all relative interior points of S. The set cl S \ ri S is called the relative

boundary of S.
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In general, a convex set S C Rn need not have a nonempty (topological)

interior in Rn; nevertheless, it is a known fact that the relative interior of

a nonempty convex set must be nonempty.

Cones

Section 1.3 gives an indication of the important role played by cones in

the theory of the linear complementarity problem. See 1.3.1 for the basic

definition of a cone.

Since cones are nonempty, by definition, they all contain 0. Not all

cones are convex, however. Necessary and sufficient conditions for the

latter property are easily expressed.

2.6.15 Proposition. Let C be a cone. Then C is convex if and only if

C=C+C={z:z=x+y, x,yEC}. ❑

If X is a nonempty subset of RTh, the conical hull of X is the intersection

of all convex cones in R"` that contain X. Analogous to Theorem 2.6.4, one

can show that the conical hull of X is equal to the set of all nonnegative

linear combinations of all finite subsets of points from X. A few other

examples of cones are listed below.

(a) All linear subspaces.

(b) Finite cones, e.g., pos A where A E R Zxn

(c) Polyhedral cones, i.e., solutions of homogeneous linear inequality sys-

tems such as {x : Ax > 0} and R.

(d) Intersections of cones.

In Definition 1.5.1, we have introduced an important cone associated

with an arbitrary set S in R. This is the dual cone S* defined by

S*={y:yTx>0 forallxCS}.

We have also noted there that regardless of what property the given set S

might have, S* is always a closed convex cone. In what follows, we record

two other useful facts about this special cone.

 



100
	

2 BACKGROUND

2.6.16 Proposition. Let Si, ... , S, be subsets of R. Then,

(a)Si C S2	 S1 - S2i
(b) (Ei' 1 Sz) * ❑ f ^., S, and equality holds if 0 E n"_' 1 S. ❑

It is clear that C C C** (the dual cone of the dual cone). Since C**

is necessarily closed and convex, it is immediate that the reverse inclusion

C D C** can hold only if C is a closed convex cone. That is,

C = C** = C is a closed and convex cone.

The converse is also true, but proving it requires some machinery in the

general case. There is, however, an important special case that is not hard

to handle.

2.6.17 Theorem. If C is a finite cone, then C = C**. El

As a direct consequence of this theorem and the observations made

above, we get the following result.

2.6.18 Corollary. Every finite cone is a closed set. ❑

When A = [A.1, ..., A.,], each column vector A.2 is an element of

pos A. Hence pos A is generated from a finite set of its own elements. This

is an interior description of the cone. Polyhedral cones are given by exterior

descriptions. Actually, every polyhedral cone is a finite cone and vice versa.

This remarkable fact can be deduced from the assertions below.

(a) Every linear subspace L is a finite cone.

(b) Every polyhedral cone of the form C = {x : Ax = 0, x > 0} is a

finite cone.

(c) If L is a linear subspace of R', then L n R+ is a finite cone.

One direction of the "remarkable fact" stated above is a theorem at-

tributed to Minkowski.

2.6.19 Theorem. If A e R"Lxn then the polyhedral cone

C = {x:Ax>0}

is a finite cone. ❑
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The opposite direction is a theorem due to Weyl.

2.6.20 Theorem. If A E R x n then the finite cone C = posA is a

polyhedral cone. ❑

As a consequence of Theorem 2.6.20, we can assert the polyhedrality

of any polytope.

2.6.21 Corollary. A polytope is a polyhedral convex set. ❑

The technique for proving this fact uses (2.1.4). Defining

CC=posII 1 1 	,...,	 l r

we can view X = conv{x 1 , . .. , x' } c RTh as the intersection (in Rn+ l ) of

C with the hyperplane {(x, ) = 1}. Weyl's Theorem 2.6.20 implies

there exists some matrix A E R"('+') such that

x E C	 A.1x1 + ... +	 + A.n+ie >_ 0.

Then with b = —A.^,, +1 , it follows that x E X if and only if A •n+l x > b.

This is not to say, however, that an arbitrary polyhedron is a polytope.

2.6.22 Remark. The preceding corollary has a natural extension to sets

in Rn which are sums of polytopes and finite cones. See Exercise 2.10.16

for a precise statement of the result.

The structure of convex polyhedra

LetX={x:Ax=b, x>0}andY={x:Ax=0, eTx=1, x>0}.

If X 0, it has a finite number of extreme points, say x', ... X '. If Y 0,

it has a finite number of extreme points, say y', ... , y8 . Let P denote the

convex hull of {x', ... , xr} and C the conical hull of {y 1 , ... 'y5}. Then

clearly,

	C={x:Ax=O, x>0}	 (1)

and P + C C X. As a matter of fact, the reverse inclusion also holds.

These facts are summarized in the following result.
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2.6.23 Theorem. Every nonempty polyhedral set is the sum of a polytope

and a finite cone. That is, if X = {x : Ax = b, x> 0} 0, there exist a

polytope P and a finite cone C such that

X = P + C. (2)

Moreover, in any such representation, C = {x : Ax = 0, x > 0 }. ❑

This is known as Goldman's resolution theorem. An immediate con-

sequence of this theorem is that the polyhedron X (represented as above)

is bounded if and only if the associated cone C consists of the zero vector

alone, or equivalently, if the set Y is empty. In general, the (external)

representation of the cone C varies with that of X; a purely topological

characterization of C is possible and is given in in Exercise 2.10.18. The

following result is another useful consequence of Theorem 2.6.23.

2.6.24 Theorem. If X is a polyhedron in Rn and f : R' — Rm is an

affine transformation, then f(X) is a polyhedron in R'" and hence is a

closed set. ❑

Actually, a slightly more detailed version of Goldman's resolution the-

orem can be stated, but to do this we need to introduce some terminology.

2.6.25 Definition. Let C be a convex cone in R"'. The set

L = C n ( —C) (3)

is called the lineality space of C. The dimension of L is called the lineality

of C. A cone C for which the lineality is 0 is said to be pointed.

To illustrate the terms defined above, consider R+ and the "upper half

plane," U = {(xi, x2) : x2 > 0 }. The former is a pointed cone whereas the

latter is not. The lineality space L of the cone U is {(xl, x2) : x2 = 0}, so

its lineality is 1. Notice that the upper half plane U in R2 is the sum of L

and the first quadrant R,  the sum of its lineality space and a pointed

cone.

2.6.26 Corollary. Every nonempty polyhedral set is the sum of a poly-

tope, a finite pointed cone, and a linear subspace. That is, if X is a
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polyhedral set, there exists a polytope P, a finite pointed cone C and a

linear subspace L such that

X=P+C+L. ❑ 	 (4)

Bases and basic solutions

Suppose A E Rm"', and rankA = m. Define

X={x:Ax=b, x>0}.

If X 0, then the following hold.

(a) X has at least one extreme point.

(b) m G n. We may assume in < n for otherwise X = {A-l b} which is

trivial.

(c) A contains a nonsingular in x m submatrix, B. Such a matrix is

called a basis in A. The basis B is called a feasible basis if B-l b > 0.

Let a = supp x where 2 is an extreme point of X. If t 0, we have

= r > 0 for some integer r and A. E R"' x '' has linearly independent

columns.

Now what if r < m? Since A has rank m, the matrix A., can be

extended to a basis B in A. That is, m - r columns can be adjoined to

those of A., so as to make m linearly independent columns of A. (This

is a standard result from linear algebra.) Note that the equation Bu = b

has a unique solution: u = (B) -i b. But since A. is a submatrix of B and

A., x Q = b, it follows that the basic solution of Ax = b corresponding to B

is just x. Thus, although there may be many ways to extend the A., to a

full-size basis in A, all the corresponding basic solutions equal x.

2.6.27 Definition. Let A E Rrn X n have rank m. If x is a basic solution

to Ax = b, then x is said to be nondegenerate if and only if supp = m.

Otherwise, it is said to be degenerate.

Let X be as defined above; the dimension of X must be n - m if X

contains at least one nondegenerate point.
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2.6.28 Example. Let

1 0 —2	 3
	A=	 and b= 	.

2 1 —4	 6

The rank of A is 2. There are two bases in A:

1 0	 0 —2
	B = [A.1, A.2] =	 and B = [A.2, A.3] _

2 1	 1 —4

Note that B is a feasible basis and B is not a feasible basis. The matrix

with columns A.1 and A.3 is not a basis as it is singular. The set X =

{x : Ax = b, x > 0} has only one extreme point: x = (3, 0, 0). The set

Y = {x : Ax = 0, x >_ 0} contains the nonzero vector x 0 = (2, 0, 1). Since

rank A + nullity A = 3, all elements of Y are nonnegative multiples of x° .

In fact (recall the Goldman resolution theorem)

X ={x:x= x+)x° , A>0}

= {x} + pos x ° .

Notice that the set X is only one-dimensional.

Edges of polyhedra

2.6.29 Notation. Let x and y be distinct points in R. Let

f(x,y)={z:z=Ax +(1 -A)y, 0 <A<1},

£[x,y]={z:z=Ax +(1—))y, 0 <A<1}.

These sets are, respectively, the open and closed line segments between

x and y.

2.6.30 Definition. Let C be a convex set, and let E be a convex subset

of C. Then E is an extreme subset of C if and only if

x,yEC
x, y E E.

£(x,y)nE^O

(This means that no point of E belongs to the open line segment spanned

by two points of C not both of which belong to E.)
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2.6.31 Definition. If X is a polyhedron and H is a hyperplane, then

H n X is called a face of X if 0 H fl X C rb X. A k-dimensional face of

X is called a k-face of X. If X is p-dimensional, then the 0-faces, 1-faces,

and (p-1)-faces of X are called, respectively, the vertices, edges, and facets

of X.

2.6.32 Remark. A face is always an extreme set. If X is a polyhedron,

then every extreme set is a face (see Theorem 2.7.5). In this book, comple-

mentary cones are polyhedral sets of particular interest. We use Definition

1.3.2, not Definition 2.6.31, when referring to the facets of a complemen-

tary cone. For full complementary cones, the two definitions are equivalent.

The following theorem, known as Euler's relation, is a basic result con-

cerning the number of faces of a bounded polyhedral set.

2.6.33 Theorem. If X is an p-dimensional polytope, and if we let fk

denote the number of k-faces of X, then

p-1

E( -1) k A = 1— (-1).
k=o

In general, an edge of a polyhedron can be a line segment (two end-

points, both of which are extreme points), a halfline (one endpoint which

is an extreme point) or an entire line (no endpoints). In the case of a

pointed cone, an edge which is also a halfline is called an extreme ray. It
can be shown that this definition coincides with the one given in 1.3.1.

Sometimes it is handy to have a notation for the set of all extreme

points of a polyhedral set. For any polyhedral set, X, let X denote the set

of all extreme points of X. The set X (which could be empty) is called the

profile of X.

2.6.34 Definition. Let x 1 , x 2 E X. Then x 1 and x 2 are adjacent if and

only if f[x 1 , x 2] is an edge of X.

For some matrixAER"'n andbERn,letX={x:Ax=b, x>0}.

We are interested in an algebraic characterization of adjacency.

2.6.35 Theorem. Let x  and r 2 be distinct elements of X. Let

a={i:x? >0orxz >0}.

Then x l and x 2 are adjacent if and only if the rank of A. a is	 — 1.
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Once again, let X = {x : Ax = b, x > 0} where A E R"n has rank m.
For simplicity, let A = [A.0, A.^] where A.p is a basis in A. We can write

Ax = A.ßxp +	 = b,

and hence we have

xß = A,—ß b — A —a1 A.dxß.

Let A. = A,—ß A. and b = A,—ß b. If A. is a feasible basis in A, (that is, if

A,—ßl b > 0), then

xß
H xß

xß

gives a one-to-one correspondence between points in X and points in the

polyhedral set

X ={xß:Axß<b, x>0}.

NoteNote that b > 0 implies xß = 0 is an element of X. Clearly xß = 0 is an

extreme point of X and the corresponding element of X, namely

a J 0

is an extreme point of X. There is, in fact, a one-to-one correspondence

between extreme points of X and those of J.

2.7 Linear Inequalities

Our purpose in this section is to record some properties of linear inequal-

ity systems. We are particularly interested in what are called "theorems of

the alternative." These have important applications in the theory of lin-

ear programming, quadratic programming and the linear complementarity

problem. One approach to this subject is through "separation theorems."

This is the subject we take up first.
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Separation of convex sets

We return briefly to more general (i.e., not necessarily polyhedral) con-

vex sets in order to discuss the idea of separation by hyperplanes. Let

H = {x : aTx = b} be a hyperplane in Rn. (Hence a 0.) Let Sl and S2

be two nonempty subsets of Rn. Then H separates Si and S2 if aTx > b

for all x E Sl and aTx < b for all x E S2. Proper separation requires that

Si U S2 g H. (This would still allow one of the sets to lie in H.) The sets

Sl and S2 are strictly separated by H if aTx > b for all x E Sl and aTx < b

for all x E S2. (This does not prevent points of Sl and S2 from becoming

arbitrarily close to H.) The sets Sl and S2 are strongly separated by H

if there exists a number e > 0 such that a Tx > b + E for all x E Sl and

aTx<b — E for all xES2.

In some situations, the existence of a separating hyperplane can be

made to rest on a theorem about the solution of a nearest point problem.

2.7.1 Theorem. Let C be a nonempty closed convex subset of Rn and let

p E Rn \ C. There exists a unique point x E C such that

x—p^^2<JJX—P2 for allxEC.

Furthermore, x is the minimizing point (i.e., the point of C closest to p) if

and only if

(x—p)T(x—x)>0 forallxEC. ❑ 	 (1)

The vector t is called the projection of p onto the set C (under the

12-norm), and is denoted H (p). Sometimes, it may be desirable to use a

different norm to define the projection vector. Exericse 2.10.22 discusses

the case when C is a polyhedron and the l,, norm is used. In this case,

the characterizing property of the projection vector (1) will not be valid.

The following theorem—which is just one of many to be found in the

theory of convex sets is particularly useful in connection with polyhedra,

especially through their representation as solution sets of linear inequality

systems. The proof of this theorem follows from a simple manipulation of

the variational characterization (1) of the projection vector. The reader is

asked to supply the details in Exercise 2.10.20.
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2.7.2 Theorem. If C is a nonempty closed convex set and p 0 C, then

there exists a vector a and a real number b such that

aTp > b > aTx for all x E C. ❑

The above theorem states a point lying outside of a closed convex set

can be properly separated from the set. It is interesting and instructive to

consider how this separation theorem applies to the case when the given

set is a cone.

2.7.3 Corollary. If C is a closed convex cone and p V C, then there exists

a vector a such that aTp > 0 > aTx for all x E C. ❑

In effect, this corollary states that in the present case, the constant b

mentioned in the main theorem can be taken as zero. Indeed, with a and b

as in the theorem, we have aTp > b > aTx for all x E C. Since 0 e C, it

follows that b >_ 0. Moreover, since C is a cone, there is no x E C such that

aTfi > 0, for otherwise there exists a positive scalar A such that aT(7x) > b
which is impossible. Thus, aTp > b > 0> aTx for all x E C.

The above theorem and corollary very naturally lead to the following

definition and theorem.

2.7.4 Definition. Let C be a nonempty convex set and let p be a point in

rb C. If a 0 is a vector and if b is a real number such that aTp = b >_ aTx
for all x E C, then the hyperplane {x : aTx = b} is called a supporting
hyperplane to C at p.

2.7.5 Theorem. Let C be a nonempty convex set. If p E rb C, then there

exists a supporting hyperplane to C at p. Further, if C is a nonempty

polyhedral set and if F is a k-face of C, then there exists a supporting

hyperplane H such that F = H rl C. ❑

Besides yielding the important separation results stated above, the pro-

jection concept plays a central role in many topics of mathematical pro-

gramming. Later in Section 3.7, we shall use Theorem 2.7.1 to prove a

fundamental existence result of the variational inequality problem. Some

interesting properties of the projection function are identified in Exercise

2.10.21.

 



2.7 LINEAR INEQUALITIES	 109

Theorems of the alternative

The results designated collectively as theorems of the alternative (and

also as transposition theorems) are among the most useful and best known

topics in the theory of linear inequalities. Typically, these theorems involve

two related linear inequality systems and assert that precisely one of the

systems has a solution. The following theorem illustrates the pattern.

2.7.6 Theorem. Let A C R"'' and b C R' be given. The system

Ax =b, x>0	 (2)

has a solution if and only if the system

yTA < 0, yTb > 0	 (3)

has no solution. ❑

Notice that the theorem speaks about two systems built upon the same

data and that precisely one of these systems has a solution. Not both

systems can have a solution for otherwise it would be possible to satisfy

0 < yTb = YT(Ax) = (yTA)x <0

which is absurd. The fact (3) has a solution when (2) does not is a direct

consequence of 2.7.3. In this instance the closed convex cone C is pos A.

(The closedness of this convex cone is noted in 2.6.18.) Saying that (2)

has no solution is equivalent to saying that b pos A. Corollary 2.7.3

then guarantees that there is a vector y such that yTh > 0 > yTz for all

z C pos A. The inequality system yTA < 0 follows from the fact that all

the columns of A belong to pos A.

Actually, Theorem 2.7.6 is a version of the much-used "Farkas's lemma"

which was originally expressed in the following form.

2.7.7 Theorem. For A C RTn X and b C Rm, if yTb < 0 for all y such

that yTA < 0, then there exists a vector x> 0 such that Ax = b. ❑

Farkas's lemma is neither the oldest nor the most general result of its

kind. Nevertheless, it is powerful enough to imply several other significant

theorems of the alternative. We state five of them below. The first two are

for inhomogeneous systems.
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2.7.8 Theorem. Let A E Rrn >< ? and b E Rm be given. The system

Ax > b (4)

has a solution if and only if the system

yTA = 0,	 y >0 	 yTb > 0 (5)

has no solution. ❑

2.7.9 Theorem. Let A E Rrn"n and b E Rm be given. The system

Ax >b,	 x >0 (6)

has a solution if and only if the system

yTA<0,	 y >0,	 yTb>0 (7)

has no solution. ❑

The next three alternative theorems are for homogeneous systems. The

first is known as Gordan's theorem.

2.7.10 Theorem. Let A E R"n X n be given. The system

Ax > 0 (8)

has a solution if and only if the system

YTA = O,	 y > 0 ,	 y	 6 (9)

has no solution. ❑

As an application of Gordan's theorem, we have Ville's theorem.

2.7.11 Theorem. Let A E R" be given. The system

Ax>0,	 x>0 (10)

has a solution if and only if the system

yTA G 0,	 y > 0,	 y	 0 (11)

has no solution. ❑
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Finally, we have Stiemke's theorem.

2.7.12 Theorem. Let A E Rm"n be given. The system

Ax > 0, Ax O	 (12)

has a solution if and only if the system

yTA = 0, y > 0	 (13)

has no solution. ❑

In this book, we will invoke Theorem 2.7.9 several times. As related

to the LCP (q, M), it states that if the system

q+Mz>0, z>0

has no solution, then there exists a vector y such that

yTM<0, y>0, and yTq<0.

For certain kinds of problems, the existence of a solution to the latter (alter-

native) system has theoretical implications that can be used to advantage.

Duality in linear programming

Theorems of the alternative are closely related to the subject of duality

in linear programming. We shall review some theorems from this duality

theory.

Given a linear programming problem of the form

minimize	 cTx

subject to Ax > b	 (14)

x>0,

there is an associated dual problem

maximize	 bTy

subject to ATy < c	 (15)

y>0
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formed from the same data (used differently). In this pairing, the given

linear program is called the primal problem. The relationship is involutory

in the sense that the dual of the dual problem is the primal problem.

When x and y are feasible solutions of (14) and (15), respectively, the

inequality

bTy < cTx

is always valid. Moreover, if this equality holds as an equation, then the

feasible solutions x and y are optimal for their respective programs. Some-

times called the weak duality theorem, this observation serves as a lemma

for establishing the existence of optimal solutions.

2.7.13 Theorem. If the primal problem (14) and the dual problem (15)
are both feasible, then there exist a primal-feasible vector x and a dual-

feasible vector y such that cTt = bTy. ❑

This result can be proved by formulating an appropriate linear inequal-

ity system and applying a corresponding theorem of the alternative, see

2.10.23. The same approach works for strong duality theorem of linear

programming below. An analogous theorem beginning with the dual prob-

lem can also be stated.

2.7.14 Theorem. If the primal problem (14) has an optimal solution x,
then the dual has an optimal solution y and cTx = bTy. ❑

When x and y are optimal solutions of the primal problem (14) and its

dual (15), respectively, the equality of cTx and bTy implies the complemen-

tary slackness conditions

— b) = 0 and T(AT9 — c) = 0.

Conversely, if x and y are feasible solutions of the primal and dual prob-

lems, respectively, and the complementary slackeness conditions hold, then

they are optimal solutions. In fact, solving the primal problem (14) or the

dual problem (15) is mathematically equivalent to solving the LCP (q, M)
with data

r c l r 0 —AT 1
q= I —b 	and M= I A 0 J.
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There are other theorems about dual linear programs, and there are

other formulations of the primal problem, each one giving rise to a corre-

sponding dual problem. For the sake of brevity, we relegate these matters

to the reader.

2.8 Quadratic Programming Theory

By definition, quadratic programming is concerned with the problem of

minimizing (or maximizing) a quadratic function over a polyhedron. Such

problems can take many different forms, depending on how the polyhedral

feasible region is represented. For instance, in Chapter 1 we used the form

minimize f (x) = cTx + z xTQx

subject to	 Ax > b	 (1)

x>0

where Q E Rn > n is symmetric, c E Rn, A E R x n and be R. For some

purposes, it is more convenient to consider another form, namely

minimize f (x) = cTx + ZxTQx

subject to	 Ax > b.	 (2)

The first form is readily converted to the second by writing the constraints

as

A x> ^ b

Ordinarily, the purpose of a quadratic program with objective function

f and feasible region X is to determine a global minimum, that is, a vector

x E X such that

f (x) <f(x)  for all x E X.

Sometimes, however, it is necessary to settle for a local minimum, that is,

a vector x E X such that

f (x) <f(x)  for all x E X f1 N(x)

where N(x) denotes a neighborhood of x.
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The existence of a global minimum

Every quadratic program has a continuous function as its objective and

a closed set as its feasible region. Accordingly, the Bolzano-Weierstrass

theorem guarantees the existence of a global minimum (or maximum) if

the feasible region is bounded, for then it is compact. Known as the Frank-

Wolfe theorem, the following result is of interest for cases where the feasible

region is unbounded. It gives (necessary and) sufficient conditions for the

existence of a global minimum in a quadratic programming problem. Note

that the Frank-Wolfe theorem is not necessarily valid for arbitrary opti-

mization problems.

2.8.1 Theorem. If the quadratic function f is bounded below on the

nonempty polyhedron X, then f attains its infimum on X. (That is, if

there exists a real number ly such that f (x) > ry for all x E X, then there

exists a vector x E X such that f (t) <f(x)  for all x E X.) ❑

In quadratic programming, an a priori lower bound for the objective

function is not always available, but when it is, Theorem 2.8.1 can be

applied. For instance, the quadratic programming formulation of the LCP

(q, M) given in (1.4.2) has zero as the lower bound of the objective function

over the polyhedron FEA(q, M). This fact, alone, justifies our interest in

the Frank-Wolfe theorem.

It is possible to give a characterization for a quadratic function to be

bounded below on a polyhedron. Two special cases are considered in Ex-

ercise 2.10.25 and Proposition 3.7.14. See also 3.13.14.

First-order optimality conditions

In any theory of optimization, it is essential to have a way to iden-

tify optimal solutions. In nonlinear programming with differentiable func-

tions, necessary conditions of local optimality are given by the Karush-

Kuhn-Tucker theorem. Here we shall specialize this famous result for the

quadratic programming problem. To this end, it is convenient to start with

problems of the form (2).

Let X = {x : Ax > b} denote the feasible region of the problem. For

x E X, let

a(x) = {i : Ai . x = bz }.
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The constraints for which i E n(x) are said to be active or binding at x.
When there are no active constraints at x, the index set cti(x) is empty,

and x is an interior point of X. Under such circumstances, the standard

first-order optimality condition for x to be a local minimum is simply that

the gradient of the objective function vanishes there; that is,

Vf(x)=c+Qt=0.

Generalizing this simple consideration, we have the following result which

provides a necessary and sufficient condition for a vector to be a stationary

point of the quadratic program (2).

2.8.2 Theorem. A vector x E X is a stationary point for the quadratic

program (2) if and only if there exists a vector y such that

c +Qx—ATy= O, y>0, yT (Ax—b)=0. ❑ (3)

In Exercise 2.10.27, the reader is asked to give a direct proof of the

above theorem by using the duality theory of linear programming. This

theorem implies that when x is a stationary point for (2), there is a vector

y such that x is a stationary point of the function

L(x, ) = cTx + ZxTQa — YT(AX — b).

In general,

L(x, y) = cTx + !xTQX — yT(Ax — b)

is called the Lagrangian function for (2) and the components of y are called

Lagrange multipliers. Indeed, the Lagrange multipliers are in one-to-one

correspondence with the constraints of the problem. The nonnegativity of

the Lagrange multipliers stems from the particular inequality form of the

constraints. It is important to observe that a Lagrange multiplier will be

positive only when the corresponding constraint is active.

The first-order optimality conditions for problems of the form (1) in-

volving nonnegative variables are easily derived from Theorem 2.8.2. A

version of these conditions particularly suited to LCP formulation is stated

as (1.2.2).
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Second-order optimality conditions

The first-order optimality conditions given by Theorem 2.8.2 provide

a characterization for stationary points; hence, they are merely necessary

conditions of optimality. Satisfaction of (3) by a feasible vector x does not

by itself guarantee the global or even local optimality of x. As noted in

Section 1.2, the conditions (3) are sufficient for the the global optimality

of x when the objective function f (x) = cTx + 2xTQx is convex, i.e., when

Q is positive semi-definite. (For a discussion of weaker conditions under

which a feasible solution of (3) is a global minimum, see 2.11.16.) The

convexity assumption on f stated above can be viewed as a second-order

optimality condition, but it is not the sort of thing we have in mind. We

are interested in necessary and sufficient conditions for feasible vectors to

be local minima. It is true that global minima are more desirable than local

minima, but we are after a nontrivial criterion (i.e., necessary and sufficient

conditions) for local optimality. Such a thing is not generally available for

global optimality. To set the stage for the result we have in mind, we need

to introduce the following definition.

2.8.3 Definition. For a vector x E X = {x : Ax > b}, let a(x) denote

the index set of the active constraints at x. The nonzero solutions of the

homogeneous system

Az.v > 0 for all i E cti(x)	 (4)

are called feasible directions at x. Collectively, the solutions of (4) form a

(polyhedral) cone F. If cti(x) = 0, then F = R.

The cone F is called the cone of feasible directions at x (even though,

strictly speaking, only its nonzero members are genuine directions). We

are now in a position to state the desired second-order criterion for local

optimality.

2.8.4 Theorem. A feasible solution k of (2) is a local minimum if and

only if

Vf( ) Tv>0 for all vE.F',	 (5)

and

vTQv>0 for all vEFrl(Vf(x))'. ❑ 	 ( 6)
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The set (V f (x))1 consists of all vectors in Rn that are perpendicular

to V f (x). In the event that V f (x) = 0, we have (V f (x))' = Rn.

2.8.5 Remark. The first-order condition expressed in (5) can be inter-

preted as a version of the Karush-Kuhn-Tucker conditions; these alone are

necessary conditions of optimality. The second-order conditions given in

(6) ask that the quadratic form associated with the Hessian matrix Q of

the objective function f be nonnegative on the intersection of the cone of

feasible directions and the orthogonal complement of the space spanned

by the gradient vector at the point 2. This intersection is still a cone,

and the condition that vTQv be nonnegative there is a copositivity restric-

tion with respect to this cone. It is obviously satisfied when Q is positive

semi-definite.

Duality in quadratic programming

In the special instance of convex quadratic programming, i.e., when

the objective function is convex, there is a duality theory that completely

generalizes its linear programming counterpart. The results are most easily

expressed for quadratic programs of the form (1) or extensions thereof.

Indeed, let us consider the problem

minimize cTx + z x TQx + 2YTPy

subject to	 Ax + Py > b	 (7)

x>0,

In this case, the matrices Q and P are assumed to be symmetric and pos-

itive semi-definite. Notice that when P equals the positive semi-definite

matrix 0, we recover our original problem (1), and when both Q and P are

zero, the problem is just the linear programming primal problem (2.7.14).

Accordingly, (7) will be called the primal problem. The corresponding dual

problem is

maximize bTy — xTQx — 2 yTPy

subject to	 —Qx + ATy < c	 (8)

y > 0.
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As in linear programming, there is a weak duality theorem for these

quadratic programs. Indeed, if (x, y) is a feasible solution of the primal

problem (7) and ( , y) is a feasible solution of the dual problem (8), then

bT̂  — 2x TQ — 1 ^TPy < cT±+ 2xTQx+ 2yTPy•

If equality holds in this inequality, the solutions are optimal. This fact is

useful in proving the following existence result which, incidentally, gener-

alizes 2.7.13.

2.8.6 Theorem. If the primal problem (7) and the dual problem (8) are

both feasible, then there exist vectors x and y such that (x, y) is feasible

for both programs and

bTT — 2xTQx — 1 yTPy = cTx + 2xTQx + 2 9TPy. ❑

Note that in this theorem, the solution (x, y) is optimal for each program

of the dual pair. Such a solution is said to be jointly optimal. The approach

to proving the theorem is analogous to the one mentioned for the linear

programming case.

The strong duality theorem for quadratic programming is stated as

follows.

2.8.7 Theorem. If the primal problem (7) has an optimal solution (x, y),
then the dual problem (8) has an optimal solution (x, y) and

bTy — 1 xTQ± — 2 yTPy = cTx + z xTQx + z iTPy. ❑

Of course, the assertion of this theorem—that both problems have op-

timal solutions when the primal has an optimal solution—also means (by

2.8.6) that there exists a jointly optimal solution when the primal has an

optimal solution. The analogous statement can be made when it is known

that the dual has an optimal solution.

Just as in the linear programming case, we relegate the statements of

other dual pairs and other theorems to the reader.

2.9 Degree and Dimension

As seen in Chapter 1 and, for that matter, in this entire book, the lin-

ear complementarity problem appears in many contexts and can be studied
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from many viewpoints. One particular viewpoint which we will adopt in

Chapter 6, is the geometric one. We have already introduced the basic

tools needed for this in Section 1.3. In that section we introduced comple-

mentary matrices, complementary cones, and the complementary range. In

Section 1.4 we introduced the idea of a nondegenerate solution to an LCP

(Definition 1.4.3) along with the mapping (1.4.8) and its connection to the

LCP via Proposition 1.4.4. As we will see in Chapter 6, all these will play

a part in the geometric view of the LCP.

A useful concept with which to study the LCP is that of the degree of a

mapping. Another concept incorporated in the geometric view of the LCP

is that of the dimension of a set. Both degree theory and dimension theory

are extensive areas of topology, and we will only use some of the more

basic results from these fields. The purpose of the present section is to go

over this basic material. A more complete discussion of degree theory and

dimension theory can be found in several of the references cited in 2.11.18

and 2.11.19.

Homogeneous functions

We start by defining homogeneous functions.

2.9.1 Definition. Let D C Rm be a cone. A function f : D — R' is said

to be (positive) homogeneous of degree k, where k is an integer, if for all

(positive) real numbers t, and all x E D, we have f (tx) = tk f (x).

In this book we will frequently be dealing with positive homogenous

functions of degree 1. As a convenience, we will define the unmodified

term homogeneous function to mean a positive homogeneous function of

degree 1. In addition, we will say that the homogeneous function f is

nondegenerate if f (x) = 0 implies x = 0. Otherwise, we will say that f is

degenerate.

2.9.2 Example. A linear function f (x) = cT a is clearly homogeneous of

degree 1; a quadratic function of the form f (x) = xTMx is homogeneous

of degree 2. We may consider the determinant function, which maps the

matrix M E Rnxn into det M, as a function from RT"Th into R. From basic

linear algebra, we see that this function is homogeneous of degree n.

 



120
	

2 BACKGROUND

Let

Sn-' = {xERn: IIXI1 2 =1}

denote the (n - 1)-dimensional unit sphere in Rn. Suppose D C Rn is a

cone, and f : D - Rn is a nondegenerate homogeneous function. We can

learn a fair amount about f by studying the function fs : Sn -1 f1D -3 S'

givengiven by fs(x) = f(x)/)f (x)2.  As f is nondegenerate, it follows that

( f (x)(2 0 for all x E Sn- '. Thus, fs(x) is well-defined.

For those readers already familiar with degree theory, we give a brief

discussion connecting the results stated in the next subsection with the

results one is more likely to see in other works. Since this discussion will

not be used elsewhere in the book, the reader may safely skip to the next

subsection.

The usual development of degree theory would deal with the function

fs, from Sn - ' to Sn- ', rather than with the nondegenerate homogeneous

function f. The key entity in the usual development would be the index of

fs at x, which is defined if fs is continuously differentiable at x and the

Jacobian is nonsingular. The value of the index depends on whether Vfs(x)

maps the tangent space at x into the tangent space at fs(x) in a manner

that preserves orientation (a positive index) or that reverses orientation (a

negative index).

Degree theory can also be developed for maps f : D --> R"'' with D a

compact domain in Rn, or with D a cone in R and f nondegenerate homo-

geneous. As in the case of fs : S 1 — Sn 1 we define the index at a point

x where f (x) is continuously differentiable and the Jacobian nonsingular

by whether or not the orientation of the tangent space is preserved. If D is

a cone and f is nondegenerate homogeneous, and if fs(z) = f(x)/^^f(x)^^,

where z = x /jjxjj, then one can obtain a close relationship between the

index for f at x and the index for fs at z.

Degree theory

We will now develop the notion of degree to the extent that will be

needed for this book. The following can be generalized in several ways and

the interested reader should consult the references. As usual, we represent

the closure, boundary, and relative interior of the set D by, respectively,

cl D, bd D, and ri D.
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2.9.3 Definition. Let D C R"'' be an open cone. Let f : cl D — R"' be a

continuous nondegenerate homogeneous function. If, for some point x E D,

the function f is continuously differentiable in an open set containing x and,

further, if the Jacobian matrix 17f (x) is nonsingular, then we define the

index of f at x to be sgn(det(V f (x))). We will denote this by ind f(x) or

simply by ind(x) when it is clear which f is meant. Notice that the index

is always either +1 or —1.

2.9.4 Definition. Let D C R' be an open cone. Let f : cl D 

be a continuous nondegenerate homogeneous function. If, for some point

y E RTh , the set f —1 (y) consists of finitely many points and, further, if for

each x E f 1 (y) the index of f at x is well-defined (using 2.9.3), then we

define the local degree of f at y to be

indf(x).
xEf - '(y)

We will denote this by deg f (y) or simply by deg (y) when it is clear which

f is meant.

2.9.5 Remark. Note that index is defined for points in the domain of f

while local degree is defined for points in the range of f. Also, note that

if f' (y) = 0, then the local degree of f at y is well defined and equal to

zero (by convention, the empty sum is defined to equal zero). However, if

y E f (bd D), then the local degree of f at y is not well-defined.

The key property of degree is stated in the next theorem.

2.9.6 Theorem. Let D C R' be an open cone. Let f : cl D —^ R" be

a continuous nondegenerate homogeneous function. Suppose that both

degf (y) and deg f (y') are well defined for y, y' E R' (using 2.9.4). If y and

y' are in the same connected component of Rn \ f (bd D), then deg f (y) _

deg f (y'). ❑

2.9.7 Corollary. Let D C R"'' be an open cone. Let f : cl D —^ R' be

a continuous nondegenerate homogeneous function. If Rn \ f (bd D) has

only one connected component, then the value of deg f (y) is the same for

all p E R' which have a well-defined local degree. ❑
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The common value of the local degrees given in Corollary 2.9.7 is called

the degree of f, denoted deg f . Notice, if D = R, then bd D is empty

and R' \ f (bd D) has exactly one connected component. Hence, if f is

a continuous nondegenerate homogeneous function defined on the whole

space Rn, then deg f is well defined.

It seems reasonable to expect that if a function is, in some way, con-

structed from simpler component functions, then the degree of the more

complicated function can be calculated from the degrees of the component

functions. To some extent this is true, as can be seen in the next two

theorems.

2.9.8 Theorem. Let f, g : R'2 —* Rn be continuous nondegenerate ho-

mogeneous functions. For all x E R'2 , define h(x) = f(g(x)). Then

h : Rn —3 Rn is a continuous nondegenerate homogeneous function and

deg h = (deg f) (deg g) . ❑

2.9.9 Theorem. Let f : R'2 — Rn and g : R' — R' be continu-

ous nondegenerate homogeneous functions. For all (x, y) E R""+m, define

h(x, y) = (f (z), g(y)). Then h : Rn+"'	 R== is a continuous nondegen-

erate homogeneous function and deg h = (deg f) (deg g) . ❑

We end this subsection with some theorems concerning the invariance of

degree under homotopic transformations. To this end, we first state what

homotopy means in the current context.

2.9.10 Definition. Let D C Rn be an open cone. Let f,g : cl D — R'2

be continuous nondegenerate homogeneous functions. We say that f and g
are homotopic if there exists a continuous function h : cl D x [ 0, 1] —p R'2
such that:

(a) For each t E [ 0, 1], the function h(x) : cl D —* R'2 , defined by

h(x) = h(x, t) for all x E cl D, is a nondegenerate homogeneous

function.

(b) For each x e cl D, f (x) = h(x, 0) and g(x) = h(x, 1).

If it exists, the function h is called a homotopy between f and g.

2.9.11 Theorem. Let D C R' be an open cone, and f, g : cl D —p R'2

be continuous nondegenerate homogeneous functions. Suppose that both
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deg f (y) and deg_,(y) are well defined for y C Rn (using 2.9.4). If the

function h : cl D x [ 0, 1] —3 R is a homotopy between f and g such that

y h(bdD x [0,1]), then deg f (y) = deg g (y). ❑

2.9.12 Theorem. Let f, g : R? —^ Rn be continuous nondegenerate ho-

mogeneous functions. The functions f and g are homotopic if and only if

deg f = deg g. ❑

2.9.13 Remark. The degree results presented here are, for the most part,

special cases of quite general results. The exception to this is the "if"

part of Theorem 2.9.12. This result is special to spheres and, hence, to

nondegenerate homogeneous functions.

Dimension theory

We will only need a few results from dimension theory. For a set X in

Rn, we will denote the dimension of X as dim X. By definition, dim 0 = —1.

We will, in fact, not need a precise definition of dimension. The following

result will suffice.

2.9.14 Proposition. Let X be a subset of R. Suppose the affine hull of

X can be expressed as {q + Mz : z C Rm}, where q is in X and the rank

of Me R" < m is equal to m. If ri X 0, then dim X = m. ❑

The next two propositions contain some basic facts about dimension

which will be useful.

2.9.15 Proposition. Let X and Y be subsets of R'.

(a) If X C Y, then dim X < dim Y.

(b) Suppose that Y is closed and X = ri X . If dim X > dim Y, then

dim(X \ Y) = dim X.

(c) Suppose that Y is closed and X = ri X. If X is path connected and

if dim X — dim Y > 2, then X \ Y is path connected. ❑

2.9.16 Proposition. In R, the countable union of closed sets of dimen-

sion less than or equal to m is a set of dimension less than or equal to m.

LI
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The final result we will state is more from measure theory than dimen-

sion theory. However, it seems most appropriate to mention it here.

2.9.17 Proposition. If X C Rn is the union of finitely many sets each of

whose affine hulls has dimension n - 1 or less (see 2.9.14), then R  \ X is

dense in R. ❑

The reader familiar with measure theory will recognize that the given

set X, in Proposition 2.9.17, will have zero measure in Rn and, as the

proposition states, the complement of such a set will be dense in Rn.

2.10 Exercises

2.10.1 Let f : D — R' be Lipschitz continuous on the open set D C Rn.

Show that if f is directionally differentiable at x E D, then the directional

derivative f'(x, d) is a Lipschitz continuous function in the direction d E

with the same Lipschitz modulus as  f.

2.10.2 Prove Theorem 2.1.10. Show by examples that none of the con-

ditions in the theorem can be dispensed with.

2.10.3 Let f : D C R' - R' be a local homeomorphism on D. Show

that if D is an open set, then so is the image f (D).

2.10.4 Prove the formula (2.2.1). Deduce from it the following expansion

of the characteristic polynomial

det(XI - A) = A'z - El(A) A ^, -1 + E2(A)An -2 + ... + (-1)nE.(A)

where Ek(A) is the sum of all the principal minors of A of order k. What

are E1 (A) and En (A)?

2.10.5 Let A E Rn"n be a symmetric positive definite matrix.

(a) Show that the function xA given by (2.1.1) defines a vector norm.

(Hint: use Proposition 2.2.16(e).)

(b) Give an example of a matrix A to show that the norm XUUA is not

necessarily monotone.
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2.10.6 Let II • II and I • ' be two vector norms on R. Show that the two

statements are equivalent:

(a) there exist constants cl, c2 > 0 such that for all x E R,

clllxll <— IHII'<C211X

(b) for every {x k } C Rn,

lim1xkll = 	 —,^Ilxkll'=0.k 

2.10.7 Prove Propositions 2.2.16, 2.2.17, 2.2.20 and Corollary 2.2.22.

2.10.8 This question concerns the continuity and differentiability proper-

ties of a vector norm as a function of its argument.

(a) Let II • II be a vector norm on R. Show that Mx ll is Lipschitz con-

tinuous in x with a modulus equal to unity. Conclude from this fact

that the unit ball B and the unit sphere S associated with any norm

on R"'' are compact sets.

(b) Show that the three norms in Example 2.1.2 and an elliptic norm

are directionally differentiable functions in x. Exhibit the directional

derivatives for each of these norms. Are these norms F-differentiable

functions in x? At what points are they not F-differentiable?

2.10.9 The spectral radius can be considered a function p: Cn , n —+ R+
defined on the set of n x n complex matrices.

(a) Is the spectral radius function a matrix norm (on Cn < Th) in the sense

of 2.2.7? Prove your answer if it is in the affirmative; give a coun-

terexample to the violated axiom if your answer is in the negative.

(b) Show that the spectral radius p(A) is a continuous function in the

entries of the matrix A E Cn"n.

2.10.10 Let A E Rn"n be a symmetric matrix. Let An (A) denote the

largest eigenvalue of A.

(a) Use Proposition 2.2.10 to show that

A,,,(A) = maxr TAx
xES

where S is the unit sphere in R' associated with the Euclidean norm.
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(b) Deduce that A(A) is a Lipschitz continuous and convex function of

A.

(c) What can be said about the smallest eigenvalue A, (A) as a function

of A?

2.10.11 Let A E Rn < Th be a positive semi-definite matrix.

(a) Show that if A is symmetric, then there exists a positive scalar a such

that for all x E Rn,

XTAx > aIlAx( .

Give an interpretation of a in terms of the eigenvalues of A.

(b) Suppose that A, in addition to being positive semi-definite, satisfies

the property:
xTAx =O	 Ax =O	 (1)

which clearly holds if A is symmetric. Show that the conclusion of

part (a) remains valid under this generalized condition.

(c) Show that any matrix A of the form PTQP where Q is positive definite

satisfies the property (1). Are there positive semi-definite matrices

satisfying (1) that are not of this particular form?

2.10.12 Let f : D C R"'^ — Rn be a nondegenerate homogeneous func-

tion, with D being a cone. If f is continuously differentiable at x, show

that Vf(x)x = f(x). Let g(xr  X2) _ (xi x2 +2\/x  + 4). Show that g is

nondegenerate homogeneous on R2 . At which points in R2 does g have an

index, and what is the index at each of these points? How do these indices

relate to the behavior of gs : S l —+ Si?

2.10.13 Suppose that x* is a zero of the mapping f : R' —p Rn and that

f is continuously differentiable in a neighborhood of x*. Assume V f (a*)

is nonsingular. Let g be the mapping defined by (2.5.9). Show that g is

well defined in a neighborhood of r* and that g has a strong F-derivative

at x* which is equal to zero.

2.10.14 Prove Theorems 2.5.8 and 2.5.9.

2.10.15 Let 0: RTh --+ R be a continuously differentiable function. Let a

and p be scalars in (0, 1).
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(a) Show that if 8'(x, d) < 0, then there exists a positive scalar T such

that the inequality (2.5.13) holds for all -r E [0, T]. Interpret this

geometrically.

(b) Let {x'} be an infinite sequence of vectors generated as follows: for

each v = 0, 1, 2, ...,

xV+1=xv+T d"v

where d' is a descent direction for 0 at x', and 'r, = pmv with my

being the smallest nonnegative integer m for which the stepsize 'r =

pm satisfies the inequality (2.5.13) associated with the pair (x", d").

Let the sequence {d"} have the property that whenever {x" : v E }

is a convergent subsequence for which

lim V6(x") 0,
vEK,v—.00

the corresponding subsequence of directions {d" : v E r} is bounded

and satisfies

liminf 70(x v ) Td > 0.
vE it, v—>oo

Show that every accumulation point of {xv} is an unconstrained sta-

tionary point of the function 0.

(c) Suppose the function 0 satisfies the property:

him 8(x) = oc.	 (2)
IIxII—oo

Show that the sequence {x"} described in part (b) is bounded.

(d) Suppose 0(x) = 2 f (x) T f (x) for some continuously differentiable func-

tion f: RTh —^ R. Show that if S is an unconstrained stationary point

of 0 and if the Jacobian matrix V f (x) is nonsingular, then x is a zero

of the mapping f.

2.10.16 Let {x 1 , ... , xr} and {y', ..., ys} denote two finite subsets of RTh.

Show that if P is the convex hull of the first set and C is the conical hull

of the second set, then X = P + C is a polyhedron.

2.10.17 Show that if X is a nonempty polyhedron given by the linear

inequality system Ax >_ b, x >_ 0 then X is bounded if and only if the

system uTA < 0, u > 0 has a solution.
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2.10.18 Let S be a nonempty subset of R'. A vector y E Rn is said to

be a recession direction of S if there exists a vector x E S such that the ray

{x + ty : t E R+ } is contained in S. Let O+S denote the set of all recession

directions of S.

(a) Show that O+S is a cone that is not necessarily convex.

(b) Suppose S is closed and convex. Show that if y is a recession direction

of S, then z + ty E S for all z E S and all t E R. Deduce from this

that the cone O+S is convex.

(c) Suppose S is closed and convex. Show that S is bounded if and only

if O+S consists of the zero vector alone.

(d) Consider the polyhedron X given in Theorem 2.6.23. Show that the

cone of recession directions of X coincides with the cone C in this

theorem.

2.10.19 Follow the argument outlined below to establish Theorem 2.7.1.

(a) A function 0 : RTh R is said to be coercive if the limit condition (2)

holds. Show that if 8 is a continuous and coercive function defined

on R and X is a closed subset of R', then there exists a global

minimum of the mathematical program

minimize 0(x)

subject to x E X.

(b) Let 0 : Rn ---> R be a given function. Show that if 8 is convex on Rn,

then it is continuous. Show also that if 8 is strongly convex, then it

is coercive. Deduce that if 0 is a strongly convex function, then the

above nonlinear program has a unique solution.

(c) Use the result of part (b) to establish the existence and uniqueness

assertion of the projection point in Theorem 2.7.1.

(d) Finally, apply the minimum principle to deduce the variational char-

acterization of the projection vector.

2.10.20 Use Theorem 2.7.1 to prove 2.7.2.

2.10.21 In the setting of Theorem 2.7.1, define the projection mapping

IIc : R'' -^ C where IIc(x) is the projection vector of x onto the closed

convex set C under the 12-norm.
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(a) Show that IIc is nonexpansive (and hence Lipschitz continuous).

(b) Give an example to show that IIc is not necessarily F-differentiable.

Show, however, that the squared least-distance function defined by

dc(x) = z ^ — IIc(^)^^2

is F-differentiable with the gradient vector given by

Vdc(x) = x — IIc(x).

Is dc twice F-differentiable?

2.10.22 Consider the problem of finding a vector in a given polyhedron

that is closest to a given vector a E R' under the l,,-norm. Let the

polyhedron be represented by

P={xeRt': Ax= b,x>0}

and assume that P is nonempty.

(a) Formulate this nearest-point problem as a linear program.

(b) Prove, using only results from linear programming, that this linear

program must have an optimal solution, which we denote Hp(a).

(c) Show that there exists a constant A > 0, dependent on A and b only,

such that for all vectors a E Rn,

11a—Ilp(a)	 < A (a- , Aa —b)ll,,.

2.10.23 The theorems of the alternative, the duality theorems of lin-

ear programming and the separation theorems of convex polyhedra are all

equivalent in the sense that by using any one of these, all the others can

be derived. We have illustrated this with the derivation of Theorem 2.7.6

by Corollary 2.7.3.

(a) Deduce Theorem 2.7.13 from 2.7.9.

(b) Use 2.7.9 and 2.7.13 to show that if the linear program (2.7.14) is

feasible and its objective function is bounded below on the feasible

set, then an optimal solution exists.
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(c) Deduce Theorem 2.7.9 from the result in part (b) and the strong

duality theorem of linear programming (a version of which is given

by Theorem 2.7.14).

(d) Pick any two theorems of the alternative given in Section 2.7 and

show that they can be deduced from each other.

2.10.24 Prove the following properties of the dual cone.

(a) The dual cone of a convex polyhedron is polyhedral.

(b) The dual cone of a simplicial cone is simplicial.

(c) Suppose C is a simplicial cone in R' that is self-dual0 (i.e., C = C*)

Show that C = pos A for some orthogonal matrix A E Rn ><

2.10.25 This problem is concerned with some special properties of a

quadratic function.

(a) Show that a quadratic function is equal to a constant on the set of

its (unconstrained) stationary points.

(b) Let 9(x) = bT x + I xT Ax where A E Rf"l is symmetric. Show that

0 is bounded below on the whole space R'Z if and only if A is positive

semi-definite and b is in the column space of A.

2.10.26 Prove Theorem 2.6.24. Deduce from this result that if Sl and

S2 are two polyhedra in Rn, then so is their sum Sl + 82. Hence, the sum

of two polyhedra is a closed set. In general, is the sum of two closed convex

sets closed?

2.10.27 Use linear programming duality to prove Theorem 2.8.2.

2.10.28 Let C C Rn be a convex cone and let L be the lineality space of

C. Show that L is a subspace and, in addition, any subspace contained in

C is contained in L.

2.10.29 Let C C Rn be a finite cone.

(a) Show that the lineality space of C is the subspace in Rn orthogonal

to the affine hull of C*.

(b) Show that if C Rn, then there exists an (n — 1) -dimensional hy-

perplane H such that H l C equals the lineality space of C.
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2.11 Notes and References

2.11.1 Fixed-point theorems are fundamental results that are useful for

various solution concepts in mathematical game theory and for the demon-

stration of the existence of equilibria in economics. There are many such

theorems; the one stated as 2.1.24 is due to Brouwer (1912). Traditionally,

the proof of this important theorem was based on a nonconstructive argu-

ment that did not lend itself to the actual computation of a fixed point. It

was not until Lemke and Howson published their renowned algorithm for

computing a bimatrix game equilibrium point in 1964 that the subject of

computing fixed points started to blossom (see Section 4.4 for the descrip-

tion of this algorithm and Section 4.12 for further notes and references

concerning this path-breaking method). Another seminal work on this

subject is the paper by Scarf (1967) who developed the first computational

scheme for approximating fixed points of a continuous mapping. Scarf's

method was greatly influenced by the ingenious Lemke-Howson algorithm.

Since then, a tremendous growth has followed. Indeed, this subject has

now developed into a very fruitful discipline and has a huge body of lit-

erature of its own. The following are some books and special volumes on

these fixed-point methods: Scarf (1973), Todd (1976d), Karamardian and

Garcia (1977), Robinson (1979), Garcia and Zangwill (1981), Eaves, Gould,

Peitgen, and Todd (1983), Talman and van der Laan (1987).

2.11.2 The term "multivalued mapping" has been called many differ-

ent names in various disciplines. Some commonly used synonyms are:

"point-to-set map", "set-valued mapping", "multifunction", and "corre-

spondence". Chapter 6 of the book by Berge (1963) contains a good sum-

mary of the basic continuity properties of these mappings. One notable

distinction between Berge's definitions and those used by many authors

(including us) is that the former require the images to be compact sets.

Another good source for discussion of this topic is Chapter 11 of Border

(1985) whose terminology differs slightly from ours.

2.11.3 Theorem 2.1.10 is a special case of a more general result due to

Ostrowski (1966) who proved that under the first two assumptions of the

theorem, the set of accumulation points of {x"} is closed and connected.
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2.11.4 T.D. Parsons used the name "pivotal algebra" as the title of a set

of seminar notes taken from lectures on Combinatorial Algebra given by

A.W. Tucker at Princeton University in 1964-65. We list these notes as

Tucker (1967). Other related references are Tucker (1960, 1963), Cottle

(1964a, 1968a), Cottle and Dantzig (1968), and Keller (1969). Section 4.1

of this book contains several more results on pivotal algebra.

2.11.5 Formula (2.3.13) was noted by Cottle (1990). We do not know of

an earlier reference.

2.11.6 The eponym of the "Schur complement" is I. Schur whose formula

(2.3.14) has already been mentioned. Our presentation is based largely on

a paper of Cottle which in turn builds on several earlier studies, notably by

E. Haynsworth who coined the name. See Cottle (1974a) and the references

therein. Many other publications on the subject have appeared since 1974.

2.11.7 The origins of lexicographic ordering are obscure. We do know

that the concept was used by Dantzig, Orden and Wolfe (1955) as a way to

avoid cycling in the simplex method for linear programming. See Dantzig

(1963) and Murty (1976, 1988). There is a close connection between "lex-

icography" and "epsilon perturbation" of the constant (right-hand side)

vector. See Dantzig (1963, Section 10-2). Eaves (1971a) used lexicographic

ordering in a major way in his treatment of Lemke's method.

2.11.8 Matrix factorization is a basic numerical tool useful for solving

systems of linear equations and a host of other linear algebraic problems.

The text by Golub and Van Loan (1989) is an excellent reference on this

subject and contains an extensive bibliography. The study of updates of

matrix factorizations was, to a large extent, motivated by the need to de-

velop some numerically stable implementation procedure for the simplex

method of linear programming in order to handle very large, sparse prob-

lems. Among the early papers in this area are Bartels, Golub and Saunders

(1970), and Gill, Golub, Murray and Saunders (1974). These updating

schemes are now a central part in many of the computer codes written for

solving linear and nonlinear programming problems, see Gill, Murray and

Wright (1981, 1991).
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2.11.9 The theory of solving systems of linear equations by iterative

methods has undergone an extensive development. Chapter 7 in Berman

and Plemmons (1979) presents a concise summary of the major conver-

gence results. An important tool employed therein is the Perron-Frobenius

theory of nonnegative matrices. The chapter ends with a set of notes giving

a detailed historical account of these iterative methods.

2.11.10 The study of convex sets and functions, polyhedra and linear in-

equalities has a long history and quite an extensive literature. Systematic

scholarly coverage of these topics will be found in Stoer and Witzgall (1970),

Rockafellar (1970), and Grünbaum (1967). These references can be supple-

mented by consulting many textbooks on mathematical programming such

as Dantzig (1963), Gale (1960), Simonnard (1966), Mangasarian (1969),

and Murty (1983, 1988). Sources for the important named theorems cited

in Section 2.6 are Minkowski (1896), Weyl (1935), and Goldman (1956).

The latter paper appears in an influential volume, Kuhn and Tucker (1956),

on linear inequalities and related systems.

2.11.11 Using separation theorems is not the only way to produce the-

orems of the alternative. Indeed, some authors prefer the constructive

approach based on the simplex method of linear programming. For some

this preference is simply a matter of pedagogy; for others it is rooted in the

(Intuitionist) philosophy of mathematics. The latter outlook is well sum-

marized by Hermann Weyl's often-quoted pronouncement, "Whenever you

can settle a question by explicit construction, be not satisfied with purely

existential arguments." A more pragmatic statement of the same idea was

expressed by Ford and Fulkerson (1962) who in their seminal monograph

Flows in Networks said "Other things being nearly equal, we prefer a con-

structive proof of a theorem to a non-constructive one, and a constructive

proof that leads to an efficient computational scheme is, to our way of

thinking, just that much better."

2.11.12 Motzkin (1936) favored the term "transposition theorem" for

what we call "theorem of the alternative." That publication, Motzkin's

doctoral dissertation, included many contributions to the theory of linear

inequalities as well as a wealth of information on the preceding literature.

Our development of theorems of the alternative is based on Theorem 2.7.6
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which is a version of the so-called Farkas' lemma. (Actually, in the work of

Farkas (1902), the result is identified as a Grundsatz, not as a Hilfsatz.) The

sources for the other named theorems of the alternative (2.7.10, 2.7.11,

and 2.7.12) are Gordan (1873), Ville (1938), and Stiemke (1915), respec-

tively.

2.11.13 The theory of duality is well covered in many textbooks on linear

programming. See for example Gale (1960), Dantzig (1963), Murty (1983),
and Schrijver (1986). The actual duality theorem of linear programming is

ordinarily attributed to von Neumann (1947) and Gale, Kuhn and Tucker

(1951).

2.11.14 Theorem 2.8.1 appeared in an appendix to the paper by Frank

and Wolfe (1956). The result now known as the Frank-Wolfe theorem has

been proved in various ways and has also been generalized to some extent.

It is a very important existence result for quadratic programming, and

hence for the linear complementarity problem.

2.11.15 The first-order optimality conditions in nonlinear programming

were laid down by Karush (1939) and Kuhn and Tucker (1951). As re-

marked in 1.7.3, the paper by Kuhn (1976) is of historical interest in

this regard. Our presentation in 2.8.2 is restricted to the special case of

quadratic programming. The fact that problems of the latter kind always

have linear constraints implies that "constraint qualification" is automati-

cally satisfied. For treatments of second-order necessary and sufficient con-

ditions for local optimality, see Ritter (1965), Majthay (1971), and Contesse

(1980) .

2.11.16 We have noted in Section 2.8 that a feasible point satisfying

the first-order optimality conditions of a convex quadratic program must

be a global optimum. Actually, the same can be said if the objective

function of the quadratic program is pseudo-convex on its feasible region.

A differentiable function f is pseudo-convex on a convex set C if and only

if for all x and t in C,

0f(x)(x — x)> 0	f(x)>f().

In the case where the feasible region is a solid subset of the nonnegative

orthant and the linear term of the objective is nonzero, it is enough for the
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objective function to be quasi-convex on the nonnegative orthant. For a

differentiable function f, the latter property is equivalent to the condition

f(x) <f() 17f(x)(X — ) <0

for all x and t in C. For a detailed treatment of these issues, see Cottle and

Ferland (1971), but beware of an unfortunate typographical error in that

paper: the first inequality in its display (1) should read > and not <. Cottle

and Ferland (1972) gives matrix-theoretic criteria for quasi-convexity and

pseudo-convexity of quadratic functions on the nonnegative orthant.

2.11.17 Dennis (1959) and Dorn (1960a, 1960b, 1961) were the first to

study duality in quadratic programming. The approach given in Section

2.8 is based on the symmetric duality theory for quadratic programming

given by Cottle (1963).

2.11.18 The concepts of index and local degree are first seen in Kronecker

(1869a, 1869b). The idea of global degree is credited to Brouwer (1912).

As noted in 2.11.1, Brouwer (1912) is also the paper in which 2.1.24 is

first shown. Degree theory is a well studied subject in mathematics, and

it has been treated by several different approaches. Section 2.9 adopts the

analytic perspective which is the one used in Ortega and Rheinboldt (1970)

and Lloyd (1978). The references of Milnor (1965), Guillemin and Pollack

(1974), and Hirsch (1976) develop degree theory from the viewpoint of

differential topology. A third approach to the subject is via combinatorial

topology; details of this treatment can be found in the texts by Lefschetz

(1930) and Cronin (1964). Several of these cited references also contain

additional historical remarks and references concerning degree theory. The

reader should consult Dieudonne (1989) for a more complete history of

degree theory.

2.11.19 The notion of dimension is undoubtedly quite old and is linked

to the intuitive feeling that R"" and R are "different" if in n. However,

with the rise of modern set theory and topology, it became clear that if the

notion of dimension was to have any true meaning, then it must be shown

that Rm and R 7 are, indeed, not homeomorphic if m n. This was finally

shown by Brouwer (1911). It is interesting to note that this result was also

shown by Lebesgue (1911) which, as it happens, is the very next paper
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appearing after Brouwer (1911) in volume 70 of Mathematische Annalen.

The two papers use different approaches. It should be noted that the proof

in Lebesgue (1911) is flawed and was later corrected in Lebesgue (1921).
A rigorous definition of topological dimension was first given by Brouwer

(1913). This definition was laid out, in an intuitive manner, by Poincare

(1912). A different definition of topological dimension grew out of Lebesgue

(1911). However, the two definitions are equivalent for separable pseudo-

metric spaces such as R. The reader should consult Hurewicz and Wall-

man (1941), Nagata (1965) and Pears (1975) for additional historical re-

marks, details, and references regarding dimension theory.

2.11.20 Although we do not directly make use of the concept of measure,

there are many places within this text in which this idea can be fruitfully

incorporated. These junctures will be apparent to readers familiar with

measure theory. The following texts are listed here for those interested in

further pursuing the subject of measure: Halmos (1950), Royden (1968),
Rudin (1974), and Dudley (1989).

 



Chapter 3

EXISTENCE AND MULTIPLICITY

In this chapter we present results pertaining to the existence and multi-

plicity of solutions to the linear complementarity problem. In essence, there

are two general approaches to establishing the existence of a solution to the

LCP. One is the constructive approach, in which one assumes appropriate

conditions and actually produces a solution by means of an algorithm. The

other is the analytic approach, in which one relies on an equivalent formu-

lation of the LCP as a certain familiar mathematical programming problem

(such as a quadratic program or a fixed-point problem) and then invokes

an existence theorem (which is presumably proven by other means) for the

latter problem. In this chapter we concentrate on the analytic approach.

"Multiplicity" refers to the number of solutions to the LCP, which can

be finite or infinite. The special case of a unique solution is of particu-

lar interest. There are two types of uniqueness results: global and local

uniqueness. A global uniqueness result asserts when a solvable LCP has

only one solution, whereas a local uniqueness result provides conditions

under which a given solution to an LCP is the only solution in one of its

neighborhoods. Locally unique solutions are said to be isolated.
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In connection with the multiplicity of solutions, it is also of interest to

explore the structure of the solution set of an LCP. Such information often

has important sensitivity and algorithmic implications for the problem.

3.1 Positive Definite and Semi-definite Matrices

As the source problems in Section 1.2 suggest, matrix classes play a

strong role in the theory of the LCP. Two of the most fundamental classes

are those consisting of the positive definite and positive semi-definite ma-

trices. In addition to the fact that these matrices are the most commonly

found in applications, they have nice properties which serve as a model for

extension. In this section, we establish the existence and several properties

of solutions to a linear complementarity problem with such a matrix M.

As in linear complementarity theory generally, most of these results do not

require that M be symmetric.

The cornerstone for the existence results to be presented is the quadratic

programming formulation of the LCP (cf. (1.4.2)):

minimize	 zT(q + Mz)

subject to q + Mz > 0	 (1)

z>0.

We start by stating a basic property of this program. It should be noticed

that this result is valid for arbitrary real square matrices M.

3.1.1 Lemma. If the LCP (q, M) is feasible, then the quadratic program

(1) has an optimal solution, z*. Moreover, there exists a vector u* of mul-

tipliers satisfying the conditions

	q (M + MT )z* — MTu* > 0	 (2)

	(z*)T(q + (M + MT )z* — MTU*) = 0	 (3)

	u* > 0	 (4)

	

(u*) T(q + Mz*) = 0.	 (5)

Finally, the vectors z* and u* satisfy

(z* — u*)^ (MT(z* — u*)) <0 for all i = 1, ... , n.	 (6)
2 -
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Proof. Since (q, M) is feasible, so is the quadratic program (1). As the

objective function of the quadratic program is bounded below on the fea-

sible region, the Frank-Wolfe theorem implies that there exists an optimal

solution to (1). Such an optimal solution z* and a suitable vector u* of

multipliers will satisfy the Karush-Kuhn-Tucker conditions (2) — (5). To

prove (6), we examine the inner product (3) at the componentwise level

and deduce that for all i = 1, ... , n,

zi (MT(z* _u*)). c 0	(7)

using the fact that z* E FEA(q, M). Similarly, multiplying the i-th com-

ponent in (2) by uz and then invoking the complementarity condition

u? (q + Mz*)z = 0 which is implied by (4), (5), and the feasibility of z*, we

obtain

- u? ( MT(z* - u * ))i < 0.	 (8)

Now, (6) follows by adding (7) and (8). ❑

With Lemma 3.1.1, we prove the following existence result for the LCP

with a positive semi-definite matrix.

3.1.2 Theorem. Let M be a positive semi-definite matrix. If the LCP

(q, M) is feasible, then it is solvable.

Proof. By 3.1.1, there exist vectors z* and u* such that z* is feasible in

(q, M) and conditions (2) — (6) hold. Adding the n inequalities in (6), we

obtain

(z* - u* ) TMT(z * - u * ) < 0.

Since M is positive semi-definite, this inequality must hold as an equation.

Reviewing how (6) is derived, we deduce that (7) must hold as equality for

all i. Consequently, by (3), we conclude

(z*) T(q + Mz*) = 0.

Thus, z* is a solution of the LCP (q, M). ❑

If the matrix M is positive definite, a stronger conclusion about the

LCP (q, M) can be drawn. We first state a. lemma.
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3.1.3 Lemma. If M is a positive definite matrix, then there exists a vector

z such that

Mz > 0, z>0. 	 (9)

Proof. Indeed, if no such vector z exists, then by Ville's theorem of the

alternative, it follows that there exists a nonzero vector u > 0 such that

M u < 0.

Multiplying the above inequality by u yields uTMTu < 0, contradicting the

positive definiteness of M. ❑

3.1.4 Definition. A square matrix M for which a vector z satisfying (9)

exists is called an S-matrix (S stands for Stiemke) . The class of S-matrices

is denoted by S.

It should be noted that (9) is feasible if and only if

Mz > 0, z>0 	 (10)

is feasible. Clearly, (10) is implied by (9). On the other hand, suppose a

vector z > 0 is given such that Mz > 0. Since Mz is continuous in z, it
follows that M(z + )e) > 0 for all A > 0 small enough. As z + )e > 0, we

have (9).

Lemma 3.1.3 shows that a positive definite matrix M must belong to

the class S. As a matter of fact, an arbitrary S-matrix is related to the

feasibility of the LCP in the following way.

3.1.5 Proposition. The matrix M E Rnxn is an S-matrix if and only if

the LCP (q, M) is feasible for all q E R? .

Proof. Consider an arbitrary LCP (q, M) in which M E S. Let be a

solution to (9). We find

AMz = M(M) > —q

for a suitably large positive scalar A, and of course Az > 0, so that Az is
feasible for (q, M). Conversely, if (q, M) is feasible for every q, take any

q < 0. Any feasible solution z of (q, M) will satisfy Mz > —q > 0, z > 0.
Thus, M is an S-matrix. ❑
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Combining 3.1.2, 3.1.3, and 3.1.5, we obtain the existence part of the

following result.

3.1.6 Theorem. If M C Rn"n is positive definite, then the LCP (q, M)

has a unique solution for all q C R.

Proof. In light of what has been said above, it suffices to prove the unique-

ness part of the assertion. Let q E R' be given. Any solution to the LCP

(q, M) must be an optimal solution to the quadratic program (1). If M is

positive definite, the objective function is strictly convex. Hence (1) has a

unique optimal solution. Consequently so does (q, M). ❑

In general, the LCP with a positive semi-definite matrix can have mul-

tiple solutions . For instance, the LCP with

q= 	and M=

	

_1 	
1 1

has solutions

	zl = (
1 , 0 )	 z2 = (0 1 ),	 z3 = (1 1'

Observe that w = q+Mz is the same for all three solutions zz (i = 1, 2, 3).

The theorem below describes several properties of the solution set of an

LCP of positive semi-definite type.

3.1.7 Theorem. Let M E R''^"n be positive semi-definite, and let q C RTh
be arbitrary. The following hold:

(a) If z l and z2 are two solutions of (q, M), then

(z l ) T(q + Mz2 ) = (z 2 ) T(q + Mz i ) = 0.	 (11)

(b) If z* C SOL(q, M) has the property that (i) z* is nondegenerate and

(ii) Maa is nonsingular where

a {i:zi > 0},

then z* is the unique solution of (q, M).
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(c) If (q, M) has a solution, then SOL(q, M) is polyhedral and equal to

P ={zER+:q +Mz>0, qT(z —z)=0, (M +MT )(z —z)=0}

where z is an arbitrary solution.

(d) If M is symmetric (as well as positive semi-definite), then Mz'

Mz 2 for any two solutions z l and z 2 .

Proof. (a) Let wi = q + Mzi for i = 1, 2. We have w l —w 2 = M(z l — z 2 ).

By the positive semi-definiteness of M and by the fact that z l and z2 solve

the LCP (q, M), we obtain

0 < (z' — z2 ) TM(z 1 — z2 ) = —(z 1 ) Tw 2 — (z 2 ) Tw 1 <0.	 (12)

Consequently, we must have (z 1 )Tw 2 = (z2)Twl = 0, as desired.

(b) Let z' be any solution. By (11) we have

(q + Mz')i =0 for all i E a.	 (13)

If i 0 cti, then (q + Mz*) i > 0 by the nondegeneracy of z*. By (11) again,

we deduce that z2 = 0 for i cti. Thus, (13) becomes the square system of

linear equations

qa + Mza = 0

whose solution must be unique by the nonsingularity assumption on Maa.

(c) Let be a given solution and z an arbitrary solution. By the proof

of (12), we can show that (z — z) TM(z — z) = 0. From this we obtain

(M + MT ) (z — z) = 0, for when a positive semi-definite quadratic form

vanishes, so does its gradient. Thus, we have

zT(M+MT )z = ZT(M+MT )z,

and

2T(M+ MT) z = zT(M+MT )z.

The last two equations imply that zTMz = zTMz. At the same time, we

have

0 = zT(q + Mz) = zT(q + Mz).
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Consequently, qTz = qTz and z E P. Conversely, suppose that z E P. To

show that z solves the LCP (q, M), it suffices to show zT(q + Mz) = 0.

From (M + MT ) (z — z) = 0, by the argument we have just used, it follows

that zTMz = zTMz. Thus, as qT(z — z) = 0,

zT(q + Mz) = zT(q + Mz) = 0

because z is a given solution of (q, M).

(d) The hypotheses of this part include those of (c). The desired conclu-

sion now follows from the symmetry assumption on M and the condition

(M + MT ) (z — z) = 0 in the definition of the solution set P. ❑

From (d) we see that a linear complementarity problem of symmetric

positive semi-definite type has the property that w = q +Mz is constant for

all solutions z. Accordingly, we say that the solutions of such a problem are

w-unique. As an application of this idea, consider a linear complementarity

problem in which

qi M1

q2 M1 M2
q= and M=

qt M1 M2 • .. Mt

and q2 E R. The Mi are assumed to be symmetric positive semi-definite

matrices of order n. If z = [ zl, z2 , ... , t] solves (q, M), then zl must

solve (ql, M1). Moreover, z2 must solve (q2 + M1z1 i M2), and so forth.

This suggests an obvious sort of decomposition of a large problem of this

special structure into a set of t smaller ones. But one condition requires

checking. If the problem (ql , M1 ), for example, has multiple solutions, does

the choice of one particular solution affect the feasiblility of the second-stage

problem? That is, if zi and z'1 both solve (ql, M1) could it happen that

(qz +M1z1, M2) is solvable while (q2 +M1 z' , M2) is not? By the symmetry

and positive semi-definiteness of the MZ, part (d) of 3.1.7 tells us that the

answer is in the negative. We can be sure that Mzz = Mz' for any two

solutions of the i-th stage problem, hence they lead to exactly the same

problem at the next stage.
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In general, the solution set of an arbitrary LCP (q, M) if nonempty is

the union of a finite number of convex polyhedra

Xa ={xeR+:(q +Mx) a =0, (q +Mx)a >0, xa =0}

where a runs over all subsets of {1, ... , n}. (Some of the sets X, may
be empty.) Being such a union of polyhedra, the solution set of an arbi-

trary LCP is typically nonconvex. Indeed, it is convex if and only if it is

polyhedral; see Theorem 3.1.8.

Theorem 3.1.7 shows that the solution set of an LCP of the positive

semi-definite type is a convex polyhedron. Moreover, if M is positive semi-

definite, then (11) holds for any two solutions z l and z2 of the LCP (q, M).

As a matter of fact, condition (11) characterizes the convexity (and there-

fore the polyhedrality) of the solution set of an arbitrary LCP .

3.1.8 Theorem. Let M E Rn"n and q E Rn be given. The following two

statements are equivalent:

(a) The solution set of (q, M) is convex.

(b) For any two solutions z l and z2 of (q, NI), equation (11) holds.

Moreover, if SOL(q, M) is convex, then it is equal to Xa where

a = {i: zZ > 0 for some z E SOL(q, M) }.	 (14)

Proof. (a)	 (b). Let z l and z 2 be any two solutions of (q, M). By the

convexity assumption, the vector z = Tz I + ( 1 — T)z2 is also a solution for

any T E (0, 1). By letting w 2 = q + Mz for i = 1, 2, we have

0 = (Tw 1 + ( 1 - T)w 2 ) T(TZ l + ( 1 - T)z2 ) = T(1 - T) 
((wl)TZ2 + (w2)Tz 1)

from which (11) holds.

(b) = (a). This follows easily by reversing the argument used in the

first part.

Finally, to prove that SOL(q, M), if convex, is equal to Xa where a is
as given in (14), it suffices to show SOL(q, M) C X. But this is obvious

in view of the equation (11) and the definition of the index set a. ❑
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It is interesting to compare part (c) of 3.1.7 with the last assertion of

3.1.8. In the former result, the set SOL(q, M) is completely determined

provided that one solution of (q, M) is known; nevertheless, this is not the

case with the latter result which requires the knowledge of the special index

set a as given in (14). This comparison points out one particular feature

of a positive semi-definite LCP (see also Section 3.5).

3.2 The Classes Q and Q 0

In Section 3.1, we showed that if M is positive definite, then the LCP

(q, M) has a unique solution for all vectors q. This prompts the following

Question 1. What is the class of matrices M for which the LCP (q, M)

has a unique solution for all vectors q?

It turns out that a complete answer to this question is available. It

will be discussed in the next section. One can ask a related question by

dropping the uniqueness requirement

Question 2. What is the class of matrices M for which the LCP (q, M)

has a solution for all vectors q? This class is denoted Q, and its elements

are called Q-matrices.

Intrinsically, Questions 1 and 2 involve a continuum of vectors q. An

ideal answer for them would be to provide a set of necessary and sufficient

conditions which could be used to check, in finite time, if any given matrix

M belongs to the class. In the case of Question 2, some partial—albeit not

entirely satisfactory—answers are available.

In terms of the complementary cones, Question 2 is asking for the class

of n x n matrices M for which the complementary range of M equals R.

For an arbitrary matrix M, the cone K(M) is generally not even convex,

much less equal to R. We can at least ask for the class of matrices M for

which K(M) is convex. This matter is closely related to

Question 3. What is the class of matrices M for which the LCP (q, M) is

solvable whenever it is feasible? This class is denoted Q0 , and its elements

are called Q0-matrices.
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According to Theorem 3.1.2, every positive semi-definite matrix be-

longs to the class Q0 . Likewise, Theorem 3.1.6 implies that every positive

definite matrix belongs to the class Q.

We now establish the equivalence between the class Q0 and the convex-

ity of K(M).

3.2.1 Proposition. Let M E RT>. The following are equivalent:

(a) MEQ0 .

(b) K(M) is convex.

(c) K(M) = pos (I, —M).

Proof. (a)	 (b). Let q' and q2 be two vectors in K(M). Thus, the LCP

(q', M) is solvable for i = 1, 2. Obviously, the LCP (q', M) is feasible for

all q' = )q' + (1— A)q2 with ) E [0, 1] . Thus, by (a), it follows that (qA , M)

is solvable. Hence q A E K(M) and (b) follows.

(b) (c). This is clear because the convex hull of K(M) is equal to

pos (I, —M).

(c) = (a). The cone pos (I, —M) consists of all vectors q for which the

LCP (q, M) is feasible. Therefore, if (c) holds, (a) follows readily. ❑

From Proposition 3.1.5, it is clear that the classes Q and Q0 are related

through the equation

Q =QonS.	 (1)

From the definition of an S-matrix, it follows that testing whether an

arbitrary matrix M is in the class S is a matter of checking the feasibility

of the inequality system (3.1.9). This, in turn, can be settled by linear

programming. Therefore, the relation (1) implies that if one has a finite

test for a Q0-matrix, then that test can easily be made into one for a

Q-matrix. At present, no efficient test exists for either matrix class.

3.3 P-matrices and Global Uniqueness

In this section, we establish a characterization for the class of matrices

M such that the LCP (q, M) has a unique solution for all vectors q. For

this purpose, we introduce the class of P-matrices.
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3.3.1 Definition. A matrix M E R7< is said to be a P-matrix if all its

principal minors are positive. The class of such matrices is denoted P.

Obviously, if M is a P-matrix, then so are each of its principal sub-

matrices and its transpose. It is well known that a symmetric matrix is

positive definite if and only if it belongs to P. As easily constructed exam-

ples show, this equivalence breaks down when the symmetry assumption is

dropped. Nevertheless, it will follow from Theorem 3.3.7 below and from

Theorem 3.1.6 that every positive definite matrix belongs to the class P.

3.3.2 Example. Let

1 —3
M =

	0 	 1

Clearly, M is a P-matrix. However, letting x = (1, 1), we note that

X TMx = —1 <0 which shows that M is not positive definite.

In order to state the first characterization theorem on P-matrices, we

introduce the important notion of sign reversing.

3.3.3 Definition. The matrix M E R"" reverses the sign of the vector

z E Rn if zi (Mz)z < 0 for all i = 1, ... , n.

3.3.4 Theorem. Let M E R7' < . The following statements are equiva-

lent:

(a) M is a P-matrix.

(b) M reverses the sign of no nonzero vector, i.e.,

[zi(Mz)2 <0 for alli]	 =	 [z= 0].

(c) All real eigenvalues of M and its principal submatrices are positive

Proof. (a)	 (b). This is clearly true for n = 1. Using induction, we

will now assume this implication holds for the case n — 1, where n > 1.

Suppose that the P-matrix M E RIXn reverses the sign of the nonzero

vector z E R. If zi = 0, for some i, then the principal submatrix M22 is a

P-matrix which reverses the sign of the nonzero vector z 1 . This contradicts

the induction hypothesis, so no component of z is zero. We may now write

(Mz)2 = dz2 	with	 di = (Mz)i /z2 <0
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Letting D = diag(dl, . .. , d? ), we obtain (M — D)z = 0. Using (2.2.1) we

have

det(M — D) _	 det(—D) det M IX

where a runs over the index subsets of {1, ..., n}. Since D is a nonpositive

diagonal matrix and M is a P-matrix, it follows that M — D must be

nonsingular. Thus, we obtain a contradiction, and (b) follows.

(b) = (c). Since M reverses the sign of no nonzero vector, the same

can be said of each principal submatrix of M. Hence it suffices to show

that all real eigenvalues of M are positive. Let A be one such eigenvalue

and z an associated eigenvector. The vector z must be nonzero and, as A

is real, we may take z to be real. We have Mz = Az. Since M does not

reverse the sign of z, it follows that A > 0.

(c) (a). Since the determinant of a matrix is equal to the product

of all the (real as well as complex) eigenvalues, and since the complex

eigenvalues always appear in conjugate pairs for real matrices, it follows

that, if (c) holds, the determinant of M and all its principal submatrices

must be positive. ❑

3.3.5 Corollary. Every P-matrix is an S-matrix.

Proof. We prove the contrapositive. If M is not an S-matrix, then by

Ville's theorem of the alternative, there exists a vector u 0 such that

u > 0 and MTu < 0. Thus, MT reverses the sign of the nonzero vector u.

By part (b) of Theorem 3.3.4, MT is not a P-matrix. Therefore, M is not

a P-matrix. ❑

3.3.6 Example. The converse of Corollary 3.3.5 is false. Let

12
M =

21

As Me = (3, 3) > 0, we see that M is an S-matrix. However, M is not a

P-matrix as its determinant is negative.

Using Theorem 3.3.4, we may prove

3.3.7 Theorem. A matrix M E Rn " n is a P-matrix if and only if the

LCP (q, M) has a unique solution for all vectors q E R"'.
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Proof. Suppose M is a P-matrix. From 3.3.5, it follows that M E S. In

particular, the LCP (q, M) is feasible for each q E R. By Lemma 3.1.1,

the quadratic program (3.1.1) has an optimal solution z*, and there exists

a vector u* such that (z*, u*) satisfies the conditions (3.1.2)—(3.1.6). Since

MT is a P-matrix, it follows from (3.1.6) that z* = u*. Hence z* solves

the LCP (q, M) by (3.1.5).

To show that z* is the unique solution, let z' be an alternate solution.

Write w* = q + Mz* and w' = q + Mz'. Subtracting, we deduce w* — w' _

M(z* — z'). Thus, for all i = 1, ..., n,

0 > (z * - z ' )i(w * - w ')z = (z * - z ' )Z(M(z * - z ' ))i ,

contradicting the fact that M reverses the sign of no nonzero vector.

Conversely, suppose M is not a P-matrix. From 3.3.4, there exists a

vector z 0 such that z(Mz) z < 0 for all i. Let z+ = max (0, z) and

z = max (0, —z) be the positive and negative parts of z, respectively. As

z 0, we have z+ ^ z. Similarly, let u+ = max (0, Mz) and u — _
max (0, —Mz). Noticing that z = z+ — z and Mz = u+ — u — , we define

q=u+—Mz+=u - - Mz.

If zti > 0, then (Mz) i <0. Thus, z u = 0. Consequently, z+ is a solution

to (q, M). Similarly, one can show that the same is true for z. Therefore,

(q, M) has two distinct solutions. This completes the proof. ❑

It follows from 3.3.7 that every P-matrix belongs to the class Q. In-

deed, this theorem completely answers Question 1 in Section 3.2. Thus,

given an arbitrary matrix M E Rnxn by testing whether M E P, one can

decide whether the LCP (q, M) has a unique solution for all q E R. Notice

from the definition, there is a finite, but not necessarily efficient, test which

will determine if a matrix is in P. At present, there is no efficient test to

determine whether an arbitrary matrix is in P.

The proof of 3.3.7 shows that if M is a P-matrix, then the unique

solution of the LCP (q, M) is also the unique solution of the quadratic

program (3.1.1). If M is not positive semi-definite, the objective function

in (3.1.1) is generally nonconvex.
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As we have pointed out, the class of positive definite matrices is a

subclass of P. In the sequel, we introduce another subclass of P-matrices

which generalize the positive definite matrices. In general, if M is a P-

matrix, then so is any positively scaled matrix DME where D and E are

arbitrary diagonal matrices with positive diagonal entries. Moreover, a

vector z is a solution of (q, M) if and only if the vector E—l z is a solution
of (Dq, DME). If the matrix DME is positive definite, then the LCP

(Dq, DME) (and thus (q, M)) is equivalent to a convex quadratic program.

Motivated by this equivalent formulation, one is led to ask the question: For

a given P-matrix M, is it always possible to find positive diagonal matrices

D and E so that DME is positive definite? Presumably, an affirmative

answer would allow one to convert an LCP with a P-matrix into a convex

quadratic program. This question leads to the following definition.

3.3.8 Definition. A matrix M E Rfl x n is said to be (positive) stable
if there exists a symmetric positive definite matrix H such that HM is
positive definite. The matrix M is said to be diagonally (positive) stable if

there exists a positive-diagonal matrix D such that DM is positive definite.

Historically, the class of stable matrices was first discussed in the context

of the stability analysis of a dynamical system. The general notion of a

stable matrix does not seem to be too useful in the context of the LCP

because scaling the matrix M by a nondiagonal matrix H would destroy

the complementarity condition of the problem. Nevertheless, diagonally

stable matrices do have some significance in the study of the LCP as we

have pointed out.

Clearly, a diagonally stable matrix is in the class P. The following result

states that several ways of scaling a matrix to make it positive definite are

equivalent.

3.3.9 Theorem. Let M E RT ><. The following statements are equiva-

lent:

(a) M is diagonally stable.

(b) There exist positive-diagonal matrices D and E such that DME is
positive definite.
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(c) There exists a positive-diagonal matrix F such that F — 'MF is pos-

itive definite.

Moreover, if M is diagonally stable, then all eigenvalues of M have positive

real parts.

Proof. (a) = (b). This is obvious.

(b) = (c). If DME is positive definite, then so is

(DE) -1 / 2 (DME)(DE) — '/ 2 = F — 'MF

where F = E 1 /
2
D -1 /

2

(c) = (a). If F — 'MF is positive definite, then so is

F -1 (F— 'MF)F -1 = F -2M.

Finally, let M be a diagonally stable matrix. By (c), we may assume

with no loss of generality that M itself is positive definite. Let A = a + ib

be an eigenvalue of M, and let z = u + iv be a corresponding eigenvector.

By equating the real and imaginary parts in the equation Mz = Az, we

obtain

Mu=au — by and My=av+bu,

from which we deduce 0 < uTMu + vTMv = a(uTu + vTv). Thus, a > 0.

Consequently, all eigenvalues of M have positive real parts. ❑

Using 3.3.9, one can give an example of a P-matrix which can not be

scaled positive definite.

3.3.10 Example. Let

1 —1 0

M= 1 1 —17

4 0 1

The eigenvalues of M are 5 and —1 ± i 13. Thus, M can not be scaled

positive definite. It is easy to verify that M E P.

Another important subclass of P is a generalization of the diagonally

dominant matrices.
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3.3.11 Definition. A matrix M E Rfl x n is said to be an H-matrix if

there exists an n-vector d > 0 such that for all i = 1, ... , n,

mij1dz >	 m2^jd^.

The class of H-matrices plays a particularly important role in several

areas of the LCP. Among the H-matrices, those with positive diagonal

entries can be shown to belong to the class P; indeed, we will now show

that such H-matrices are diagonally stable. For this purpose it is useful

to introduce the following concept.

3.3.12 Definition. Let M E Rn>< The matrix M defined as

mz^ j for i = j,
mid = 

Hmij I for i j,

is called the comparison matrix associated with M.

Observe that M is an H-matrix if its comparison matrix M is in the

class S. In general, if a matrix M e Rn"n has positive diagonal entries,

then for an arbitrary vector z E R'

zTMz > ^z^ TM^zI .	 (1)

Thus, if M is positive definite (positive semi-definite), then so is M.

3.3.13 Lemma. Let M E RT >< . If the comparison matrix M is in S,
then M is in P.

Proof. As M is in S, there is a d> 0 for which Md > 0. Thus, taking

D = diag(d), we have MD is strictly row diagonally dominant. Let z E R'^

be an arbitrary nonzero vector. We may assume z l is the component with

the largest absolute value. As MD is strictly row diagonally dominant, it

is not hard to show that zl(MDz)1 > 0. Thus, MD reverses the sign of

no nonzero vector. Therefore, by Theorem 3.3.4, MD is in P, hence, so

is M. ❑

3.3.14 Remark. The above lemma is a special case of a more general

theorem from the theory of Z-matrices. We will treat this more fully in

Section 3.11. Notice the assumption that M is a comparison matrix is

important. (See Example 3.3.6.)
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3.3.15 Theorem. Let M E R><. If M is an H-matrix with positive

diagonal entries, then M is diagonally stable.

Proof. Let M be the comparison matrix of M. As M is an H-matrix,

then M is an S-matrix. Thus, we can find a positive diagonal matrix

D such that MD is strictly row diagonally dominant, i.e., MDe > 0.

From Lemma 3.3.13 we know that MD is a P-matrix. Thus, DMT is

also a P-matrix. It follows from Corollary 3.3.5 that DMT is also an

S-matrix. Again, this means that a positive diagonal matrix E exists such

that N = DMTE is strictly row diagonally dominant. Notice that N is

also strictly column diagonally dominant. Thus, (N + NT) is symmetric,

equal to its own comparison matrix, and strictly row and column diagonally

dominant. From Lemma 3.3.13, (N + NT ) is in P and, hence, is positive

definite. Therefore, N is positive definite and from (1) we see that EMD is

positive definite. Theorem 3.3.9 now implies that M is diagonally stable.

3.4 P0-matrices and w-Uniqueness

In Theorem 3.1.7(d), we showed that if M is a symmetric positive

semi-definite matrix, then any two solutions z l and z2 of the LCP (q, M)

give rise to the same vector w = q + Mz2 (i = 1, 2). This property of
w-uniqueness can be characterized by a certain condition on M related to

the notion of sign reversing . The characterization is somewhat like that of

z-uniqueness by means of the P-property. Before establishing criteria for

w-uniqueness, we define a generalization of the class P.

3.4.1 Definition. A matrix M E Rfl x n is said to be a P0-matrix if all its

principal minors are nonnegative. The class of such matrices is denoted

Po

Parallel to the fact that any positive definite matrix must belong to P,

it will follow that a positive semi-definite matrix must belong to Po . The

following result gives some characterizations for a Po-matrix very much like

those for a P-matrix (cf. 3.3.4).

3.4.2 Theorem. Let M E Rnxn The following statements are equiva-

lent:
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(a) M is a P0-matrix.

(b) For each vector z 0, there exists an index k such that zk 0 and

Zk(MZ)k > 0.

(c) All real eigenvalues of M and its principal submatrices are nonnega-

tive.

(d) For each r> 0, M + rI is a P-matrix.

Proof. (a) = (d). From formula (2.2.1), for any diagonal matrix D,

det(M + D) _	 det Da , det M	(1)

where a runs over the index subsets of {1, ..., n}. Let D = eI in (1). As M

is a P0-matrix, each term in the sum will be nonnegative and the term with

a = {1, ... , n} will be rn > 0. Thus, det(M + eI) > 0. As each principal

submatrix of M must also be in Po , this argument applies to each of these

submatrices. Therefore, M + eI is a P-matrix.

(d)	 (b). Let z 0 be given. Since M + eI is a P-matrix for r> 0,

there exists an index i (depending on r) such that zz((M+rI)z)i > 0. Let

{Ek} be a sequence converging to zero. There must exist an index j such

that z^ ((M + ekI)z) > 0 for infinitely many rk. Clearly, z 0. Also, as

k — oc, we have Ek —> 0, and we deduce that z^ (Mz) > 0, as desired.

(b)	 (c) and (c)	 (a). These are proved in much the same way as in

Theorem 3.3.4. ❑

3.4.3 Example. The condition that zk 0 in 3.4.2(b) is essential. Con-

sider the matrix
1	 0

M =
0 —1

which is clearly not in Po . Given any z = (zl, z2) 0, we find zi(Mz)1

zl > 0. Thus, M would satisfy 3.4.2(b) if we dropped the condition that

zk 0. It can be seen that the matrix M does not meet the full requirement

of 3.4.2(b) by letting z = (0, 1).

The next result identifies a class of matrices M for which all solutions

of the LCP (q, M) must be w-unique for all q e K(M).
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3.4.4 Theorem. Let M E RT""''. The following statements are equiva-

lent:

(a) For all q E K(M), if z l and z 2 are any two solutions of (q, M), then

Mz' = Mz 2 .

(b) Every vector whose sign is reversed by M belongs to the nullspace of

M, i.e.,

[z^(Mz)z<0foralli=1,...,n]	 [Mz=O].	 (2)

(c) M is a P0-matrix and for each index set a with det M. = 0, the

columns of M. are linearly dependent.

Proof. (a) = (b). Suppose there exists a nonzero vector z such that

z2(Mz)2 < 0 for all i and Mz 0. Defining z+, z — , u+, u — and q as in

the proof of 3.3.7, we deduce that z+ and z are solutions of (q, M) with

+ Mz+ = u+ u — = q + Mz, which contradicts (a).

(b) (c). If the implication (2) holds, it follows from 3.4.2(b) that

M must be a P0-matrix. Suppose that there is an index set a for which

det Maa = 0. Then there is a vector za 0 such that Maaza = 0. Define

z = (za , 0). The nonzero vector z satisfies [ zi(Mz)i = 0 for all i]. By (2),

we must have 0 = Mz = M. a za . Hence the columns of M. a are linearly

dependent, and (c) follows.

(c) (b). Let be a vector whose sign is reversed by M. Without

loss of generality, we may assume that z is nonnegative. (Otherwise, we

may apply the argument below to the matrix M = DMD where D is the

diagonal matrix with diagonal entries dii = 1 if zj > 0 and d22 = —1 if

zi < 0. The matrix M is easily seen to satisfy the assumptions of (c),

given that M does. Moreover, zi (M)i < 0 for all i = 1,... , n where

z = Dz > 0.) Let w = Mz. Suppose that ?i 7A 0. The system

w=Mz, z>0

has a solution, z. Let a be the support of z, thus a zA 0. Notice, wa <0 as

za > 0. By linear programming theory, there is a (basic) feasible solution

z > 0 with support ß C a such that M.ß has linearly independent columns.

Note, ß 0 as 0 w = Mz. Obviously, Mßß is a P0-matrix. As a

matter of fact, Mßß is a P-matrix for if det MM y ,y = 0 for some ry C ß,
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then the columns of M.,y are linearly dependent, contradicting the linear

independence of M.ß. As ß C a, we find that Mßß reverses the sign of the

positive vector zß. This is a contradiction and, therefore, (b) follows.

(b) r (a). The proof of this assertion is similar to that of the uniqueness

part of Theorem 3.3.7. ❑

3.4.5 Remark. It is clear that if M is a nonsingular matrix satisfying the

condition (c) of 3.4.4, then M must indeed be a P-matrix.

3.4.6 Definition. A matrix M E P0 f1 R"l x f is said to be

(a) column adequate if for each a C {l, ... , n}

[ det Maa = 0] = [ M.. has linearly dependent columns].

(b) row adequate if MT is column adequate.

(c) adequate if M is both column and row adequate.

3.4.7 Remark. According to Theorem 3.4.4, the column adequacy of M

characterizes the uniqueness of the w-part of any solution of the LCP (q, M)

for all vectors q.

Obviously, any P-matrix is adequate, as is any symmetric positive semi-

definite matrix. Not every (asymmetric) positive semi-definite matrix is

adequate, however. Moreover, there are adequate matrices which are nei-

ther in the class P nor positive semi-definite. In the context of the LCP,

an adequate matrix differs from a P-matrix in two major ways. One is

that adequate matrices need not belong to S , hence if M is adequate, an

arbitrary LCP (q, M) is not guaranteed to have even a feasible solution.

(A result on the solvability of such linear complementarity problems will

be derived in the next section.) The other difference is that even if (q, M)

is solvable, there is no guarantee that the z-solution is unique, although

the w-solution must be.

3.4.8 Examples. The matrix

1 —1
M =

1 0
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is positive semi-definite, but is neither row nor column adequate. The

matrix
21

M =
42

is adequate but is neither a P-matrix nor positive semi-definite.

3.5 Sufficient Matrices

In Sections 3.1 and 3.3, we relied on the quadratic program (3.1.1)

to derive the existence of a solution to the LCP (q, M). The Karush-

Kuhn-Tucker conditions (3.1.2) — (3.1.5) played a key role in these analytic

arguments. In essence, the various assumptions on the matrix M (e.g.,

positive definiteness, the P-property) were used to establish the existence

of at least one Karush-Kuhn-Tucker pair (z, u) and that any such vector

z must solve the LCP (q, M). In this section, we characterize the class of

matrices M for which this type of analytic approach can be successfully

applied. Interestingly enough, the transpose of a matrix belonging to this

class is intimately related to the convexity of the solution set of the LCP.

3.5.1 Definition. A matrix M E Rnxn is said to be column sufficient if

it satisfies the implication:

[z^(Mz)z < 0 for all i]	 [z2(Mz)1 = 0 for all i]	 (1)

The matrix M is called row sufficient if its transpose is column sufficient.

If M is both column and row sufficient, then it is called sufficient.

3.5.2 Example. The matrix

01
M =

01

is column sufficient, but not row sufficient.

It is clear that any column (row) adequate matrix must be column

(row) sufficient; moreover, any positive semi-definite matrix is obviously

sufficient. The next proposition collects together some simple, but useful,

facts concerning sufficient matrices in general.
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3.5.3 Proposition. Let M E Rn"n be given. If M is row sufficient then:

(a) M is a P0-matrix.

(b) All principal submatrices of M are row sufficient.

(c) If i, j E { 1, . .. , n} and i ^ j, then

[mzi =0, m^i>0]	 [mid <0].

Proof. (a) Using the characterization of a P0-matrix given by Theorem

3.4.2(b), it is easy to see that a row sufficient matrix must be Po .

(b) Take an index set ce C {l, ..., n}, and suppose M, is not row

sufficient. There then exists a za such that zj (M äza )j < 0 for i E a,

with strict inequality holding for some i. Letting z5 = 0, we see that

zi(MTz) i < 0 for i E {1, ..., n}, with strict inequality holding for the same

i as before. This contradicts the row sufficiency of M, thus M. is row

sufficient.

(c) Since, from part (a) above, M is a P0-matrix, then mjj > 0. If in

addition m22 = 0, m^ i > 0, and	 > 0, then let the vector z be such that

zi > m/mza and zj = —1, with all other components of z equal to zero.

We find zk(MTZ)k is nonpositive for k = i, negative for k j, and zero for

all other k. This contradicts the row sufficiency of M, thus statement (c)

follows. ❑

In the result below, we establish how a row sufficient matrix character-

izes the relationship between a Karush-Kuhn-Tucker point of the program

(3.1.1) and a solution to the LCP (q, M).

3.5.4 Theorem. Given M E Rn"n, the following two statements are

equivalent:

(a) M is row sufficient.

(b) For each vector q E Rn, if (z, u) is a Karush-Kuhn-Tucker pair of the

quadratic program (3.1.1), then z solves the LCP (q, M).

Proof. (a)	 (b). Let q be given, and let (z, u) be a Karush-Kuhn-Tucker

pair of (3.1.1). By Lemma 3.1.1, we deduce (cf. (3.1.6))

(z —u)^(MT(z—u)) i <0 forall i=l,...,n.	 (2)
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Since M is row sufficient, equality holds in (2) for all i. Thus, it follows

from the derivation of (2) that (cf. (3.1.7))

zi (MT(z u)) z = 0 for all i = 1, ... , n.

By the Karush-Kuhn-Tucker condition (3.1.3), we obtain

0= zT (q + (M + MT )z — MTU) = zT(q -I- Mz).

Thus z solves (q, M).

(b) = (a). Suppose that M is not row sufficient. There then exists

a vector x such that xi(MTx)Z < 0 for all i with strict inequality holding

for at least one i, say j. Without loss of generality, we may assume that

x^ > 0. Proceeding similar to the proof of Theorem 3.3.7, define z = x+,

u = x — , and q = —Mz + (MTx) — . It is then easy to show that (z, u)

is a Karush-Kuhn-Tucker pair. On the other hand, we have z 1 > 0 and

(q + Mz) > 0, in contradiction to (b). This completes the proof. ❑

Notice that the preceding theorem does not assert that if M is row

sufficient, then the LCP (q, M) is solvable for all q. This is because there

is no guarantee that a Karush-Kuhn-Tucker point will exist. If such a

point exists, then (q, M) will indeed be solvable, provided that M is row

sufficient. In turn, if (q, M) is feasible, then the quadratic program (3.1.1)

has an optimal solution which must be a Karush-Kuhn-Tucker point. Thus,

we have proved

3.5.5 Corollary. Every row sufficient matrix is a Q 0-matrix. ❑

An adequate matrix is both row and column adequate, so by combining

Corollary 3.5.5 above and Theorem 3.4.4 we obtain

3.5.6 Corollary. Let M E Rn"n be adequate and let q E R be arbitrary.

If (q, M) is feasible, then there exist a unique vector w and a vector z

satisfying

w=q+Mz>0, z>0, wTZ=O. ❑
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3.5.7 Example. One should remember that these matrix classes are not

contained in Q. For example, the matrix

1 —1
M =

—1	 1

is symmetric and positive semi-definite. Therefore, it is also adequate and

sufficient. However, it is not a Q-matrix as (q, M) has no solution for

q = ( -1, —1).

In order to motivate the following discussion, we recall that if M is
a positive semi-definite matrix, then LCP (q, M) has a convex (possibly

empty) solution set for all vectors q (see 3.1.7). Moreover, for an arbitrary

M, the convexity of the solution set of (q, M) is characterized by a certain

condition (3.1.11) holding (see 3.1.8). Using the latter characterization,

we establish another result.

3.5.8 Theorem. Given M E R >< , the following two statements are

equivalent:

(a) M is column sufficient.

(b) For each vector q E Rn, the LCP (q, M) has a (possibly empty)

convex solution set.

Proof. (a) = (b). Let q be given. If (q, M) has less than two solutions,

there is nothing to prove. Therefore, suppose that z l and z2 are two so-

lutions of (q, M). It suffices to show that condition (3.1.11) holds, i.e.,

that

(zl)Tw2 = (z 2 ) Tw l = 0	(3)

where wk = q + Mzk for k = 1, 2. For each i = 1, ... , n, we have

0> (z ' - z2 ),(w l - w 2 )z = (z ' - z2 )i(M(z l - z2)).. 	(4)

Thus, by the column sufficiency of M, it follows that equality must hold

throughout (4). The desired condition (3) now follows.

(b) = (a). Suppose that M is not column sufficient. There then exists

a vector x for which r(Mx)i < 0 for all i with strict inequality holding

for at least one index i, say j. Proceeding as in the proof of Theorem
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3.3.7, let z l = x+ and z2 = x be the positive and negative parts of x,

respectively. Let u+ and u — be the positive and negative parts of Mx,

respectively. Define the vector q = u+ — Mx+ = u — — Ma — . It is then

easy to show that both z l and z 2 are solutions to (q, M). Nevertheless, we

have either z^ w > 0 or > 0 depending on whether x > 0 or x < 0.

This contradicts the convexity of the solution set of (q, M). ❑

The defining property (1) does not permit one to check the column

sufficiency of an arbitrary matrix M E R < in finite time. In the next

result, we establish a necessary and sufficient condition for column suf-

ficiency which is stated in terms of a finite number of linear inequality

systems. This characterization makes use of the sign-changing operation

discussed in Section 2.3.

3.5.9 Proposition. Let M E Rn X n be given. The following two state-

ments are equivalent:

(a) M is column sufficient.

(b) For each pair of disjoint index sets cr, 3 C {1, ... , n}, whose union is

nonempty, the system

Maa —Ma8 	xa < 0
—Mßa Maß	 xp

(5)

xa 1 >0
Xß

has no solution.

Proof. (a)	 (b). Suppose system (5) is consistent for some pair of index

sets cr and ß as stated. Let

za = —xa , zp = xß , and z y = 0 ,

where 'y = { 1, ... , n} \ (a U /3). The vector z violates the defining property

(1) of column sufficiency.

(b)	 (a). Conversely, suppose z is a vector such that

zj(Mz)z<0	 foralli=1,...,n
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with strict inequality holding for at least one i. Define

a={i:z2<0}, ß = {i:zi>0}, and -y ={i:zi =0}.

It follows that (xa , x0) = (— zn , zß) satisfies system (5). ❑

Obviously, by applying condition (b) to MT , we obtain a finite char-

acterization of a row sufficient matrix. The resulting characterization is

a generalization of the sign pattern established in part (c) of Proposition

3.5.3 which is a necessary condition for row sufficiency.

3.6 Nondegenerate Matrices and Local Uniqueness

There are many generalizations of the class P. Three of these (Po ,

adequate and sufficient matrices) were discussed in Sections 3.4 and 3.5.
In this section, we introduce another generalization and analyze how it is

related to the LCP.

3.6.1 Definition. A matrix M E Rf"fl is called nondegenerate if all its

principal minors are nonzero.

It is important to realize that the nondegeneracy of matrices is unrelated

to the concept of nondegeneracy of basic solutions of equations, nor is

nondegeneracy of matrices related to nondegeneracy of vectors as defined

in 1.4.3.

Like P-matrices, the class of nondegenerate matrices characterizes a

certain uniqueness property of solutions of the LCP. In what follows, we

shall develop this and a related characterization.

3.6.2 Definition. A solution z* of the LCP (q, M) is said to be locally

unique (or, isolated) if there exists a neighborhood of z* within which z*

is the only solution of (q, M).

3.6.3 Theorem. Let M e Rnxn The following statements are equiva-

lent:

(a) M is nondegenerate.

(b) For all vectors q, the LCP (q, M) has a finite number (possibly zero)

of solutions.
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(c) For all vectors q, any solution of the LCP (q, M), if it exists, must be

locally unique.

Proof. (a)	 (b). Suppose that M is nondegenerate but that for a certain

vector q E K(M), the LCP (q, M) has an infinite number of solutions.

Since K(M) is the union of finitely many complementary cones, there must

exist one such cone in which q has infinitely many representations. If

B is the associated complementary matrix, then the system By = q has

infinitely many solutions, and so B must be singular. Thus, if a is the

(necessarily nonempty) set of indices k such that —M.k appears in B, then

the submatrix Maa must be singular. This contradicts the nondegeneracy

of M.

(b) = (c). This is obvious.

(c) (a). Suppose that for some nonempty index set a, the principal

submatrix Maa is singular. Let ua be a nonzero vector with Maaua = 0.

Define qa = —Maa ea . Let q0 be such that

qa + Maa(ea + 6ua ) > 0

for all 0 > 0 sufficiently small. For the vector q = (qa , q^) so defined, each

vector z defined by

za = ea + 9ua and z0 = 0

is a solution of the LCP (q, M), provided that 0 > 0 is small enough to

make za > 0. Since this contradicts (c), the proof is complete. ❑

3.6.4 Remark. It is generally not true that if a set S has the property

that all its elements are locally unique (i.e., isolated), then S must be a

finite set. (An example would be S = {1/k : k = 1, 2, ..., }.) Thus the

implication (c) = (b) in Theorem 3.6.3 above is a nontrivial assertion.

Theorem 3.6.3 characterizes the class of matrices M for which the LCP

(q, M) has locally unique solutions for all vectors q. In the next result, we

give a set of necessary and sufficient conditions under which a given solution

to (q, M) for a specific q is locally unique.

3.6.5 Theorem. Let z* e SOL(q, M). Define the index sets

a = {i: z, > 0} = suppz *

ß = {i : zz = 0 and (q + Mz*) z = 0}.
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Then, z* is a locally unique solution if and only if (za , zß) = (0, 0) is the

only solution of the system:

Maaza + Maßzß = 0

W 13 = Mßa za + Mßpzp > 0
(1)

zß>0

(wß)Tzß = 0.

In particular, if z* is a nondegenerate solution, and if Maa is nonsingular,

then z* is locally unique.

Proof. Suppose that z* is a locally unique solution of (q, M) and that the

system (1) possesses a nonzero solution (z'a , zß). Let ry be the complement

of a U ß and let z.y = 0. Notice that ry = {i: (q + Mz*)2 > 0}. It is then

easy to verify that the vector z* + Bz is a solution of (q, M) for all 0 > 0
sufficiently small. This contradicts the local uniqueness of z *.

Conversely, suppose that z* is not locally unique. There must be a

sequence of vectors {z'} converging to z* such that each zk is a solution

of (q, M). Let w* = q + Mz*, w k = q + Mzk , and uk = zk — z*. Thus,

wk — w* = Muk . Since zk —> z*, it follows that for all k sufficiently large

zcy > 0, w 	 0, and, by complementarity , w = 0, and zky = u 	 0.

The normalized sequence {uk / ) uk II} is bounded, and thus has an ac-

cumulation point, say u* 0. Notice, as u 0 for all large k, we have

(uä, uß) 0 0. Without loss of generality, we may assume that the entire

sequence {u k / converges to u*. For all large k, we have

0 = wä — w *" = (Muk ) ca = Mua + Map 4

Thus, dividing through by	 and letting k — oc, we obtain

0 = Maauä + ltil"ßu^ .

Since wß = zß = 0, it follows that

uß=mu ^^p/ u k = um zß/Iluk11 >0

and, for all large k,

0 < w^ = (Mu k )ß = Mßauä + M0QU0 .
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Again, dividing by	 and letting k	 oo, we obtain

0 <M U +Mßpu^.

Finally, since 0 = (zß) Twß = (u^) T (Muk )ß, we deduce

(uß) T(M,3a uä + Mßßu^) = 0.

Thus, the nonzero vector (u*, uß) satisfies the system (1). This establishes

the characterization of local uniqueness.

Finally, if z* is a nondegenerate solution of (q, M), then ß = 0. If,

in addition, M,, is nonsingular, then (1) holds only if za = 0, and z* is

locally unique. This completes the proof of the theorem. ❑

The system (1) is an instance of a mixed LCP. If Maa is nonsingular,

we can solve for za = —M^äMaßzß. Substituting the latter expression

into the rest of (1), we obtain the LCP (0, N) where

N = Mßß — MßaMaä Maß.

Thus, provided that Maa is nonsingular, the solution z* of LCP (q, M)

is locally unique if and only if the LCP (0, N) has the zero vector as its

only solution. A noteworthy point about the LCP (0, N) is that it is a

homogeneous problem and its size is equal to the cardinality of the index

set ß which consists of the indices corresponding to the degenerate variables

associated with the solution z*.

3.7 An Augmented LCP

A key theme of this chapter is to find conditions under which the LCP

(q, M) is guaranteed to have a solution. In Sections 3.1 and 3.3 we devel-

oped such conditions by relying on the quadratic programming formulation

(3.1.1) of the LCP (q, M).

In this section we will define an augmented LCP (q, M) which is ob-

tained from (q, M) by adding one extra variable and one extra constraint.

This augmented LCP (q, M) will always have a solution. In turn, the ex-

istence of a solution to the original LCP (q, M) can be inferred from the

LCP (q, M) provided that certain conditions are satisfied.
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Given an LCP (q, M), a scalar A> 0, and a vector d> 0, consider the

augmented LCP (q, M) where

q	 [M dl
q=1 I and M=I 

dT
 0 I. (1)

We may ask whether this augmented LCP has a solution. That is, we may

ask whether or not there exist a vector z and a scalar 0 which satisfy the

system

w = q +Mz +9d >0, z>0, wTz = O,

Q = A—dTz> 0, 0 >0, a 0=O. (2)

If (z *, 0*) is a solution to (q, M) with 0* = 0, then z* solves (q, M). Thus,

in order to solve (q, M), it suffices to seek a solution (z *, 0*) to (q, M) with

0* = 0. Notice that 0* = 0 will hold if A > dTz*.

It turns out that the augmented LCP (q, M) will always have a solution.

There are several ways of proving this. If we assume that M is symmetric,

we could borrow from the theory of quadratic programming as we did

in Sections 3.1 and 3.3. Indeed in this case the augmented LCP (4, M)
becomes the Karush-Kuhn-Tucker conditions of the quadratic program

minimize zTq + 2 zTMz

subject to	 z > 0	 (3)

dTz < A

as in (1.2.1) and (1.2.2). Since the feasible region of the QP (3) is com-

pact, there is an optimal solution z* to the QP (3) which together with a

Lagrange multiplier 0* must satisfy the conditions in (2).

Another proof is needed in the more general case where M is not as-

sumed to be symmetric. One approach is to use pivoting arguments which

we will develop in Section 4.4. A second approach is to use geometric meth-

ods which we will develop in Chapter 6. In fact, we will give both of these

proofs in the appropriate chapters. For now, we give a proof based on the

following fundamental existence result for a variational inequality problem

defined over a compact convex region.
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3.7.1 Theorem. Let K be a nonempty compact convex subset of R7 . Let

the function f : Rn — Rn be continuous. There will then exist a vector

z* E K satisfying

(y — z*) Tf(z*) > 0 for all y E K.	 (4)

Proof. Let IIK(•) denote the projection operator onto the set K under the

1 2-norm; i.e., for every vector x E R"t, IIK(x) is the unique vector in the

set K that is closest to x under the stated norm. According to Exercise

2.10.21, HK() is a continuous mapping. Moreover, by Theorem 2.7.1, we

have for every x E R,

(z — IIK(x)) T(IIK(x) — x) > 0 for all z e K.

From this, it is easy to deduce (see Exercise 3.12.6) that a vector z* solves

the problem VI(K, f) if and only if

z* = HK(z * -

i.e., if z* is a fixed point of the mapping F : K — K defined by

F(x)=Ex(x — f(x))•

Since the mapping F is obviously continuous and K is compact and convex,

the existence of a fixed point of F, and thus, a solution of VI(K, f), follows

from Brouwer's fixed-point theorem, 2.1.24. ❑

3.7.2 Remark. When K is the nonnegative orthant R+, the mapping F

in the above proof reduces to

F(x) = max(0, x — f (x)) = x — min(x, f (x))

which is precisely the mapping given in (1.4.4) in the case where f (x) _

q + Mx.

Using Theorem 3.7.1, we may now show that the augmented LCP

(, M) always has a solution.

3.7.3 Theorem. Let the LCP (q, M) be given. For any scalar A > 0 and

vector d > 0, there exist a vector z and a scalar 0 satisfying the system (2).
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Proof. Let

K = {zER+:dTz<A} and f(z) =q +Mz.

We observe that a vector z* E K satisfies (4) if and only if there exists a

0* such that (z*, 0*) satisfies (2). (Cf. Section 1.2.) In fact, given z* E K

satisfying (4), it is easy to show that (z*, 0*) satisfies (2) where 0* = 0 if

dTz* <A or if f (z*) > 0, and otherwise

0* = max{—f(z *)z/d2 }.
z

The theorem now follows from Theorem 3.7.1. ❑

3.7.4 Remark. We do not need to use the vector d twice in defining the

augmented LCP. Instead of or = A — d Tz > 0, the last constraint of (2)

could have been a = A — d Tz > 0 with any vector J> 0. It will still be

true that the augmented LCP will always have a solution. This slightly

more general result follows from Theorem 3.7.3 by noticing that if an LCP

(q, M) has a solution, then it will continue to have a solution even after

the columns of M have been positively resealed.

From Theorem 3.7.3 we may deduce the following existence result for

the LCP (q, M).

3.7.5 Corollary. Let q E R"' and M E RTh"n be given. If there exists a

scalar n > 0 such that

[x >0, eTx =r,]	 [XT(q+Mx)>0],	 (5)

then the LCP (q, M) has a solution.

Proof. Let (z *, 0*) be a solution to the augmented LCP (q, M) with A _ K

and d = e (the vector of all ones). If 0* = 0, then z* solves (q, M). On the

other hand, if 8* > 0, then dTz* = K. Hence,

0 = (w*) TZ* = (z *) T(q + Mz*) + 0*tc > 0

by (5), which is a contradiction. Consequently, 0* = 0 and (q, M) has a

solution. ❑

As a matter of fact, we may derive from Theorem 3.7.3 a set of neces-

sary and sufficient conditions for the solvability of LCP (q, M).
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3.7.6 Theorem. Let q E Rn and M E Rn x f be given. Let d be an

arbitrary positive n-vector. The following statements are equivalent:

(a) The LCP (q, M) is solvable.

(b)For every unbounded sequence {Xk} of positive scalars, the aug-

mented LCP (qk, M), with M as given in (1) and

qk = L q 	,	 (6)
Ak

has a solution (zk, Ok) where zero is an accumulation point of {Ok}.

(c) There exists an unbounded sequence {.\k} of positive scalars such

that the augmented LCP (qk, M), with M as given in (1) and qk as

given in (6), has a sequence of solutions (zk, Ok) for which zero is an

accumulation point of {Ok}.

Proof. (a) = (b) = (c). These are obvious.

(c)	 (a). For a fixed vector d > 0 and a sequence {Ak} of positive

scalars with Ak —^ oc, let {(zk, Ok)} be a sequence such that (i) each (z k, Ok)

is a solution of the augmented LCP (qk, NI), and (ii) zero is an accumulation

point of {Ok}. Without loss of generality, we may assume that the sequence

{Ok} converges to zero. There must exist an index set a C {1, ..., n} and

a subsequence {z} such that for each k2, z^ ' > 0 if and only if j E a. By

complementarity, w i = 0 for j E a. We have for each k2,

pia+Okada = — Maaza' i

q0 + Ok ; da = — Mäa zä + wä

Thus, q+Ok i d E pos CM (a). Since Ok — 0, by Theorem 2.6.24, there exists

a vector (wä, zä) > 0 such that

qa = — Matti zcti ^

qä = —M^a za + wä .

The vector z* = (zä, 0) is easily seen to be a solution of (q, M). ❑

3.7.7 Remark. By Theorem 3.7.3, each augmented LCP (qk, M) has a

solution. What is essential in assertions (b) and (c) above is the require-

ment that zero be an accumulation point of {Ok} for a certain sequence of

solutions {(z k, 6k)}.
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3.7.8 Examples. Let

0q =^ 

1	 1	 r 1 l
M	1 —1	

and d= 1 1 J .

The LCP (q, M) does not have a solution. However, with q and M as in

(1), the augmented LCP (q, M) has the unique solution (0, A, 1 + A). For

this example, Theorem 3.7.6 implies that zero is not an accumulation point

of 0 as A —4 oc. This is certainly the case as 0 = 1 + A in this example.

However, we must be careful in drawing conclusions from this. Theorem

3.7.6 guarantees that, if the LCP (q, M) has a solution, then at least one

sequence of solutions (as A —> oc) will exist to the augmented LCP (q, M)
with zero as an accumulation point of 0. The theorem does not state that

this will occur for all solution sequences. If we slightly modify the above

example by letting

q =
 0 I , M — 1 —1) 

and d= 1  , (7)

then the LCP (q, M) has the solution (1, 0). Thus, the augmented LCP

(q, M) has the solution (1, 0, 0) for A> 1. Yet, for A> 1/2, the augmented

LCP also has the solution (0, A, A). For this sequence of solutions 0 does

not have zero as an accumulation point as A —* no.

Theorem 3.7.3 states that a solution to the augmented LCP (2) always

exists for each scalar A > 0 and vector d > 0. Theorem 3.7.6 goes on to

state that if zero is an accumulation point of {8k} as Ak goes to infinity,

then there is a solution to the LCP (q, M). The simplest case would be

when 9k = 0 for all large values of Ak. In this case, the zk would represent

solutions to the LCP (q, M) for all large values of Ak. Notice, if the z k

represent the same solution and, hence, are equal for all large values of Ak,

then ak oo as Ak no.

The question arises as to what happens in the opposite case where there

is an infinite subsequence {Ak i } in which the corresponding O, are positive

and the corresponding Ok i equal zero. The following theorem provides us

with some information concerning this situation. Notice, we can use (7)

in Example 3.7.8 to show that it is possible to have lim inf 0k = 0 and

lim sup Bk no.
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3.7.9 Theorem. Let the LCP (q, M) be given along with a vector d> 0

and an unbounded sequence of positive scalars {.Ak}. Let {(z k, Ok)} be a

corresponding sequence of solutions to the augmented LCP (2) such that in

each solution 0k = 0. There will then exist a subsequence {sk i } along with

(possibly different) corresponding solutions {(zk i, Ok i )} to the augmented

LCP (2), and two vectors u and v with dTu = 0, v > 0 and dTv = 1 such

that for all k2,

zki = u + Ak^V.

Proof. Theorem 1.3.4 implies that, for each A = Ak, the augmented LCP

(2) has an extreme point (basic) solution (zk, 6k) in which Uk = 0. Since

any such solution corresponds to a certain basis of the matrix (I, —M),

and since there are only finitely many such bases, there is a subsequence

Ak i for which the corresponding basic solutions all use the same basis. The

conclusion now follows. ❑

As we have pointed out, if M is symmetric, the augmented LCP (q, M)

is related to the QP (3). In this case, we can prove the following special-

ization of Theorem 3.7.9.

3.7.10 Corollary. If in Theorem 3.7.9 the matrix M is symmetric and

each z k is an optimal solution to the QP (3) with A _ Ak, then we may

take each z ki obtained by Theorem 3.7.9 to be an optimal solution to the

QP (3) with A = Ak i .

Proof. In Theorem 3.7.9 we used Theorem 1.3.4 to generate a sequence

{(zk, 8k)} with certain desired properties. With the additional assumptions

given in the corollary, we may use Theorem 1.3.5 to generate a sequence

{(zk, 0k)} with the same desired properties and, in addition, with the prop-

erty that each zk is an optimal solution to the QP (3). The corollary now

follows from proof of Theorem 3.7.9. ❑

3.7.11 Example. Notice that Theorem 3.7.9 does not guarantee that the

solutions in the original sequence {(zk, Ok)} will lie on the ray u + Av. Let

Ak = k and let

q= ‚, M= J and d=—1 0 O l 1
J	 L 
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For each Ak, the augmented LCP (2) has the solution z k = ( 1/k, (k 2 — 1)/k)

and °k = 1. Notice that Qk always equals zero. Yet, since the sequence

{zl } is decreasing, there can be no ray u + Av, with v > 0 as described in

Theorem 3.7.9, which contains more than one of these solutions. Theorem

3.7.9 only guarantees that for some sequence of solutions there will be

a subsequence which lies on some ray. For example, if we consider the

sequence of solutions zk = (0, k) and Bk = 1 to the augmented LCP (2),
then each solution of the sequence lies along the ray Av where v = (0, 1).

We will now apply Theorem 3.7.6 to get a sufficient condition for the

existence of a solution to the LCP (q, M) which is somewhat related to

condition (5) in 3.7.5.

3.7.12 Corollary. Let q E R" and M E Rn"n be given. If the quadratic

function f (z) = zT(q + Mz) is bounded below for z > 0, then the LCP

(q, M) has a solution.

Proof. Let {Ak} be an unbounded sequence of positive scalars, and let

{ (z k, Bk)} be a corresponding sequence of solutions to an augmented LCP

(2). If inf{Bk} > 0, then we must have dTZ k = Ak for all k; moreover,

f(zk ) _ — BkAk

which must diverge to —oo as k - f oc. This contradicts the assumption

that f (z) is bounded below. Consequently, the existence of a solution to

the LCP (q, M) follows from 3.7.6. ❑

3.7.13 Remark. The assumptions in Corollaries 3.7.5 and 3.7.12 are

different and neither one implies the other. Indeed, the pair

	1 	 —1 0
q= 	and M=

—1 0 1

satisfies condition (5) with t = 1, but the corresponding quadratic function

f (z) = zT(q + Mz) is unbounded below for z > 0; on the other hand, the

pair

q —[ -1] M —[ -1 1

fails condition (5) for any positive i, but the quadratic function f (z) is
bounded below on R2.
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We will now apply Theorem 3.7.9 to establish a necessary and sufficient

condition for the quadratic function f (z) = zT(q+Mz) to be bounded below

on the nonnegative orthant.

3.7.14 Proposition. Let q E RTh and M E Rn x l be given. The following

statements are equivalent:

(a) The two implications hold

z > 0	 zTMz > 0 ,	 (8)

[ z > 0, zTMz = 0 ]	 [ qTZ > 0 ] ;	 (9)

(b) For all or > 0, the quadratic function fa (z) = zT(q +oMz) is bounded

below for z> 0;

(c) The quadratic function f (z) = zT(q+Mz) is bounded below for z > 0.

Proof. (a) = (b). Clearly, if the two implications (8) and (9) hold, then

they hold if M is replaced by uM for any or > 0. Thus, it suffices to

prove (b) for u = 2. Suppose the contrary. With no loss of generality, we

may assume that M is symmetric. Given d > 0 and A a positive scalar

we consider the QP (3) which has f. (z) for its objective function. As

previously mentioned, this quadratic program will always have an optimal

solution z* and there will always exist a scalar 9* such that (z*, 0*) satisfies

the augmented LCP (2). Since the quadratic function f (z) is unbounded
2

below for z > 0, we deduce that there is an unbounded sequence of positive

scalars {Ak} and a corresponding sequence {(zk, 0k)} of solutions to (2)

such that zk solves the QP (3) with A = Ak and dTz = A. Clearly,

{ f (z')} —* —co. By Corollary 3.7.10, there exist a subsequence {Ak i },

a corresponding subsequence {(zk i, Bk i )} of (possibly different) solutions to

the augmented LCP (2) with each zki being an optimal solution to the QP

(3), and two vectors u and v, with 0 v > 0, such that zki = u + Ak z v for

all ki. Since

f(ki) = f2(u)+AkivT(q+ Mu) +!A2 i VTMV,

and since { f (zki)} —3 —oo, it follows from condition (8) that vTMv = 0
2

and vT(q + Mu) < 0. Thus, by condition (9), we deduce vTMu < 0. By

condition (8) again, we have for all ki

0 < (u + Akv) TM(u + Ak z v) = uTMu + 2AkivTMu
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and the right-hand term tends to minus infinity as ki --3 oc. This is a

contradiction. Thus, statement (b) is established.

(b) = (c). This is obvious.

(c) (a). It is clear that if z is any vector violating either condition

(8) or (9), then f(Az)-cc as A -^ oc. This completes the proof. U.

3.7.15 Remark. If the quadratic function f^ (z) is unbounded below on

R+, then Proposition 3.7.14 implies that some v > 0 violates either (8) or

(9). In either case, this v shows that ff (z) is unbounded below on a ray

emanating from the origin.

The augmented LCP (4, M) in (1) provides a useful tool for the study

of a given LCP (q, M). In what follows, we introduce another augmented

problem and discuss its application. To provide the motivation, we note

that the examples in 3.7.8 illustrate the possibility that the LCP (q, M)

has a solution and yet for some unbounded sequence {Ak} of nonnegative

scalars the augmented LCP (4k, M), with qk as given in (6), can have

a sequence of solutions {(zk, Ok)} with infk 6k > 0. It turns out that if

M is column sufficient, this situation can never occur with the alternate

augmented LCP introduced below. The benefit of this implication is that

if one can solve the augmented problem (by any method), then by testing

the solution obtained, one can successfully determine whether or not the

LCP (q, M) is solvable (and trivially obtain a solution if it exists).

Given the LCP (q, M) of order n and an n-vector a > 0, consider the

LCP (q', M') of order 2n where

q 	MI
q'= 	and M'= 	. 	 (10)

a	 —I 0

(Similar to 3.7.4, we may replace the two identity matrices in M' by two

positive diagonal matrices; such replacement will not affect the validity of

the results below.)

3.7.16 Theorem. Given M E Rnxn q E RTh, a E RTh , and a > 0, the

augmented LCP (q', M') as given in (10) has a solution.

Proof. It suffices to apply Theorem 3.7.1 with

K ={zER+:z<a} and f(z) =q +Mz.
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Similar to the proof of Theorem 3.7.3, one now notes that there exists a

vector z* E K satisfying (4) if and only if there exists a y* such that (z*, y*)

solves the augmented LCP (q', M'). In fact, given z* E K satisfying (4),

it is easy to show that (z*, y*) solves the augmented LCP (q', M') where

y* = (Mz* + q) . ❑

Obviously, if (z, y) E Ren is a solution of (q', M') with y = 0, then z

solves (q, M); conversely, if z solves (q, M) and a > z, then (z, 0) solves

(q', M'). It turns out that if M is column sufficient and if (q, M) is solv-

able, then the only solutions (z, y) of (q', M') are those which have y = 0,

provided that the components of the vector a are sufficiently large.

3.7.17 Theorem. Let M E RT"fl be column sufficient and q E RK" be

arbitrary. The LCP (q, M) is solvable if and only if for all scalars A > 0

sufficiently large, any solution (z, y) of the LCP (q', M') given in (10), with

a = Ac, must have y = 0.

Proof. It suffices to prove the "only if" part. For this purpose, let be

a solution to the LCP (q, M) and write Co = q + M. Choose A such that

Ae > z. Let (z, y) be an arbitrary solution of (q', M') and write

w = q + Mz + p.

We have for alli=l,... n,

0> (z - z)z (LU - 2U)i = ( z - z)z (M(z - i)). + (z - z)jyj.

If yj > 0, then zz = A by complementarity; by the definition of A, zi > z2.

Consequently, it follows that for all i,

0> (z — z)z(M(z — z)).

which implies by the column sufficiency of M that

0= (z — z) 2 (M(z — z)).

for all i. Hence y = 0 as desired. ❑

Theorem 3.7.17 provides a necessary and sufficient condition for a col-

umn sufficient LCP to have a solution. We shall return to discuss the

computational implication of this result in Section 5.9.
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3.8 Copositive Matrices

In Section 3.1, we have presented results pertaining to the existence of

a solution for the LCP (q, M) when M is either a positive definite or a

positive semi-definite matrix. In the context of the LCP, such matrix defi-

niteness properties seem a bit too strong, for after all, the LCP is defined

relative to the nonnegative orthant. In this section, we shall establish sev-

eral existence results for the LCP under the weaker notion of "definiteness

over the nonnegative orthant." We first define this notion in a more formal

way.

3.8.1 Definition. A matrix M E Rn X n is said to be

(a) copositive if xTMx > 0 for all x E R+;

(b) strictly copositive if xTMx > 0 for all nonzero x E R+;

(c) copositive-plus if M is copositive and the following implication holds:

[xTMX =0, x >0]	 [(M +MT)x =0].

(d) copositive-star if M is copositive and the following implication holds:

[ x TMx = 0, Mx > 0, x > 0 ]	 [ MTx < 0 ] .

The inclusion relationships among the above matrix classes is quite

clear. The class of copositive matrices contains the copositive-star matrices

which, in turn, contain the copositive-plus matrices which, in turn, contain

the strictly copositive matrices. It is easy to see that a positive definite

matrix must be strictly copositive. It is also straightforward to show (see

Exercise 3.12.1) that a positive semi-definite matrix must be copositive-

plus. Obviously, a nonnegative matrix is copositive and a nonnegative

matrix with positive diagonal entries is strictly copositive. The following

examples serve to show that these various inclusion relationships do not

hold with equality.

3.8.2 Examples. Consider the matrices

1 2	 [ 0 1	 [ 0 —1

Ml =, M2 = I[	
, and M3 = IL

212	 1
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Ml is nonnegative with a positive diagonal, so it is strictly copositive.

However, as xTMlx = —2 <0 for x = (1, —1), we see that Ml is not positive

definite or positive semi-definite. M2 is nonnegative, so it is copositive.

However, M2 is not copositive-star, for if x = (1, 0), then M2 x >_ 0 and

xTM2x = 0, yet Mx is not nonpositive. M3 is copositive-star, but not

copositive-plus. To see this, we let x = (x1, x2) to find that xTM3x =

r2(xl + x2). Clearly, if x > 0, then xTM3x >_ 0, so M3 is copositive.

Also, if x > 0 and xTM3x = 0 then X2 = 0, which implies Mx < 0.

Thus, M3 is copositive-star. However, if x = (1, 0), then xTM3x = 0

and (M3 + M3 )x = (0, 1) 54 0, which means M3 is not copositive-plus.

Finally, the zero matrix is trivially seen to be copositive-plus but not strictly

copositive.

Notice that all of the previous examples use symmetric matrices except

for M3 . It can be shown (see Exercise 3.12.2) that a symmetric matrix

is copositive-star if and only if it is copositive-plus. In fact, assuming

symmetry, we have the following characterization of copositivity.

3.8.3 Theorem. Let M E R"z 7 Th be symmetric. The following statements

are equivalent:

(a) M is copositive.

(b) For every index set a C {1, ... , n}, the system

M„x c.> 0, x,>0 (1)

has a nonzero solution.

Proof. (a) = (b). Suppose (1) has only zero as a solution for some a. By

Ville's theorem of the alternative there exists a y E Rn such that ya > 0

and ya Maa < 0. Clearly, setting Pa = 0 will give y > 0 and yTMy < 0
which contradicts the copositivity of M. (Notice that this part of the proof

does not use the symmetry of M.)

(b) = (a). If n = 1, then (1) implies that M consists of a single non-

negative element. Hence, M is copositive and thus [ (b) (a) ] for n = 1.

Using induction, assume the implication holds for symmetric matrices of

order less than n. Given that (b) holds for M, we see that (b) holds for all

principal submatrices of M and, by induction, all proper principal subma-

trices of M are copositive. To complete the induction, we must show M
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to be copositive. Let x be a nonzero solution to (1) with a = {l, ... , n}.
Clearly, for any x > 0, there is some A > 0 such that x — )5 is nonnegative

but not strictly positive. We have

xTMx = (x — A ) TM(x — )i) + 2A(x — ^fi) TMf + Az xTM±

> (x — Af) TM(x — Ax)

>0

where the initial equality follows from the symmetry of M, the first in-

equality follows as Mx > 0, and the second inequality follows as the proper

principal submatrices of M are copositive. Therefore M is copositive. ❑

3.8.4 Example. In the previous theorem, the symmetry assumption is

important in showing that [ (b) (a) ] . Consider the matrix

0 —1
M = 0 0

Since xTMx = —1 < 0 for x = (1, 1), it follows that M is not copositive.

Yet, it is easily seen that M satisfies statement (b) in Theorem 3.8.3.

The classes of copositive and strictly copositive matrices are closely

related to the quadratic function f (z) = zT(q + Mz). Indeed, according

to Proposition 3.7.14, the matrix M E RT Xn is copositive if and only if,

for all nonnegative q, this quadratic function f (z) is bounded below on the

nonnegative orthant; it is strictly copositive if and only if f (z) is bounded

below on the nonnegative orthant for all q.

The following result shows that a strictly copositive matrix belongs to

the class Q

3.8.5 Theorem. If M E Rn"n is strictly copositive, then for each q E R'

the LCP (q, M) has a solution.

Proof. This follows easily from Corollary 3.7.12 and the aforementioned

remark that for all vectors q, the quadratic function f (z) = zT(q + Mz)
must be bounded below for z > 0 if M is strictly copositive. ❑

It is easy to see that the LCP (q, M) need not have a solution if M

is only a copositive matrix. For example, if M = 0, then M is copositive
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but the LCP (q, M) has a solution if and only if q > 0. The next result

provides a sufficient condition for (q, M) to be solvable.

3.8.6 Theorem. Let M E Rn X n be copositive and let q E Rn be given. If

the implication

[v>0, My>0, vTMv=0] #> [vTq>0]	 (2)

is valid, then (q, M) has a solution.

Proof. It suffices to verify that condition (c) of Theorem 3.7.6 is satisfied.

Let d> 0 be a given vector and let {Xk} be a sequence of positive scalars

with .\k —* oo. For each k, let (z k , 8k) be a solution to the augmented

LCP (qk , M) where M is given by (3.7.1) and qk by (3.7.6). Without

loss of generality, we may assume that none of the 0k is equal to zero.

Thus, by complementarity, dTZ k _ .'k for each k. The sequence {z k } is

therefore unbounded. Let y1c = z k /Ak. The sequence {y'} is nonnegative

and satisfies dTyk = 1 for all k. Hence {yk } has an accumulation point,

say v. Obviously, v >_ 0 and dTI = 1. Without loss of generality, we may

assume that the entire sequence {yk} converges to v. Now, we have

	0 = (z k ) Twk = (z k ) Tq + (zk ) TMz k + Bk^k > (zk ) Tq + (zk ) TMz k .	 (3)

Dividing by Ak and letting k — oo, we deduce vTMv <_ 0 which, by the

copositivity assumption, implies 1 TM1 = 0. Furthermore, we have

0 = (z k ) Tq + (zk ) TMzk + BkAk > (zk ) Tq + BkAk	 (4)

	by copositivity. Dividing by A and letting k —p oo, we deduce 8k/.k	 0.

Since

q+Mzk+Bkd>0,

we can divide through by \k, then let k —+ oo and conclude that My >_ 0.
Consequently, by the implication (2), it follows that jTq > 0. At the same

time, from (3),

0> (zk ) Tq + (zk ) TMzk > (zk)Tq.

Therefore, vTq = 0. From (4), we have

0> (yk )Tq Bk.
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Letting k 	, we deduce that 0k	 0, verifying condition (c) of Theorem

3.7.6. ❑

The converse of Theorem 3.8.6 is false. For example, the LCP (q, M)

where

0q= 	 I and M =_ 1 	0 ^

has a solution z = (1, 1). Nevertheless, the implication (2) fails to hold

with v = (0,1).

The implication (2) has an interesting geometric interpretation. Con-

sider the solution set of the homogeneous LCP (0, M). Clearly SOL(0, M)
is a (possibly non-convex) cone. Thus, (2) holds if and only if the vector

q belongs to the dual cone (SOL(0, M)) *. Consequently, Theorem 3.8.6
says that if M is copositive, then (SOL(0, M))* C K(M).

Another interpretation of (2) is based on the quadratic function f (z) _

zT(q + Mz). Indeed, by following the same line of proof as in Proposition

3.7.14, it is not difficult to establish that if M is copositive, then (2) holds

if and only if f (z) is bounded below on the set {z E R+ : Mz > 0 }.

Theorem 3.8.6 has a number of applications. We discuss several of

these in the remainder of this section. The reader can find more in Ex-

ercise 3.12.4. To start, we note that 3.8.6 generalizes 3.8.5. Indeed,

if M is strictly copositive, then the implication (2) holds trivially, hence

SOL(q, M) 0 for all q. More generally, when the zero vector is the

only solution of the homogeneous LCP (0, M), then (2) will hold trivially.

Matrices with this property are significant enough to warrant their own

notation.

3.8.7 Definition. Let M E R >< '. Then M is called an R0-matrix if

SOL(0, M) = {0}. The class of such matrices is denoted Ro .

We have already used the class Ro at the end of Section 3.6 in our

discussion of local uniqueness. It is easy to see that if M is a nondegenerate

matrix, then M E R0 . More will be said concerning the class R o in Section

3.9 and in later chapters. For the moment, we will use it in the next

corollary, which follows easily from Theorem 3.8.6.
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3.8.8 Corollary. If M is a copositive R0-matrix, then M C Q. ❑

3.8.9 Remark. The reader can easily verify that the matrix

1	 2
M =

0	 1

is positive semi-definite (hence, copositive) and belongs to the class P

(hence, to R0). But M is not strictly copositive.

We now turn our attention to the copositive-plus matrices. As seen in

Definition 3.8.1, a copositive matrix is copositive-plus if and only if every

constrained minimum point of the quadratic form f(z) = zTMz on the

nonnegative orthant is an unconstrained stationary point of f (i.e., where

V f (z) = 0). For copositive-plus matrices, it turns out that the implication

(2) is equivalent to the feasibility of the LCP (q, M).

3.8.10 Corollary. Let M e R" be copositive-plus and let q E R' be

arbitrary. Implication (2) holds if and only if the LCP (q, M) is feasible.

If (q, M) is feasible, then it is solvable.

Proof. Suppose (2) holds. If (q, M) is infeasible, then by Farkas' lemma

there exists a vector v >_ 0 such that vTM < 0 and vTq < 0. Since M

is copositive, vTMv = 0, and since M is copositive-plus, we have Mv =

—MTv > 0. This means that v violates (2). Hence (q, M) must be feasible.

Conversely, if (q, M) is feasible, and if v > 0 is a vector satisfying

Mv > 0 and vTMv = 0, then MTv = —Mv < 0 because M is copositive

plus. This in turn implies vTq > 0 since (q, M) is feasible. In view of the

equivalence between the feasibility of (q, M) and the implication (2), the

last assertion is an immediate consequence of Theorem 3.8.6. ❑

3.8.11 Remark. It follows from Corollary 3.8.10 that every copositive-

plus matrix belongs to Q0 .

The following is a consequence of Corollary 3.8.10. It shows that the

symmetric copositive-plus matrices provide a matrix class for which the

converse of Corollary 3.7.12 holds. The reader is asked to supply the

proof in Exercise 3.12.13.
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3.8.12 Corollary. Let M E R < be symmetric and copositive-plus. For

any given q E R', the following three statements are equivalent:

(a) The LCP (q, M) is feasible.

(b) The LCP (q, M) is solvable.

(c) The quadratic function f (z) = zT(q+Mz) is bounded below for z > 0.

0

An equivalent way of stating Corollary 3.8.10 is that if M is copositive-

plus, then

K(M) = pos (I, —M) = (SOL(0, M)) *.	 (5)

The equality of K(M) and (SOL(0, M)) *, which holds for a copositive-plus

matrix M, is analogous to the well-known fact in elementary linear algebra

that the range of a matrix equals the orthogonal complement of the null

space of its transpose.

It turns out that a complete characterization of the validity of (5) can

be established within the class of copositive matrices. This is the main

content of the next result.

3.8.13 Theorem. Let M E Rf"fl be copositive. Then, the set

T= {xeR+:MTx<0}

is a subset of SOL(0, M). In addition, the following three statements are

equivalent:

(a) T = SOL(0, M).

(b) M is copositive-star.

(c) (SOL(0, M))* = K(M) = pos (I, —M).

Proof. Let S = SOL(0, M). We first show T C S. Suppose x E T. We

certainly know x > 0. In addition, as xTM < 0, we have xTMx < 0. On

the other hand, M is copositive so this implies xTMx = 0. The last thing

we must verify, to show x E S, is that Mx >_ 0. Suppose (Mx) i < 0 for

some i = 1, ... , n. As M is copositive and xTMx = 0, we have for 0 > 0

0< (e + Ox) T'M(ej + 8x)

= ez Meg + ((Mx) i + (MTx)z)0

< eFMez + (Mx)io
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where the last inequality follows because x E T. This will lead to a contra-

diction for large 0 > 0. Thus, T C S.

(a) 4 (b). By definition, a copositive matrix is copositive-star if and

only if S C T. Since we have just shown that T C S for copositive matrices,

the equivalence follows.

(a)	 (c). The inclusions

S* C K(M) C pos (I, —M)

hold for any copositive M. Thus, it suffices to show that pos (I, —M) C S.
Let q E pos (I, —M) and v E S. There exist nonnegative vectors z and w

such that w = q + Mz. Hence,

0 <vTw=vT'q+vTMz<vTq

where the last inequality follows as v E S = T. This establishes (c).

(c) (a). As T C_ S for all copositive matrices, we need only show

that S C T. Suppose v e S and (vTM); > 0 for some i = 1,... , n.

We then have —vTMei < 0. As —Mei is in pos (I, —M), this contradicts

S* = pos (I, —M). Therefore, VTM < 0, hence S C T. ❑

If M is copositive, then both 3.8.8 and 3.8.13 give sufficient conditions

for the existence of a solution for the LCP (q, M). Corollary 3.8.8 relates

to the class Q and thus applies to all vectors q, whereas Theorem 3.8.13

concerns the set of "solvable" vectors q. By bringing in the matrix class

S (which, as Proposition 3.1.5 shows, characterizes the class of matrices

M for which the LCP (q, M) is feasible for all q), we obtain the following

result.

3.8.14 Corollary. Let Al E Rn"n be copositive-star. The following state-

ments are equivalent:

(a) M E S.

(b) M E R0 .

(c) M E Q.

Proof. Since [ (b) = (c) ] follows from Corollary 3.8.8 and [ (c) = (a) ]

is obvious, it suffices to prove [ (a) 	 (b) ]. Suppose that M is not an
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R0-matrix. There is then a nonzero solution, say z, of (0, M). Since

M is assumed to be copositive-star, we obtain MTz < 0. Consequently,

by Ville's theorem of the alternative, there cannot exist a vector x > 0

such that Mx > 0. Yet when M c S, there must exist such an x. This

contradiction establishes the corollary. ❑

An important subclass of the class of copositive matrices is that consist-

ing of the nonnegative matrices. If M is such a matrix, the above results

provide sufficient conditions for the LCP (q, M) to have a solution for a

specific vector q. In particular, it follows from Theorem 3.8.5 that any non-

negative matrix with positive diagonal elements must be a Q-matrix. The

following theorem shows that the property of positive diagonal elements

actually gives a characterization for when a nonnegative matrix belongs to

Q.

3.8.15 Theorem. If M E Rn X n is a nonnegative matrix, then M E Q if

and only if all diagonal entries of M are positive.

Proof. It suffices to show that if at least one diagonal entry of M is zero,

then M 0 Q. Without losing generality, we may assume mll = 0. Let q
be any vector satisfying ql < 0 < qi (i = 2, ... , n). It is then easy to see

that the LCP (q, M) cannot have a solution. ❑

3.9 Semimonotone and Regular Matrices

The two classes of matrices whose study we take up in this section are

linked through similar properties relating to the uniqueness of solutions.

Despite this likeness, these classes are distinct.

3.9.1 Definition. A matrix M E Rnxn is said to be semimonotone if

[O x >0] [xk >0 and (Mx)k>0 for some k] (1)

The class of such matrices is denoted E0 , and its elements are called E0-

matrices.

A few useful observations follow readily from this definition. First, every

principal submatrix of a semimonotone matrix is again semimonotone. In
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particular, the diagonal entries of a semimonotone matrix must be nonneg-

ative. Second, every P0-matrix is an E0-matrix. (See the characterization

of P0-matrices given in Theorem 3.4.2.) Third, all copositive matrices are

semimonotone. These observations imply that Eo is a rather large class.

3.9.2 Example. The class of semimonotone matrices is larger than the

union of the Po-matrices and the copositive matrices. Consider

0 —1 0

M= 0 0 1

1 0 0

M is not in Po as det M = —1. If x = (1,1, 0), then xTMx = —l and so

M is not copositive. However, for x = (x1, x2, x3) with 0 x > 0, we see

that either X2 > 0 and (Mx)2 > 0, or x2 = 0 and Mx > 0. It follows that

M is semimonotone.

The class Ea can be characterized in several ways, one of which pertains

to the issue of uniqueness of solution to the LCP.

3.9.3 Theorem. Let M E R 71 "n. The following statements are equiva-

lent:

(a) M is semimonotone.

(b) The LCP (q, M) has a unique solution for every q > 0.

(c) For every index set cti C {1, ..., n}, the system

M^axa < 0, xa, > 0	 (2)

has no solution.

Proof. (a) = (b). Let q > 0 be an arbitrary n-vector. Clearly, z = 0

solves the LCP (q, M). Suppose there exists a positive vector q for which

(q, M) has a nonzero solution, z. Since M is semimonotone, there exists

an index k such that z > 0 and (M)k > 0. Consequently,

qk + (Mz)k > 0.

This contradicts the assumption that z solves (q, M).
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(b) = (c). Suppose there exists an index set cti such that (2) has a

solution, xa . Define

x^ = 0,

pia = Maate ti

Cia > max{0, — Mäaxa}.

Thus, q > 0 and z = x is a nonzero solution of (q, M). This contradicts
(b).

(c) (a). Suppose that for every index set cti the system (2) has no

solution. Thus, the support of every nonzero nonnegative vector x contains

an element k such that (MX)k > 0; hence M is semimonotone. ❑

Although semimonotonicity is equivalent to the uniqueness of solutions

to the trivial linear complementarity problems (q, M) having q > 0, there is

no guarantee that nontrivial, but solvable, problems have unique solutions.

For instance, with M as in Example 3.9.2, any vector of the form (A, 0, 0)
or (0, 0, A), with A > 0, is a solution of the LCP (0, M). Notice, this implies

that M is not an R0-matrix.

3.9.4 Definition. A matrix M E Rn"n is said to be an S0-matrix if the

system

Mz>0, 0^z>0	 (3)

has a solution.

Recall that for each member of the class S (defined in 3.1.4), the ho-

mogeneous linear inequality system (3.1.9) has a solution. From this, it

follows immediately that S C So .

Unlike E0 , the classes S and So do not possess the inheritance property.

That is, the principal submatrices of their members need not all belong to

the same class. The study of many classes of matrices suggests that the

inheritance property is an interesting one. For this reason, we introduce a

bit of general language that we can put to use at once.

3.9.5 Definition. Let Y denote a (fixed) class of square matrices. The

square matrix M will be called completely-Y if M and all its principal

submatrices belong to Y. The class of completely-Y matrices is denoted

Y. If Y = Y, then the matrix class Y is said to be complete.
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As a case in point, we now consider a result about the class So .

3.9.6 Lemma. If M E Rn"n then M E So if and only if MT E So .

Proof. Since (MT ) T = M, it suffices to verify the "only if" direction. The

proof is by induction on n. The assertion is obvious for n = 1. Assume now

that n > 1 and that the transpose of every 0-matrix of order less than or

equal to n — 1 belongs to So . Thus, if M E Rnxn M E So , and MT

it must be that MT itself is not an So-matrix. By Ville's theorem of the

alternative, there then exists a vector x such that

Mx < 0 and x>0. 	 (4)

Now since M E So , there exists a vector z satisfying (3). Clearly, there is

some A > 0 such that x — Az is nonnegative but not strictly positive. By

(3), (4), and the positivity of .\ we have M(x — Az) < 0. Obviously, x — Az

is nonzero. Thus, if cti is the support of x — Az, then cti is a nonempty and

proper subset of {1, ... , n}. We have

MMa (x — Az) a <0 and (x — Az) a >0

which, by Ville's theorem of the alternative, implies that M ä is not in So .

However, by induction we know that every proper principal submatrix of

MT is an S0-matrix. We have a contradiction; hence the lemma follows. ❑

In Definition 3.1.4 we pointed out that (3.1.9) and (3.1.10) are equiv-

alent conditions. From this and Ville's theorem of the alternative we con-

clude that assertion (c) of Theorem 3.9.3 is just the statement that MT is

completely-So. Lemma 3.9.6 now immediately enables us to prove

3.9.7 Corollary. Let M E R 1z"?z. The following statements are equiva-

lent:

(a) M is semimonotone.

(b) M is completely-So .

(c) MT is completely-So .

(d) MT is semimonotone.

LI
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The proof of Lemma 3.9.6 is somewhat similar to the proof of Theorem

3.8.3. In fact, we see that assertion (b) of Theorem 3.8.3 just says that

M E So . From this and Corollary 3.9.7 we conclude

3.9.8 Proposition. If M E RnXT is symmetric, then M is copositive if

and only if M is semimonotone. ❑

This explains why we could not have used a symmetric matrix in Ex-

ample 3.9.2.

There are many matrix classes of which we are now aware. As we review

these classes, there are certain patterns which seem to emerge. One such

pattern is that some of the matrix classes are defined by certain inequalities,

and natural subclasses are produced by requiring the inequalities to hold

strictly. For example, P0-matrices, which require that the principal minors

be nonnegative, have as a subclass the P-matrices which require positive

principal minors. Other examples would include the positive semi-definite

matrices with the subclass of positive definite matrices, the copositive ma-

trices with the subclass of strictly copositive matrices, and the  S0-matrices

with the subclass of S-matrices. Following this pattern we introduce a very

natural subclass of E0 .

3.9.9 Definition. A matrix M E R?h"n is said to be strictly semimonotone

if

[O^x>0]	 [xk>0and(Mx)k>0forsomek]	 (5)

The class of such matrices is denoted E, and its elements are called E-

matrices.

3.9.10 Example. It is clear that a strictly copositive matrix is strictly

semimonotone. Also, Theorem 3.3.4 shows that all P-matrices are strictly

semimonotone. However, this does not capture the entire class of E-

matrices. Consider
1 —2	 0

M= 0 1 2

2	 0	 1

The situation is similar to that in Example 3.9.2. One can show that M

is strictly semimonotone but is neither a P-matrix nor strictly copositive.
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Condition (5) is just a stronger version of (1). This accounts for the

inclusion E C Eo as well as the following results.

3.9.11 Theorem. Let M E Rn"n. The following statements are equiva-

lent:

(a) M is strictly semimonotone.

(b) The LCP (q, M) has a unique solution for every q > 0.

(c) For every index set a C {1, ... , n}, the system

MaaXa <0, 0 xa > 0	 (6)

has no solution.

Proof. This is Exercise 3.12.18. ❑

Now let S denote the class of completely-S matrices. (See 3.9.5 and

3.1.4.)

3.9.12 Lemma. If M E RT"Th, then M E S if and only if MT E S.

Proof. This is Exercise 3.12.19. ❑

This leads to the following two results.

3.9.13 Corollary. Let M E R"i"n. The following statements are equiva-

lent:

(a) M is strictly semimonotone.

(b) M is completely-S.

(c) MT is completely-S.

(d) MT is strictly semimonotone.

3.9.14 Proposition. If M E Rn"Th is symmetric, then M is strictly copos-

itive if and only if M is strictly semimonotone.

Proof. This is Exercise 3.12.20. ❑

In order to discuss the existence of solutions for the linear complemen-

tarity problem with a semimonotone matrix, we introduce three fundamen-

tal index sets associated with an arbitrary solution of an LCP.
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3.9.15 Notation. Let z E SOL(q, M). Define the index sets

a(z) = {i : zi > 0 = (q + Mz)}

ß(z) = {i : z^ = 0 = (q + Mz)2}

7(z) = {i : z = 0 < (q + Mz)}.

In terms of these index sets, a solution z of the LCP (q, M) is nondegenerate

if 3(z) = 0. Note also that a(z) = suppz and 'y(z) = supp w where

w = q + Mz. Indices in /3(z) correspond to the degenerate variables of the

solution z.

The result below is similar to Theorem 3.8.6 in both content and proof.

Its proof is based on the augmented LCP (q, M) defined in Section 3.7.

3.9.16 Theorem. Let q E Rn and M E RT'""'' be given. Let d be an

arbitrary positive n-vector. If for every nonzero solution z (if any exists)

of the LCP (rd, M), with arbitrary T > 0, there exists a nonzero vector

ya > 0 such that

yaMaa > 0, yaMa,O >_ 0, yagcx > 0	 (7)

where cr = a(z) and ß = ß(z) are as defined in 3.9.15, then the LCP

(q, M) has a solution.

Proof. Suppose the contrary. Consider the augmented LCP (qk, NI) de-

fined in (3.7.1), (3.7.2), and (3.7.6). By Theorem 3.7.6, there exist an

unbounded sequence of positive scalars {.\k} and a corresponding sequence

of solutions {(zk , 8k)} to (qk, 1121) such that inf Ok > 0. It follows that

d TZ k = )k, that is uk = 0, for all k. By Theorem 3.7.9, there exist two

vectors u and v with d Tn = 0, v > 0 and d Tv = 1 and a subsequence {k2}

such that for all k2,

zk ` = U + Akz v-	 (8)

where (zk i, Ok i ) is a, possibly different, solution to the augmented LCP

(qk i, M). Without loss of generality, we may assume (zki, = (zk^, Ok i )

and the expression (8) holds for the entire sequence {zk}. Similar to the

proof of Theorem 3.8.6, we note

0 = (zk ) Twk = (zk ) Tq + (z k ) TMzk + 9kAk .
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If we divide through by )k, it becomes apparent, since dT(z k /Ak) = 1

and d> 0, that the sequence {Bk/Ak} is bounded. Thus, {Bk/.k} has some

accumulation point T> 0. Again, without loss of generality, we may assume

that r is the limit of the latter sequence. It is straightforward to show that

v solves the LCP (rd, M). Let a = a(v), ß = 3(v), and -y = -y(v). If the

LCP (rd, M) has no nonzero solution, then a contradiction is derived, and

the theorem is proved. Otherwise, by assumption, there exists a nonzero

vector y, > 0 such that (7) holds. Thus, by the definition of the set a, we

have

0 — 2JaMaava = — T2/ada < 0

which implies yaMaa = 0 in view of the fact that va > 0.

Since vßu .y = 0, it follows that ußu ,y = z k > 0. Moreover, by comple-

mentarity, we deduce,

u„(q + Mu + X kMv + Okd), y = 0.

Dividing by Ak and passing to the limit as k —* oc, we deduce u y = 0

because (Td + Mv) > 0. Since va > 0, it follows that z > 0 for all k

large enough; thus, by complementarity,

0= (q + Mu + AkMv + Okd) a

which implies

0 = Y
T (q+Mu+AkMv+Okd)a

yä(qa + Muß + Okd,)

because u,^, = y Maa = vßu ,y = 0. Consequently, from 0 ya > 0, d> 0,

and condition (7), it follows that Bk = 0 for all k sufficiently large. This

contradiction establishes the theorem. ❑

Specializing Theorem 3.9.16 to the case where M is semimonotone, we

derive the following existence result.

3.9.17 Corollary. Let q E Rh and let M C Rn"n be given. Suppose that

M is semimonotone and that for every a C { 1, ... , n} for which there exists

a vector 0 zh z > 0 such that cti = supp z, and

M Z,. = 0, Mäaza > 0,
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there exists a nonzero vector y, > 0 such that (7) holds where

It then follows that the LCP (q, M) has a solution.

Proof. This follows immediately from Theorem 3.9.16 by noting that if

M is semimonotone, then the LCP (id, M) can not have a nonzero solution

for T > 0 (see 3.9.3). ❑

The above corollary provides a sufficient condition for the LCP (q, M)

to have a solution when M E E0 . In what follows, we introduce a subclass

of E0 which is contained in Q0 .

3.9.18 Definition. Let M E Rnxn Then M E El if and only if for every

nonzero vector z E SOL(0, M), there exist nonnegative diagonal matrices

Dl and D2 such that Dez 0 and (D1M + MTD2)z = 0. Let L be the

intersection of E0 and Ei .

Observe that class El contains E (by default) and all the copositive-plus

matrices (by taking D l = DZ = I). Moreover, if M E El , then for every

nonzero vector z E SOL(0, M), the vector y = D2z where D2 is the diagonal

matrix as given in Definition 3.9.18 must belong to SOL(0, —MT ) and

the two solutions y and z are related in a special way through the equation

Dl Mz + MTy = 0. Hence, one way to interpret the class El is that it is

comprised of those matrices M for which a certain "duality" relation exists

between the two homogeneous linear complementarity problems (0, M) and

(0,

3.9.19 Corollary. The class L is contained in Q0 .

Proof. Let q E pos(I, —M). It suffices to verify the assumption of Corol-

lary 3.9.17. For this purpose, let z, a and ß be as given in 3.9.17. Then

z E SOL(0, M). Since M E El , it follows that there exist nonnegative

diagonal matrices Dl and D2 such that Dez 0 and MTD2z = —D1Mz.
Let y = D2 z. Clearly, ya = 0; hence, yTM = We have

yM ,, = (yTM)a = —((Mz)TDI),.
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Since D l is a diagonal matrix and (Mz) 0, = 0, it follows that y,Maa = 0.

Similarly, yaMap = 0. Finally, it remains to be shown that yaga > 0. For

this purpose, let x E FEA(q, M). Then,

0 < ya(q + Mx)c. = yaga + yTMX < yaga

because MTy < 0 and x > 0. ❑

In 3.8.7 we defined the class R0 . It follows from Corollary 3.9.17 that

Eo n Ro C Q. More generally, if for some vector d> 0 and for all T > 0 the

LCP (Td, M) has only one solution, namely the zero vector, then M E Q.
This suggests the following.

3.9.20 Definition. Given M E Rnxn and d E R++ , we say that M is
d-regular if for all 'r > 0 the LCP (Td, M) has only one solution (z = 0).

A matrix M is called regular, if it is d-regular for some d > 0. The class

of regular matrices is denoted by R.

3.9.21 Remark. We have deviated slightly in Definition 3.9.20 in that a

regular matrix is usually defined to be a matrix which is e-regular. (Here,

as always, e is the vector of all ones.)

Note that the defining property for the class Ro corresponds to that

of R when T = 0. It is therefore clear that R C Ro , and this explains

why R0-matrices are sometimes called pseudo-regular. We now see that

Corollary 3.9.17 implies

Eo nRo cRcQ. (9)

Incidentally, the term "regular" should not be construed as a synonym for

"nonsingular." For example, the matrix

11

IL1 1

is regular as well as singular.

It is clear that strictly semimonotone matrices are regular in the sense

defined above, for when r > 0 is a nonnegative scalar, the vectors Td are

all nonnegative (see 3.9.11). However, the two classes are not the same.
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Strictly semimonotone matrices must have positive diagonal elements; reg

-ular matrices can have negative diagonal elements as illustrated by the

following e-regular matrix

1 —2

M—  1 —1 ] .

It is clear from the above remarks that strictly semimonotone matrices

belong to the class Q. As a matter of fact, we have E C R c Q.

At the beginning of this section we mentioned that a P0-matrix must

be semimonotone. Thus, Po n Ro C R C Q. In fact, the following charac-

terization of Q-matrices holds within the class of P0-matrices.

3.9.22 Theorem. Let M E Rnxn be a P0-matrix. The following are

equivalent:

(a) M E Ro ;

(b) MER;

(c) M E Q .

Proof. In view of the preceding discussions, it remains to verify the im-

plication [ (c) (a) ]. Suppose that M is in Q and not in R0 . Let z be a

nonzero solution of the homogeneous LCP (0, M). Let a denote the sup-

port of z. Let q be an arbitrary vector with q, < 0 and q > 0. Let be

a solution of the problem (q, M). Consider z — Tz, with 'r > 0. Select 'r

small enough so that (z — 7z)z > 0 for all i E a.

Suppose (z —vz) z 54 0. We claim that (z —rz)i(M(z -7z)). < 0. To see

this, first assume i a. Thus, (z — Tz)2 = — vj < 0. By complementarity

(Mz + q)z 0. Hence, (M(z — 'rz)) z > Tqz > 0, and the claim is true.

If we assume i E ce, then (Mz) Z = 0 and (M(z — Ti)). < 'rqi < 0. As

(z — TZ)i > 0, the claim is true. Since z is nonzero, then a is nonempty and

z — Tz is nonzero. Therefore, using assertion (b) of Theorem 3.4.2, we see

that the claim implies the contradiction M V Po , from which the theorem

follows. ❑

As the above results show, the class Ro plays an important role in the

existence theory for the LCP. It also has an interesting property related to
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the boundedness of the solution sets of LCPs as well as to the boundedness

of the level sets of the associated quadratic program (3.1.1). As we shall

see in Chapter 5, the boundedness of such level sets is in turn related to

the convergence of iterative methods for solving the LCP (q, M).

3.9.23 Proposition. Let M E R' >< . The following three statements are

equivalent:

(a) M E Ro .

(b) For every q E R"' and every or, 7r E R with a > 0, the level set

L(a, T) = {z > 0 : q + Mz > 0, z Tq + azTMz < T}

is bounded.

(c) For every q E RT, the solution set of (q, M) is bounded.

Proof. (a)	 (b). Suppose Me R0 but the set L(a, r) is unbounded for

some q E R, some a > 0, and some -r. Let {zk } be an unbounded sequence

of vectors in L(a, T). It is then easy to show that any accumulation point

of the normalized sequence {z k/zk (l} (which is bounded) is a nonzero

solution of (0, M). This is a contradiction.

(b) (c). It suffices to note that the solution set of (q, M) is equal to

the level set L(1, 0).

(c) (a). If z is a nonzero solution of (0, M), then so are all nonnegative

multiples of z. ❑

3.10 Completely-Q Matrices

When a matrix M belongs to the class Q, there is no guarantee that all

its principal submatrices enjoy this property. For example, the Q-matrix

1 —1
M=

1	 0

has a principal Submatrix (namely the diagonal entry 0) which is not in Q.

Yet sometimes all the principal submatrices of a Q-matrix do belong to Q,

as in the case of

M—^1 1^
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It turns out that one can characterize the class of all real square matrices

having the latter property, and this characterization is the main subject of

this section. In line with 3.9.5, we introduce the following terminology.

3.10.1 Definition. A matrix M E RT >< is said to be completely-Q if M

and all its principal submatrices belong to Q. The class of such matrices

is denoted Q.

As we shall see, this terminology and notation is superfluous, for Q is
in fact one of the classes we have already considered.

3.10.2 Lemma. Every strictly semimonotone matrix belongs to Q.

Proof. This is immediate from the inclusions E C R C Q and the fact

that E is a complete class (see 3.9.13). ❑

The converse is just as easy to prove.

3.10.3 Lemma. Every completely-Q matrix is strictly semimonotone.

Proof. We have already noted that Q C S. The assertion now follows

from Corollary 3.9.13. ❑

3.10.4 Remark. These two lemmas combine to give the fact that Q = E.

Identifying the class of Q-matrices whose principal submatrices all belong

to Q is of interest in its own right. There is also a "practical" side to the

matter which will become evident when we study the so-called variable-

dimension algorithms for the LCP. (See Section 4.6.) The class of matrices

we consider next arose in just such a context.

3.10.5 Definition. A matrix M E RTh"U is said to be a V-matrix if for ev-

ery index set a C {1, .. . , n} the principal submatrix Maa has the property

that there exists no positive vector za > 0 such that the last component of

Alaazc, is nonpositive and the remaining components are zero. The class

of such matrices is denoted simply as V.

It is clear that V is a complete class. We now show that the elements

of this new class are strictly semimonotone matrices and vice versa.
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3.10.6 Lemma. A matrix M E Rn " n is strictly semimonotone if and only

if M E V.

Proof. Clearly E is a subset of V. To establish the reverse inclusion,

suppose there exists a matrix M in V \ E. There will then exist an index

set a C {1, ..., n} of minimum cardinality such that the system

Maa za < 0, 0 ^ za > 0

has a solution. The minimality of the cardinality of a implies that z a must

be positive, rather than merely nonnegative. In addition, it implies that

Maw must be nonsingular. To see this latter implication, assume that some

y 4 0 exists for which Maat', = 0. There cannot be a scalar A such that

za = Ay,, as then MMa za would be zero, which implies M V V. Thus,

for some scalar A, the vector za — Ay,, will be nonnegative, nonzero, and

not strictly positive. As MMa (za — Ay,) = Maa za < 0, this violates the

minimality of the cardinality of a, hence Maa is nonsingular.

Now define

Ca = (0, ... 0, —1) and xa = Maaca.

The vector xa cannot be nonnegative. Indeed, xa cannot equal zero, since

c IX is not zero. If x IX were positive, then M could not be a member of V.
If xa were nonnegative but neither zero nor positive, then the minimality

of the cardinality of a would be violated. Now for all A > 0 the vector

za + Ax, 0. To see this, note that the case A = 0 follows from the

positivity of z,. If za + Axa = 0 for A > 0, then we have

Maaxa <0 Mc.c.(Ax«) <0 = Mac.(—zc.) <0.

Thus, Maa za > 0, while at the same time Maa za < 0. This implies that

M,,za = 0 which is impossible since Maa is nonsingular and za 0. Now,

for some A > 0, the vector za + Ax,, will be nonnegative, nonzero and not

strictly positive. Nevertheless, Ma ,, (za + Ax,) < 0. This contradicts the

minimality of the cardinality of a. ❑

The three preceding lemmas and some results in Section 3.9 combine

to give one grand characterization of the class of completely-Q matrices.

 



198	 3 EXISTENCE AND MULTIPLICITY

3.10.7 Theorem. Let M E Rn"h. The following statements are equiva-

lent:

(a) MEQ.

(b) M E E.

(c)M E S.

(d) ME V.

(e) The LCP (q, M) has a unique solution for all q > 0.

(f) For every index set cti C {1, ... , n}, the system

Maaxa < O, O ^ x„ > O

has no solution.

(g) MT E Q.

(h) MT C E.

(i) MT E S.

(j) MT EV.

(k) The LCP (q, MT ) has a unique solution for all q > 0.

(1) For every index set cti C {1, ... , n}, the system

MLX ' <0, 074 x>0

hashas no solution. ❑

3.11 Z-matrices and Least-Element Theory

In the previous sections, two approaches were used to derive results on

the existence of a solution to the linear complementarity problem. Each

approach relies on different properties of the matrix defining the problem.

In this section, a third approach is used to obtain further existence results.

We begin by introducing the class of Z-matrices which plays the central

role in the following development.

3.11.1 Definition. A square matrix is called a Z-matrixif its off-diagonal

entries are all non-positive. A Z-matrix which is also a P-matrix is called

a K-matrix. The classes of Z-matrices and K-matrices are denoted by Z

and K, respectively.
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We have already seen examples of these matrices. Indeed, any compar-

ison matrix is a Z-matrix (see 3.3.12). Moreover, the optimal stopping

problem and the convex hull problem (see Section 1.2) give rise to LCPs

with matrices in Z and K, respectively.

Clearly, Z is a complete class of matrices (see 3.9.5). Since the class

P is also complete, so is K. Moreover, the classes Z and K are invariant

under transposition.

The feasible region of the LCP (q, M) where M is a Z-matrix possesses

a special property which we define below.

3.11.2 Definition. A subset S of Rn is called a meet semi-sublattice (un-

der the componentwise ordering of R') if for any two vectors x and y in S,

their meet, which is defined as the vector z = min(x, y), also belongs to S.

In essence, one could also define the join of two vectors and a join semi-

sublattice by replacing the "min" operator in the above definition with the

"max" operator. For our purpose here, we consider only the "meet" case.

3.11.3 Proposition. If M is a Z-matrix and q is an arbitrary vector, then

the feasible region of the LCP (q, M) is a meet semi-sublattice.

Proof. Let S FEA(q, M). Let x and y be two feasible vectors in S,

and let z denote their meet. Obviously z > 0. Consider an arbitrary

component i. Without loss of generality, we may assume that zi = x i . By

the Z-property of M and the fact that x is feasible, we have

(q + Mz)  qi + mzzx i + E m^^ z > (q + Mx) z > 0.

7z

Similarly, one shows that (q + Mz)i > 0 if zi = yz. This establishes the

feasibility of the vector z and the meet semi-sublattice property of S. ❑

If M is a Z-matrix, then the feasible region of the LCP (q, M), if

nonempty, must possess a certain "least element". This concept is defined

below.

3.11.4 Definition. A subset S of R"'' is bounded below (relative to the

componentwise ordering >) if there exists a vector u e Rn such that x > u
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for all vectors x E S. If such a vector u happens to belong to S, then u is

called a least element of S.

Obviously, if a least element of a set exists, then it must be unique. The

following result provides a sufficient condition for the existence of such an

element.

3.11.5 Theorem. If S is a nonempty meet semi-sublattice that is closed

and bounded below, then S has a least element.

Proof. Consider the mathematical program

minimize	 pTx	
(1)

subject to x E S

where p is an arbitrary positive vector. This program has an optimal

solution x. To see this, note that as S is bounded below there is a vector

u such that u <a  for all x E S, and as S is nonempty we can take some

fixed vector x' to be in S. Thus (1) is equivalent to

minimize	 pTx

subject to	 x E S

X >u
pTx < pTx r

However, as p is positive and S is closed, this latter program has a compact

feasible region and, hence, has an optimal solution.

We claim that is the least element of S. Indeed, let x be any vector in

S. The vector z = min(x, x) will then belong to S. By the definition of x,
we have pTx < pTz. As p is positive, it follows that x = z < x, establishing

that x is the least element of S. ❑

The above theorem not only provides a sufficient condition for the ex-

istence of a least element, its proof actually suggests a constructive way

to compute that element. Indeed, the least element of S is the unique

optimal solution of the mathematical program (1). In the case where S is

polyhedral (e.g., when S is the feasible region of an LCP), (1) is a linear

program.
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Applying 3.11.5 to the feasible region of the LCP (q, M), we derive the

following result.

3.11.6 Theorem. Let M be a Z-matrix and q an arbitrary vector. If

the LCP (q, M) is feasible, then FEA(q, M) contains a least element u.

Moreover, u solves the LCP (q, M).

Proof. Let S = FEA(q, M). By Proposition 3.11.3, S is a meet semi-

sublattice. It is obviously bounded below (by zero), and is nonempty if

the LCP (q, M) is feasible. The existence of the least element u therefore

follows from Theorem 3.11.5. It remains to show that u solves the LCP

(q, M). Indeed, suppose that for some component i, both ui and (q+ Mu) i

are positive. Consider the vector z = u —Sei where S is some positive scalar.

We claim that for b > 0 small enough, the vector z is feasible. Obviously,

for such a S, z is nonnegative and (q + Mz)z > 0. Consider an index j i.

By the Z-property of M, we may derive (q + Mz) > (q + Mu) > 0.

Consequently, z is feasible provided that 6 > 0 is small enough. But this

contradicts the least-element property of u. This establishes the theorem.

To illustrate Theorem 3.11.6, the feasible region of an LCP (q, M) with

M E Z, along with the least-element solution u, is shown in Figure 3.1.

According to the proof of Theorem 3.11.5, the least-element solution

u in Theorem 3.11.6 can be computed by solving the linear program

minimize	 pTz

subject to q + Mz > 0	 (2)

z>0

for any positive vector p. This conclusion is closely related to Theorem

1.3.4 which states that any solvable LCP must possess an extreme point

solution. Such a solution could be obtained by solving a linear program

with a suitably chosen objective function. For an arbitrary LCP (q, M),

the appropriate linear form to be used is typically not known in advance.

However, the above discussion shows that when M is a Z-matrix, such

an objective function is easily available. This latter result will later be

generalized to a larger class of matrices.
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Figure 3.1

Theorem 3.11.6 shows that the Z-property of the matrix M provides

a sufficient condition for the existence of a least-element solution to all

feasible LCP (q, M). It turns out that this property of M is also necessary

as we establish the following characterization of a Z-matrix.

3.11.7 Theorem. M E 	is a Z-matrix if and only if for all vectors

q E pos (I, —M), the feasible region of the LCP (q, M) contains a least

element which is a solution of the LCP.

Proof. It suffices to show that the Z-property is necessary. Suppose, on

the contrary, that mid > 0 for some i j. Let

q = e — M.d.

Obviously, e1 is a feasible vector for the LCP (q, M) with this chosen q.

Thus, by assumption, (q, M) has a solution x satisfying 0 < x < e^, which

yields xk = 0 for any k j. This, in turn, implies that x = 1 because 0 <

(q + Mr)1 = m1^ (x —1). By complementarity, we have 0 = (q + Mx) = 1

which is clearly absurd. Consequently, M must be a Z-matrix. ❑

Combining the preceding theorem and Theorem 3.3.7, we obtain the

following characterization of a K-matrix.
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3.11.8 Corollary. M C Rn X n is a K-matrix if and only if, for all vectors

q E R, FEA(q, M) has a least element which is the unique solution of the

LCP (q, M).

The above corollary can be used to characterize a K-matrix in terms

of an antitonicity property of the unique solution of (q, M) when M E P.
This characterization is stated more precisely in the result below.

3.11.9 Proposition. Let M C R' 11 f1 P. Then M C K if and only if for

any two vectors q' and q 2 in Rh with q 1 > q2 , z(q') < z(q2 ) where z(q)

denotes the unique solution of (qi, M) for i = 1, 2.

Proof. Suppose that M C K and q 1 > q2 . Then, it is easy to see

that z(q2 ) E FEA(g l , M). By Corollary 3.11.8, z(q') is the least-element

solution of LCP (q', M). Hence, z(q') < z(q2 ).

Conversely, suppose the solution function z(q) has the antitonicity prop-

erty as given. If mid > 0 for some i j, define

q 1 =ej—M.d, and q2 =—M.^.

Clearly, z(q 2 ) = e and q 1 > q2 . Hence, z(q') < e j . Now, by the same

argument as the proof of Theorem 3.11.7, we may easily deduce a contra-

diction. ❑

Besides the characterization stated in 3.11.8 and 3.11.9, the class of

K-matrices admits a wide variety of other useful descriptions. We list

several of these in the result below.

3.11.10 Theorem. Let M E R<" be a Z-matrix. The following state-

ments are equivalent:

(a) M C K.

(b) All leading principal minors of M are positive.

(c) M -1 exists and is nonnegative.

(d)M e S.

(e) M E S.

Moreover, any of the above conditions (a) — (e) is further equivalent to each

of the conditions in Theorems 3.3.4 and 3.10.7.
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Proof. (a)	 (b). This is obvious.

(b) (c). This is proved by induction on n. Clearly, the implication

holds for n = 1. Suppose that it holds for all Z-matrices of order less than

n. Let M be an n x n Z-matrix with the property that all its leading

principal minors are positive. Clearly, M must be nonsingular. It remains

to show that the inverse of M is nonnegative. With a = {1,. . .  , n — 1},
write M as

M'a Man

M
= 

IL M. mnn

By induction, M;ä exists and is nonnegative. If, for ease of notation, we

let p = mnn — Mnn MIXä Man , then it is straightforward to check

/^Maa + Maa ManM'naMna —Man Man
1

pM ' _	 (3)
MnnMaa	 1

Now p is the Schur complement of Man in M which, by the Schur determi-

nantal formula (2.3.14), is equal to det M/ det Ma,. By assumption, both

determinants in this ratio are positive, so p > 0. As M E Z, both Man and

Mn,, are nonpositive. Thus, (3) shows M — ' to be nonnegative, completing

the induction.

(c) (d). This is obvious because with p taken as any positive vector,

the vector x = M — 'p must satisfy x > 0 and Mx > 0. Noting (3.1.10), the

result follows.

(d) (e). This is also easy. If x is any vector satisfying x > 0 and

Mx > 0, and if Man is any principal submatrix of M, then as Mai is

nonpositive we see that xa satisfies the required condition for Man to be

an S-matrix.

(e) (a). This can be proved by induction. However, we give a proof

that reveals an interesting property of the solution set of an LCP with a Z-

matrix. Suppose M is a Z-matrix which belongs to the class S. It suffices

to show that for every vector q, the LCP (q, M) has a unique solution (see

3.3.7). Proposition 3.1.5 guarantees that (q, M) is feasible for all q. Since

M E Z, Theorem 3.11.6 implies that (q, M) has a least element solution u.

We must show u to be the unique solution. Indeed, if z is another solution,

then z > u. Moreover, it is easy to see that the vector z — u is in fact a

solution of the LCP (v, M) where v = q + Mu > 0. By Theorem 3.10.7,
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this latter LCP has a unique solution, namely zero. This establishes the

uniqueness of u.

The theorem's last assertion is obvious. ❑

3.11.11 Remark. Theorem 3.11.10 shows that M is in H if and only if

the comparison matrix associated with M is in K (see 3.3.11 and 3.3.12).

As the proof of [ (e) = (a) ] in Theorem 3.11.10 shows, the solution set

of the LCP (q, M) with a Z-matrix M has a rather interesting property.

This is formally stated in the next result (see 3.12.29).

3.11.12 Proposition. Let M be a Z-matrix. If (q, M) is a feasible LCP,

then
SOL(q, M) = u + SOL(v, M)	 (4)

where u is the least-element solution of (q, M) and v = q + Mu. ❑

3.11.13 Remark. The representation (4) is noteworthy as SOL(v, M) is

the solution set of an LCP in which the constant column is a nonnegative

vector.

Theorem 3.11.10 has many implications. For example, the following is

an immediate consequence of this result.

3.11.14 Corollary. Let M be a K-matrix. If M. is a principal subma-

trix of M, then the Schur complement (M/Maa ) is a K-matrix.

Proof. Since K is a complete class, Maa is a K-matrix. Thus, the Schur

complement N = (M/M) = M  — M0a M^äM is well-defined. By

3.11.10(c), Mßä is nonnegative. As MME and M. are nonpositive, it

follows that N E Z. Finally, if x and y are positive vectors such that

Mx = y (such a pair (x, y) must exist by 3.11.10(d)), then

Nxä = Pä — MäaMaa 9J„ > 0.

This completes the proof. ❑

3.11.15 Remark. If M E Z and if the principal submatrix M, is non-

singular with a nonnegative inverse, then the Schur complement (M/Maw )

remains a Z-matrix, although it need not be a K-matrix.
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We illustrate another application of Theorem 3.11.10 in the context of

testing for membership in some matrix classes. Given an arbitrary matrix

M e Rn"n, the test of whether or not M E P can be accomplished by

evaluating the principal minors of M. In general, there are 2n such minors.

So this test, albeit finite, is in practice not very effective. When M E Z, this

test can be drastically simplified due to condition (b) in Theorem 3.11.10.
The same conclusion can be made with regard to testing for membership

in any one of the classes in Theorem 3.10.7.

Hidden Z-matrices and cone orderings

Theorem 3.11.7 shows that the class of Z-matrices delimits precisely

the least-element approach (least under the usual componentwise ordering

in Rn) for the existence of a solution to the LCP. In the sequel, we generalize

this approach somewhat by considering partial orderings of Rn induced by

simplicial cones.

In general, let C C RI be a pointed convex cone. C induces a partial

ordering - < c on R defined as follows: x -< c y if the vector y - x belongs to

C. We define the least element u of a set S in R, least with respect to this

ordering, as an element a E S such that tt c p for all vectors y E S. When

C is a simplicial cone, say, C = pos A where A is some n x n nonsingular

matrix, then x -< C y if and only if A-lx < A- 'y. In other words, the

ordering C can be thought of as the usual componentwise ordering in

a linearly transformed copy of RTh . Consequently, in order to generalize

Theorem 3.11.7 to the cone ordering -<c, we need to define the notion

of a "transformed" Z-matrix. This consideration leads to the following

definition.

3.11.16 Definition. A matrix M E R" ' is called hidden Z if there exist

Z-matrices X and Y and nonnegative vectors r and s such that

(i) MX = Y,

(ii) rT X+sT Y>0.

A hidden Z-matrix which belongs to P is called a hidden K-matrix.

The matrix X in the defining condition of a hidden Z-matrix serves to

describe the needed transformation of the feasible region of the LCP (q, M)
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into a meet semi-sublattice. In order to explain this, we derive a property

of a hidden Z-matrix.

3.11.17 Theorem. If M E Rnxn is a hidden Z-matrix, and X and Y are

any two Z-matrices satisfying the conditions in 3.11.16, then

(i) X is nonsingular, and

(ii) there exists an index set such that the matrix

r Xc c Xaä

LJI	
(5)

Yea Y 0

is in K.

Proof. Let p = XTr + YTS where r and s are as given in 3.11.16. Thus,

with A = (XT, YT ) E Rn" 2n, the system of linear inequalities

Ax=p, x>0

has a solution. It follows from linear programming theory that the system

has a basic feasible solution. A basic feasible solution must have no more

than n positive variables. However, as p > 0 and each column of A has

at most one positive element, a basic feasible solution will have exactly n

positive variables. Furthermore, as X and Y are Z-matrices, it is easy to

see that if B is a basis in A corresponding to a basic feasible solution, then

BT is of the form (5) for some index set a. Thus, B is a Z-matrix and, as

B is a feasible basis, 3.11.10 implies that B (and thus BT ) is a K-matrix.

This establishes (ii). To prove (i), suppose that Xv = 0. We must have

Yv = 0. Consequently, if W denotes the matrix in (5), then Wv = 0 which

implies that v = 0. This completes the proof. ❑

The property (i) in 3.11.17 can be used to explain the word "hidden" in

the term "hidden Z". Roughly speaking, a hidden Z-matrix is a matrix,

which although is not a Z-matrix itself, can be converted into one by

means of a linear transformation which has a certain Z-property. This

transformation is the key to the proof of the following generalization of

Theorem 3.11.7.
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3.11.18 Theorem. The matrix M E Rn"n is hidden Z-matrix if and

only if there exists a simplicial cone C in R"'' such that for all vectors

q E pos (I, —M), the feasible region of (q, M) contains a least element

with respect to -< c and z satisfies zT(q + Mz) = 0.

Proof. Necessity. Suppose M is hidden Z; let X and Y be the two Z-

matrices in 3.11.16. Let W be the matrix in (5). By 3.11.10, W -1 is

nonnegative. Let (q, M) be a feasible LCP. Consider the set

S ={veRT:Xv>0, q +Yv>0}. (6)

A vector z E FEA(q, M) if and only if the vector v = X -1 z E S (X -1

exists by 3.11.17(i)). Moreover, since X and Y are Z-matrices, by the

same argument as in 3.11.3, it is easy to show that S is a meet semi-

sublattice. Furthermore, if v E S, then q + Wv > 0 where

q= 0

qa

Thus, as W 1 > 0, the set S is bounded below by —W —' q. Therefore, by

3.11.5, S has a least element v with respect to the componentwise ordering

of R'. It follows that the vector z = Xf is the least element of the feasible

region of (q, M) with respect to the cone ordering -C where C = pos X.
By the same argument as in 3.11.6, one can show that the vector v satisfies

the complementarity condition (Xi) T(q+Yv) = 0. Consequently, z satisfies

the desired property zT(q + Mz) = 0.
Sufficiency. Let C = posX be the simplicial cone, where X E RTXf

is nonsingular. (X is not necessarily a Z-matrix.) For k E {1, ..., n },

let qk = ek — Mek. Clearly, z = ek E FEA(gk, M), so there exists a

least element zk of the feasible region of (qk, M) under the <c ordering.

Furthermore, z k solves the LCP (q', M). Notice that z = ek, while feasible,

is not a solution to the LCP (qk, M). Thus, X —l z` k <_ X—l ek and zk ek.

Letting v k = X -1 (ee — z k ), we have 0 v 1' > 0. Let Y = MX. For

iE{l,...,n}\ {k},we see

Xi.v k = (ek — z k )z <0

Y^.v _ (Mek — Mz k ) = —(qk + Mzk )i <0.

Letting W e Rn"n be defined by having W.k = v k for all k E {1, . .., n },

it follows that X = XW and Y = MX = YW are Z-matrices. We can
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show M to be a hidden Z-matrix if we can find nonnegative vectors r and

s such that XTr + YTS > 0. To this end, consider the linear program

minimize	 eTv

subject to	 Xv > 0	 (7)

Yv > 0.

Notice v is feasible for (7) if and only if Xv is feasible for the LCP (0, M).
Since the latter is a feasible LCP, it must have a least element under the - c

ordering and, thus, (7) has an optimal solution. This implies that the dual

of the linear program has an optimal (hence feasible) solution. Therefore,

there exist nonnegative vectors r and s such that XTr +YTs = e. As W > 0

and no column of W is zero, we have

XTr +YTS = WT(XTr + YTS) = WTe >0.

To illustrate Theorem 3.11.18, the feasible region of an LCP (q, M)
with M a hidden Z-matrix, along with the least-element solution z, is

shown in Figure 3.2. The set S (see (6)) for this LCP, along with the least

element v, is shown in Figure 3.3.

We should point out that in the definition of a hidden Z-matrix, the

matrix X is required to be Z; however, the cone C in 3.11.18 is not

required to be generated by a Z-matrix. The implication of the theorem

is that if the least-element property holds with respect to any simplicial

cone, then the same property must hold with respect to one such cone that

is generated by a Z-matrix.

As in the case of a Z-matrix, the least-element solution z in 3.11.18 can

be obtained by solving the linear program (2) with any vector p satisfying

the condition

PTX > 0

where X is the matrix of generators for the cone C. This follows rather

easily from the technique by which the least element v of the set S in (6)

is obtained and from the relation z' = Xv.
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Figure 3.2

Figure 3.3
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Theorem 3.11.10 also admits a generalization to a hidden Z-matrix.

This is stated below.

3.11.19 Theorem. Let M E Rn"n be a hidden Z-matrix. Let X and Y

be any two Z-matrices as given in 3.11.16. The following statements are

equivalent:

(a) M is hidden K.

(b)M E S.

(c) There exists a vector v > 0 such that, for any index set cti C {1, ..., n}

Wv > 0 where
Xaa Xaä

W=	 (8)
Yea Yap

In particular, any such matrix W is in K.

(d) M is completely hidden K, i.e., for every index set a C {1, . .. , n},

Maa is hidden K.

(e) M E S.

Moreover, any of the above conditions (a) — (e) is further equivalent to each

of the conditions in Theorems 3.3.4 and 3.10.7.

Proof. (a)	 (b). This is obvious because any P-matrix must be an

S-matrix by 3.3.5.

(b) = (c). Suppose that M E S. Let x > 0 be such that Mx > 0.

Let v = X —l x (X— ' exists by 3.11.17(i)). We have Xv > 0 and Yv > 0.

If we can show v > 0, then Wv > 0 for any W as given in (8), and (c)

would follow from 3.11.10. To show that v is positive, we consider the

particular matrix W E K, as given in 3.11.17(ii). We have Wv > 0 for

this particular W. Furthermore, by 3.11.10, W -1 is nonnegative. Thus,

since no row of W-1 can equal zero, we have v > 0.

(c) (d). For any a C {1, . .. , n}, let W be as in (8). Clearly, X,,
is in K. Using 3.11.14 we see that (X/X) E K and (W/X,,) E K.

From the relation MX = Y, it is easy to deduce

M..(X/Xaa) = (W/Xcea).	 (9)

We immediately see that det M > 0. As a was arbitrary, all principal

submatrices of M are in P. If we can find nonnegative vectors r and s^
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such that rä (X/Xaa ) + sT (W/Xaa ) > 0, then M is hidden K and (d)
would follow. To find such vectors, we note that as (X/Xaa ) E K then

3.11.10 implies the transpose of (X/Xaa) is in S. Thus, there exists a

nonnegative vector ra such that ra (X/Xaa ) > 0. Letting sa = 0 gives us

the desired vectors.

(d) = (e). This is the same as [ (a)	 (b) ].
(e) (a). We have already shown that [ (b)	 (c) ] and [ (c)	 (d) ].

It follows that [ (b)	 (d) ] which is a stronger statement than [ (e)	 (a) ].

As in 3.11.10, the theorem's last assertion is obvious. This completes

the proof. ❑

Theorems 3.11.19 and 3.10.7 together imply that the transpose of a

hidden K-matrix is in S. However, unlike the case of a K-matrix, the

transpose of a hidden K-matrix is not necessarily hidden K (see the ex-

ample in 3.11.20). Interestingly, the transpose of a hidden K-matrix plays

a very important role in the efficient solution of the LCP by pivoting algo-

rithms (see Section 4.8).

3.11.20 Example. The matrix

2 —3 —4

M= —1 2 3

2 —2 5

is hidden K, but its transpose is not hidden Z. The proof is left as an

exercise.

Given an arbitrary square matrix M, it is in general not easy to test

whether or not M is hidden Z. The difficulty is due to condition (ii) in

3.11.16 which is nonlinear in the unknowns X, Y, r and s. However,

the same condition (ii) can be replaced by a linear one if we wish to test

for membership in the class of hidden K-matrices. Indeed, according to

3.11.10 and 3.11.19, it is easy to see that a matrix M is hidden K if and

only if M E S and there exists a Z-matrix X such that (i) MX E Z and

(ii') Xe > 0. Since the conditions (i) and (ii') are linear in X, the question

of whether a given matrix M is hidden K can be answered by solving two

linear programs: one to determine if M E S and the other to determine if

the required X matrix exists.
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In concluding this chapter, we remark that the class of H-matrices

with positive diagonal elements is a subclass of hidden K-matrices. (It is

a proper subclass as can be seen from the matrix M in Example 3.11.20

which is not in H.) The reader is asked to supply the proof for this asserted

inclusion in Exercise 3.12.32.

3.12 Exercises

3.12.1 Show that if M E Rnxn is positive semi-definite, then M is
copositive-plus.

3.12.2 Show that if M E RnXn is symmetric and copositive-star, then M

is copositive-plus.

3.12.3 Positive semi-definite matrices are both copositive-plus and suffi-

cient. Are there matrices which are both copositive-plus and sufficient, but

not positive semi-definite?

3.12.4 Let M E Rnxn be symmetric and copositive-plus. Let q E R".

(a) Show that if there is some vector v such that q > Mv, then the LCP

(q, M) has a solution.

(b) Generalize part (a) to show that if N is a copositive matrix and if

the system

q +Mx—NTy>O, y >O

is consistent, then SOL(q, M + N) 0.

(c) Let A, B E R n X k with B > 0. Show that if Q E R"'' is symmetric

positive semi-definite and a E (0, 1], then the matrix

Q	 B —A
M =

AT —crBT 	0

can be written in the form M + N where M is symmetric positive

semi-definite and N is copositive. Note, the matrix arising from the

optimal invariant capital stock problem (see (1.2.17)) is of this form.
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3.12.5 Prove the following two statements about the mixed LCP (1.5.1).

(a) The following conditions are sufficient for this mixed LCP to have

a solution for all vectors a E R and b E R': (i) A is nonsingular;

(ii) the Schur complement B — DA-1 C is a Q-matrix.

(b) The following conditions are necessary and sufficient for this mixed

LCP to have a unique solution for all vectors a E Rn and b E R':

(i) A is nonsingular; (ii) the Schur complement B — DA -1 C is a

P-matrix.

3.12.6 Let K be a nonempty closed convex set in R?. Let IIIr (x) denote

the projection of the vector x onto the set K under the 12-norm. Show that

a vector z* solves the problem VI(K, f) if and only if z* is a fixed point of

the mapping F(z) = HK(Z — f (z)).

3.12.7 Let M E Rnxn be a copositive matrix and let u > 0 be given.

Prove there exists a solution to the inequality system

Mz > —MTU, z>0.

3.12.8 Show that if M E R"` ' is copositive but not copositive-plus, then
xTMx > 0 for all x> 0.

3.12.9 Suppose M E RT' x n is copositive. Show that if there exists a

vector x > 0 such that xTMx = 0, then M is positive semi-definite.

3.12.10 Suppose that M E R"' is copositive. Show that the implication

[v>0, My>0, vTMv=0]	 [vTq >0]

is valid if and only if the function f (z) = zT(q + Mz) is bounded below on

the set {z ER :Mz >0}.

3.12.11 Let M C Rnxn be an E0-matrix. Show that if there exists a

vector z > 0 such that Mz = 0, then there exists a nonzero vector y > 0

such that yTM = 0. Show if M is a row adequate matrix, then M e L.

3.12.12 Let M C Rn"n be a column adequate matrix. Show that the

following implication holds for each a C {1,. . .  , n}

[Maaya =0]	 [Maya =0].
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3.12.13 Prove that Corollary 3.8.12 is true.

3.12.14 With reference to Definition 3.9.5, which of the following matrix

classes are complete? Positive definite; column adequate; column sufficient;

nondegenerate; copositive-star; copositive-plus; H; Qo ; R0 ; R.

3.12.15 When considered as sets in Rnxn which of the following ma-

trix classes are open? Positive definite; column sufficient; nondegenerate;

copositive-star; Qo; Q; Ro ; R.

3.12.16 Show that the matrix

0 —1 2

M= 2 0 —2

—1 1 0

is sufficient.

3.12.17 Show that if M E R" is positive, nonnegative, copositive,

copositive-plus, strictly copositive, positive semi-definite, row sufficient, or

column sufficient, then so, respectively, is

MM
M=

MM

3.12.18 Prove that Theorem 3.9.11 is true.

3.12.19 Prove that Lemma 3.9.12 is true.

3.12.20 Prove that Proposition 3.9.14 is true.

3.12.21 If M E RnXn is symmetric and copositive-plus, show that there

exist A, B E Rn X n such that:

(a) M =A +B,

(b) A is symmetric and copositive,

(c) B is symmetric and positive semi-definite,

(d) the nullspace of B equals the nullspace of M.
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3.12.22 Let M E Rfl x n and q E R' be given. Let X be a convex subset

of SOL(q, M).

(a) Show that if z i EX and w 2 = q + Mz for i = 1, 2, then

(z 1 ) Tw 2 = (z2 ) Tw l = 0.

(b) Suppose that M is symmetric. Let f (z) = qTz + 2 zTMz. Show that

f (z) is a constant for z E X.

(c) Deduce from part (b) that if M is a symmetric matrix, then the

quadratic function f (z) attains only a finite number of distinct values

on SOL(q, M).

3.12.23 Given M E Rnxn we define a matrix Ha E R2nx2n for each

scalar a, as follows

0 I	 MTM _MT
Ha=a	 +

10	 —M	 I

Show that if M is strictly semimonotone, then Ha is strictly copositive for

all a > 0.

3.12.24 Given a matrix M E Rnxn consider the 2n x 2n matrix

MI
M'=

—I D

where D E Rnxn is a diagonal matrix with positive diagonal elements.

Show that if M E Eo , then M' E Eo n R0 .

3.12.25 Prove that R C (int Q) n R0 . Is this inclusion proper?

3.12.26 Let M E R0 . Suppose that for some vector q, the LCP (q, M) has

a unique solution that is nondegenerate. Show that there exists a principal

pivotal transform of M that belongs to the matrix class R. (Hence, M is

a Q-matrix.)

3.12.27 Let M E Rnxn be given. Show that M E Po (P) if and only

if for every pair of disjoint index sets a, ß C {1, ..., n}, whose union is

nonempty, the matrix

r Maa — Maß 1

Mßa Mßß
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is (strictly) semimonotone. What is the analog of this result for a positive

semi-definite matrix M?

3.12.28 Let M E 	be a symmetric and nonsingular matrix. Show

that M is positive definite if and only if both M and M-1 are strictly

copositive.

3.12.29 Give a proof for Proposition 3.11.12.

3.12.30 Suppose M E Rn"n is hidden Z. Show that if for some index set

a C {1, ..., n} the matrix Maa is nonsingular, then the principal pivotal

transform of Maa in M, i.e.,

M;	 —Maä Ma&

MMaa Mää — MMaa Maä

is hidden Z.

3.12.31 Show that the matrix M given in Example 3.11.20 is hidden K,

but that MT is not hidden Z.

3.12.32 LetAEZr1RT X nandBEKnR' x n withA >B.

(a) Show that the matrix M = 2A — B is a hidden K-matrix.

(b) Let M E HnR" x n have positive diagonal elements. Show that there

exist matrices A and B satisfying the given assumptions such that

M = 2A — B. Deduce that any H-matrix with positive diagonals is

a hidden K-matrix.

3.12.33 Prove that every copositive Z-matrix is positive semi-definite.

3.12.34 Consider the convex quadratic program

minimize 2 X T Qx + cT x

subject to	 Ax > b

where Q E RT'"n is symmetric and positive semi-definite. Suppose the

problem is feasible. Show that the statements below are equivalent.

(a) The objective function is bounded below on the feasible set.
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(b) The implication holds:

[Av>0, Qv=O] z* cT V >0.

(c) The vector c belongs to R + pos AT where R is the column space of

Q.

3.12.35 Consider the convex quadratic program given in 3.12.34. Let P
denote the feasible region, and 0 the objective function. For each scalar

r E R, define the level set

L(v)={xeP:0(x)<v}.

Show that if L(T) -A 0, then

0+ L(7)={vER""':Av >0, Qv=O, cTV<0}.

Deduce from this representation that the three statements below are equiv-

alent.

(a) The level set L(T) is nonempty and bounded for at least one 7r.

(b) The level set L(v) is bounded for every T for which L(-r) is nonempty.

(c) The implication holds:

[Av > 0, Qv = 0, v 0]	 [cTV > 0].

3.13 Notes and References

3.13.1 Perhaps the earliest existence result for the linear complementar-

ity problem appears in the paper by Samelson, Thrall and Wesler (1958).

Motivated by an engineering application, their work was concerned with a

geometric problem which can be expressed as a complementarity problem

of the form (1.5.2). In the case of the standard LCP, their result yields

Theorem 3.3.7.

3.13.2 A significant portion of the analytic approach to the existence the-

ory presented in this chapter is based upon the association with quadratic

programming. One of the important theorems in the early history of

quadratic programming is that of Frank and Wolfe (1956). This theo-

rem is the basis for our derivation of all the existence results in the first

five sections of this chapter.
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3.13.3 The existence results in Section 3.1 are largely due to Dorn (1961)
and Cottle (1963, 1964b). For positive semi-definite M, the polyhedral

representation of SOL(q, M) stated in Theorem 3.1.7 was pointed out by

Adler and Gale (1975). The positive semi-definite LCP is closely related

to monotone operator theory. See Minty (1962) and Brezis (1973).

3.13.4 The fundamental matrix classes Q0 and Q were introduced by

Parsons (1970) and Murty (1972), respectively. In Parsons' work, how-

ever, the class Q0 was denoted 1C. As noted in Section 3.2, there is no

known method for efficiently testing a matrix for membership in one of

these classes. Aganagic and Cottle (1978) (see also Cottle (1980a)) de-

scribes an inefficient test for membership in Q originally conceived by Gale.

This and a finite characterization for  Q0-matrices can be found in Murty

(1988). Proposition 3.2.1 on the characterization of M E Qo in terms of

the convexity of K(M) was observed by Eaves (1971a). Watson (1974) de-

scribed some non-Q matrices through forbidden sign variations of principal

minors.

3.13.5 The name "P-matrix" and the term "sign reversing" were coined

by Gale and Nikaido (1965). The class P had previously been investigated

by Fiedler and Ptak (1962) who proved Theorem 3.3.4. Our proof of the

uniqueness part of (the Samelson-Thrall-Wesler) Theorem 3.3.7 follows

Murty (1972). The same theorem was independently discovered by Ingleton

(1966).

3.13.6 Lyapunov (1947) introduced the notion of a (negative) stable ma-

trix (with complex entries) in his study of solution stability of differential

equations. His well known characterization of a (complex) stable matrix

states that for a complex square matrix A, there exists a (Hermitian) nega-

tive definite matrix H such that AH+HA* is (Hermitian) positive definite

if and only if all eigenvalues of A have negative real parts. The last con-

clusion in our Theorem 3.3.9 is a special case of this famous result. For a

contempory review of matrix diagonal stability, see the article by Berman

and Hershkowitz (1983).

3.13.7 The notion of an H-matrix originates from a paper by Ostrowski

(1937/1938) who introduced the class of "comparison matrices" H associ-
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ated with a given matrix M and whose entries satisfy

Ihzzj > Imj , I  I <m (i j).

The particular comparison matrix M defined in 3.3.12 is just a member of

Ostrowski's broader class. Clearly, the H-matrices are closely connected

with the diagonally dominant matrices which, of course, have a long history.

3.13.8 Example 3.3.10 appears in Dantzig (1967). He points out that

R.E. Kalman had identified another such example in 1962.

3.13.9 Parts (a), (b), and (c) of Theorem 3.4.2 appear in a paper by

Fiedler and Ptäk (1966) where the classes Po , P, So and S are studied

as generalizations of positive definite matrices. Part (d) of this theorem

is implied by a result in Willson (1971). More and Rheinboldt (1973)

generalized the matrix classes P and S to nonlinear functions and discussed

the connection with other mappings.

3.13.10 Adequate matrices were introduced by Ingleton (1966) in con-

nection with a study of dynamical systems subject to smooth unilateral

constraints; the distinction between row and column adequate matrices

was made in his later paper, Ingleton (1970), as well as in Eaves (1971a).

Ingleton (1970) also characterized the column adequate matrices in terms

of w-uniqueness.

3.13.11 For the most part, Section 3.5 is drawn from the paper of Cot-

tle, Pang and Venkatesawaran (1989). The name "sufficient" matrices was

brought to mind by Ingleton's "adequate" matrices. Jansen (1983) dis-

cusses the structure of the solution set of a general LCP.

3.13.12 The equivalence between statements (a) and (b) in Theorem

3.6.3 was shown by Murty (1972) who first used the term "nondegen-

erate matrix" in the context of the LCP. Mangasarian (1980) established

Theorem 3.6.5. As a corollary, he derived the implication [(a) (c)] in

3.6.3; the reverse implication [(c) = (a)] was observed by Pang (1988).

3.13.13 Except for the generality of an arbitrary positive vector instead

of e, the vector of all ones, the formulation of the augmented LCP given

in (3.7.2) can be found in the celebrated article of Lemke (1965) who gave

 



3.13 NOTES AND REFERENCES	 221

a constructive existence proof of Theorem 3.7.3. (See Section 4.4.) Our

proof of this theorem follows Eaves (1971a). In turn, Theorem 3.7.1 was

first proved by Hartman and Stampacchia (1966).

3.13.14 Eaves (1971b) proved Theorem 3.7.9 and used it to establish a

refinement of the Frank-Wolfe existence theorem for quadratic program-

ming. In the same article, he also obtained a more general version of

Proposition 3.7.14 which provided necessary and sufficient conditions for

an arbitrary quadratic function to be bounded below on a polyhedron.

Pang (1991a), proved Theorem 3.7.17 and used it in the context of interior-

point methods. (See Section 5.9.)

3.13.15 It appears that (symmetric) copositive matrices were first studied

in Motzkin (1952). There, the emphasis was on the associated quadratic

form. The entrance of (asymmetric) copositive matrices into the LCP liter-

ature began with Lemke (1965) who made use of copositive-plus matrices,

though not by that name. The name "copositive-plus" was introduced in

Cottle and Dantzig (1968). The notion of copositive-star matrices is due

to Gowda (1989b) who also proved Theorem 3.8.13.

3.13.16 Starting with Motzkin (1952, 1965), many authors have consid-

ered the problem of testing a matrix for copositivity. The criterion given in

Theorem 3.8.3 is due to Gaddum (1958). For others see Cottle, Habetler

and Lemke (1970b), Pereira (1972), Väliaho (1986), and the references

therein. Incidentally, results similar to Propositions 3.9.8 and 3.9.14 were

established in the aforementioned work of Pereira.

3.13.17 The class Ro defined in 3.8.7 was first considered by Garcia

(1973a, 1973b) under the name E*(0). Trivially, any nonnegative ma-

trix with positive diagonal entries is an R0-matrix (in fact such a matrix

is strictly copositive). The characterization of a nonnegative Q-matrix,

3.8.15, was proved by Murty (1972).

3.13.18 The strictly semimonotone matrices first appeared in Cottle and

Dantzig (1968) without a name or a notation. Eaves (1971a) generalized

this matrix class to one he denoted L and which we denote E 0 . The name

"semimonotone matrices" was proposed by Karamardian (1972). Theorem

3.9.3 combines results in the cited papers of Eaves and Karamardian.
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3.13.19 In essence, Corollary 3.9.13 was noted by Reiman and Williams

(1988) whose paper deals with the subject of reflecting Brownian motions.

For additional discussion of the latter topic and its connection with the

LCP, see Mandelbaum (1989).

3.13.20 The class L defined in 3.9.18 was introduced by Eaves (1971a)

who used Lemke's method (see Section 4.4) to prove Corollary 3.9.19.

Our treatment of this result, which relies on Theorem 3.9.16 and Corollary

3.9.17, follows the approach in the paper by Gowda and Pang (1993) whose

main objective is to convey the fundamental importance of Theorem 3.7.3
in the analytic approach for the existence of a solution to the LCP.

3.13.21 Karamardian (1972) defined the concept of "regular mapping"

which, when specialized to the affine case, yields that of c-regular matrix.

Actually, he used the term "regular" for these matrices. Soon thereafter,

Garcia (1973b) developed the more general class of d-regular matrices which

he denoted E* (d).

3.13.22 The characterization of P0 n Q given in Theorem 3.9.22 was

obtained by Aganagic and Cottle (1979). The effort by Pang (1979b) to

extend this result by replacing P0 with E0 was only partially successful.

In answer to Pang's closing conjecture in the cited paper, Jeter and Pye

(1989) gave an example of a semimonotone Q-matrix that is not regular.

Gowda (1990b) showed that Pang's conjecture is true in the symmetric

case.

3.13.23 Originally defined in the paper of Cottle (1980c), the notion of

a completely-Q matrix was motivated by a variable dimension algorithm

developed by Van der Heyden (1980), see Section 4.6.

3.13.24 There is a vast literature on the classes Z and K, not all of which

uses these notations, of course. These symbols appeared in the paper by

Fiedler and Ptdk (1962) which seems to be the earliest systematic study of

the subject. Members of K are also known as (nonsingular) M-matrices.

(The M stands for Minkowski.) The richness of the subject is evident in

a remarkable theorem of Fiedler and Ptdk stating 13 equivalent conditions

under which a Z-matrix is a K-matrix. This feat was surpassed by Berman

and Plemmons (1979) who listed 50 such conditions, some of which are
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contained in Theorem 3.11.10. Even the Berman-Plemmons collection is

not exhaustive; for characterizations in the context of the LCP, see Kaneko

(1978d). A result of the latter type is Proposition 3.11.9. Cottle (1972)
and Kaneko (1977a) have established some related characterizations of a

K-matrix in terms of the isotonicity property of the (unique) solution of

the parametric linear complementarity problem; see Proposition 4.8.6 and

the note 4.12.24 for more discussion on such characterizations.

3.13.25 The problem of finding the least element of FEA(q, M) was first

formulated in Du Val (1940). Studying the more general subject of polyhe-

dral sets having least elements, Cottle and Veinott (1972) obtained results

on least-element solutions of linear complementarity problems, including

Theorem 3.11.6 and Corollary 3.11.8. The "if" part of Theorem 3.11.7
was established by Tamir (1974); Bod (1975b) pointed out that the result

was anticipated by Wintgen (1964, 1969). In a related paper, Tamir (1976)
discussed an application of the least-element property associated with a

Z-matrix to a class of resource allocation problems.

3.13.26 Minus the name, the class of hidden Z-matrices was introduced

in a paper by Mangasarian (1976a) which had to do with the idea of solving

LCPs as linear programs. In fact, Mangasarian wrote several other papers

on this subject. (See Mangasarian (1976b, 1979a, 1979b).) The name

"hidden Z," which first appeared in Pang (1978), was inspired by a paper

of Dantzig and Veinott (1978) that analyzes the class of "hidden totally

Leontief" matrices. Dantzig and Veinott attributed Saigal (1971b) for the

creation of this nomenclature.

3.13.27 The least-element theory of the LCP with a hidden Z-matrix was

developed in an effort to explain the phenomenon observed by Mangasar-

ian in the aforementioned papers. This theory was expounded in Cottle

and Pang (1978a, 1978b); the former article contains the necessity part of

Theorem 3.11.18. The sufficiency part of this result was proved in Pang

(1978). Theorem 3.11.19 was proved in Pang (1979c). The problem of

discovering hidden Z-matrices was investigated in Pang (1979d).

 





Chapter 4

PIVOTING METHODS

This is the first of two long chapters on computational methods for

solving linear complementarity problems. The algorithms presented in this

chapter are finite procedures based on the well known idea of pivoting as

found in numerical linear algebra and linear programming.

Pivoting can be used to transform the data of a system of linear equa-

tions or of a linear program so as to exhibit either a solution or its nonex-

istence. In the pivoting approach to linear programming, for instance, the

goal is to achieve either of two sign configurations in the transformed data.

The computation terminates when either one is reached, for it is then ob-

vious that an optimal solution is at hand or that no such solution exists.

A similar philosophy can be used in the pivot-theoretic approach to the

linear complementarity problem. Let an LCP (q, M) be given. If q > 0,

then z = 0 solves the problem. If, however, there exists an index r such

that
qr <0 and m,..j <0 for all j,

then there is no vector z > 0 such that q, + E^ mrj z	 0. In this case, the

LCP (q, M) is infeasible and hence unsolvable. It is rare for the original

225
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data of a linear complementarity problem to have either of the aforemen-

tioned properties. The goal of some pivoting algorithms is to derive an

equivalent system that does have one or the other of these properties. This

is particularly so for the principal pivoting algorithms treated in Sections

4.2 and 4.3. Much the same can be said for Lemke's method which is

covered in Section 4.4.
The algorithms mentioned in the preceding paragraph are the standard

pivoting methods for the LCP. Among their numerous variants are para-

metric algorithms (Section 4.5) and variable dimension schemes (Section

4.6). The special case of Z-matrices (treated in Section 4.7) gives rise to

particularly efficient linear complementarity algorithms. These, in turn,

are related to a (seemingly) different approach: solution of an LCP as an

equivalent linear program and solved by LP methods. In Section 4.8 we

will describe a special pivoting method for solving LCP (q, M) where MT

is a hidden K-matrix. Still other algorithms exist; several of these are

discussed in Section 4.12.
It should be noted that, for the LCP, infeasibility is not the precise

alternative to the existence of a solution. A feasible linear complementarity

problem can fail to possess a solution. In such a case, the global minimum

value of the objective function in its quadratic programming formulation

(1.4.2) is greater than zero.

When an LCP algorithm necessarily either finds a solution of the LCP

(q, M) or indicates that no solution exists, we say the algorithm processes

the problem. In most cases, the discussion of what problems (q, M) a

particular LCP algorithm will process is based on the matrix classes to

which the matrices M belong. A notable exception to this is the LCP

formulation of the bimatrix game problem. There we single out a specific

vector q = — e. Other special linear complementarity problems of this sort

exist, and will be noted where possible.

In pursuing the pivot-theoretic approach to solving linear complemen-

tarity problems, certain key questions arise. As discussed in Section 1.3,
the job in solving an LCP (q, M) is to find a complementary submatrix B

of (I, —M) such that the vector q belongs to pos B. Each complementary

submatrix is associated with an index set a and thereby a principal sub-

matrix of M. This points up the combinatorial question: which cti? It may

happen that no such cti exists. How can this be detected?
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Another important question is how to handle degeneracy. Just as in the

simplex method for linear programming, it is known that various algorithms

for the LCP can cycle on some problems unless special precautions are

taken. Techniques for coping with such difficulties will be discussed in

Section 4.9.

Two computational considerations are the foci of Section 4.10. The

first is the practical matter of updating the information needed to carry

out (most of) the algorithms. As in linear programming, this can be done

by using basis matrices in factored form instead of pivoting in tableaux.

Our discussion of this topic is brief, but suggestions for further reading are

given in Section 4.12. The second focus is the theoretical issue of compu-

tational complexity of the algorithms covered in this chapter. All of them

have the property of finite termination when applied to the classes of prob-

lems for which they are intended. Generally speaking, in practice, these

methods behave rather well on problems of "reasonable" size. Nonetheless,

there exist problems that force the algorithms to execute a large number

of iterations. We shall encounter some of these LCPs in 4.10.

4.1 Invariance Theorems

In this section, we extend the discussion of pivotal algebra that was

begun in Chapter 2. Here we present some important results about the

effects that principal pivoting has upon particular matrix classes. These

theorems are vital to pivoting methods presented in this chapter.

Certain pivoting algorithms for the linear complementarity problem

produce sequences of matrices, each one obtained from its predecessor by

a principal pivot and/or a principal rearrangement. In some cases we can

show that these operations do not alter some particularly useful or other-

wise distinctive property of the matrices. In fact, it is often the case that the

preservation of the property under pivotal transformation is instrumental

in the justification of the method. Thus, when a property is not disturbed

by a particular operation, we say it is invariant under that operation. It

should, of course, be pointed out that principal pivoting operations can be

performed on square matrices without direct reference to algorithms for

the LCP. As a very simple example of a property that is invariant under

principal pivoting, consider a diagonal matrix, D. Then every principal
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rearrangement and every (allowable) principal pivotal transform of D is

again a diagonal matrix.

The first result along these lines has to do with principal minors of

square matrices. It relates the principal minors of a principal pivotal trans-

form to those of the initial matrix and the determinant of the pivot block.

Let A be a square matrix in block partitioned form:

All Al2 A13

A = A21 A22 A23

A31 A32 A33

where the submatrices Aii (i = 1, 2, 3) are square, and the principal sub-

matrix

All Al2
B=

A21 A22

is nonsingular. Let C denote the matrix obtained from A by performing

a principal pivot on the matrix B. We shall now explore the relationship

between the principal minors of C and those of A. For this purpose, suppose

C is partitioned in exactly the same way as A. Thus,

C11 C12 C13

C= C21 C22 C23

C31 C32 C33

Now consider the principal submatrix

C22 C23

C32 C33

This is the principal submatrix whose determinant we have chosen to an-

alyze. Notice that the rows and columns of A and C associated with the

index (subscript) 2 correspond to what we might call the "overlap" between

B and D.
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4.1.1 Theorem. Under the hypotheses stated above,

C22 C23	 All A13	 All Al2
det	 = det	 / det	 (1)

C32 C33	 A31 A33	 A21 A22

Proof. The composition of the linear transformations

Y1	 All Al2 A13	 x1

P2 = A21 A22 A23	 X2

X3	 0	 0	 I	 X3

and

Yl	 I	 0	 0	 Yl

x2 = C21 C22 C23	 P2

P3	 C31 C32 C33	 33

is well defined. Moreover, it has the same effect as the linear transformation

Y1	 All Al2 A13
	 X1

X2 =	 0	 I	 0
	

X2

P3	 A31 A32 A33
	

x3

Consequently, we have the matrix equation

I	 0	 0	 All Al2 A13
	

All Al2 A13

	

C21 C22 C23	 A21 A22 A23
	 =	 0	 I	 0	 . (2)

	C31 C32 C33	 0	 0	 I
	

A31 A32 A33

Taking determinants on both sides of (2) and dividing by det B, we obtain

( 1 ).

The formula (1) says that the chosen principal minor det D of the prin-

cipal pivotal transform C is the quotient of principal minors drawn from A.

The denominator is the determinant of the corresponding pivot block and

the numerator is the determinant of the principal submatrix of A obtained

by selecting the rows and columns (of A) which appear in B but not in D

and those which appear in D but not in B.
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By a quite similar argument, the exact same formula holds when

All Al2 A13 A14

A21 A22 A23 A24
A=

A31 A32 A33 A34

A41 A42 A43 A44

and C is the principal pivotal transform of A with the same partitioning.

In this case, there are rows and columns of A and C (namely those corre-

sponding to the index 4) which are not involved in the pivot block and not

involved in the principal submatrix whose determinant is in question.

This line of reasoning leads to the symmetric difference formula. Recall

that if a and ß are two subsets of a set 52, their symmetric difference as

defined in set theory is

aAß=(au0)\(an,3)• (3)

Thus, the symmetric difference of a and ß is the set-theoretic difference of

their union and their intersection. Let us now regard a and 3 as subsets

of indices (of rows and columns) of a matrix A. The result above can now

be expressed in the following rather elegant way:

4.1.2 Theorem. Let C be the matrix obtained from the square matrix

A by a principal pivot on the submatrix A. Then, for any principal

submatrix C,ßp of C:

det Cßß = det A/ det A. (4)

where -y = a A 3. ❑

We call this the symmetric difference formula. It has an immediate

consequence of considerable importance.

4.1.3 Theorem. The class P of real square matrices having positive prin-

cipal minors is invariant under principal pivoting. ❑

4.1.4 Remark. A somewhat different proof of Theorem 4.1.3 can be

given as in the proof of Theorem 4.1.7.
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There is an often-used convention in matrix theory which states that

the determinant of the empty matrix [ ] is 1. This practice works out

nicely in the symmetric difference formula.

When we speak of matrices with positive principal minors, we mean all

principal minors, not just some of them. (The same sort of usage comes

up in phrases like "M has positive eigenvalues" and "M has nonpositive

off-diagonal elements".) Thus when M has positive principal minors, it

is possible to use any of its principal submatrices as the pivot block in

a principal pivotal transformation, and the result will be another matrix

of this type because its principal minors are ratios of positive numbers,

namely certain principal minors of M.

The symmetric difference formula can be used as above to prove that the

class of nondegenerate matrices is also invariant under principal pivoting.

Several other classes are also invariant under principal pivoting.

4.1.5 Theorem. The classes of positive definite and positive semi-definite

matrices are invariant under principal pivoting.

Proof. Consider the positive semi-definite case first. Let Maa be a nonsin-

gular principal submatrix of the positive semi-definite matrix M e RTh>< .

Without loss of generality, we may assume that M. is a leading principal

submatrix. Now for any vector z E Rn, we have

wa = Maaza + Maazä

w^ = M^aza + M z5.

Accordingly, and because M is positive semi-definite,

zTMz = zawa + za

T

W5 > 0.

Let M' = p, (M), the principal transform of M obtained by using M. as

pivot block. Let z E RT' be arbitrary and define w E Rn via the equations

wa = Maaza + MMaz0

w^ = Mäaza + M ^z5.

It follows that

za = Maw(. + Maäzä

Wa = MQawa + M55z0•
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Thus,

zTM'z = zäW c, + zäW", = W za + zäWa > 0.

Hence M' is positive semi-definite.

Now suppose that M is positive definite. If zM'z = 0, then wa = 0
and za = 0. This implies wa = Mäa za = 0. As M  = Maä, it follows

that za = 0, so z = 0. This implies M' is positive definite. ❑

According to the last two theorems, the P-matrices, the positive definite

matrices, and the positive semi-definite matrices are all invariant under

principal pivoting. As we know, these classes (and others) are subclasses

of another matrix class: the sufficient matrices (see Section 3.5). In the

remainder of this section, we shall show that the (row and column) sufficient

matrices are also invariant under principal pivoting. Once this is done, we

will be in a position to apply this result in an algorithm for the LCP. As it

happens, we shall be most interested in the effect of principal pivoting on

row sufficient matrices, but it is more convenient to treat column sufficiency

first.

In order to prove the invariance of the column sufficiency property under

principal pivoting, we introduce the notion of the Hadamard product of two

vectors of the same size.

4.1.6 Notation. The Hadamard product of two vectors u, v E R, de-

noted u * v, is the vector given by

(u * v)Z = uzv2,	 i = I, ... , n.

In terms of this concept, it is easy to see that the column sufficiency of a

matrix M E Rn"n is equivalent to the validity of the implication:

x * (Mx) < 0	 X * (Mx) = 0

for all vectors x E R.

4.1.7 Theorem. Let Maa be a nonsingular principal submatrix of the

square matrix M. If M is column sufficient and M' = pa (M), then M' is
also column sufficient.

 



4.1 INVARIANCE THEOREMS	 233

Proof. As remarked earlier, it is not restrictive to assume that the pivot

block is a leading principal submatrix of M. Let w = M'z and suppose

z * w < 0. We may write

	cacti	 Maa Maä	 za

	

wä	 Mäa Mä&	 zä

The condition z * w < 0 means

zIX 	wa	 za * wa 	wa * za

*	 _	 _	 <0.
za	 w	 zIX * w	 z * wIX

Since M' = pa (M), we have

za M,

wä	 Mäa

Ma0,	 w1.

M	 za

But M is column sufficient, so it follows that

wa za
* =0.

z^ wIX

Accordingly, z * w = 0 which implies that M' is column sufficient. ❑

We now come to the result for row sufficient matrices.

4.1.8 Theorem. Let Maa be a nonsingular principal submatrix of the

square matrix M. If M is row sufficient and M' = pa (M), then M' is also

row sufficient.

Proof. It is obvious from first principles that a matrix is row sufficient if

and only if its transpose is column sufficient. Thus, it suffices to prove that

(M')T is column sufficient. Our hypothesis implies that M T must be so.

Theorem 4.1.7 implies that p a (MT) is column sufficient. By the definition

of M' and by equation (2.3.13) we have

(M I ) T = (pa(M)) T = Ea(00, (MT ))Ea.

The result now follows from the easily shown fact that if M is row (column)

sufficient, then so is EME, for any conformable diagonal matrix E. ❑
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The matrix class Pl

We shall now study a special subclass of P0 . There are several motiva-

tions for considering this matrix class. First, its properties are interesting

in their own right. Second, in establishing these properties, we have an

opportunity to link up a number of previously developed concepts, one

of which is that of invariance under principal pivoting as discussed just

above. Third, there are important realizations of this matrix class. See,

for instance, Exercise 4.11.4.

4.1.9 Definition. If M e P0 f R' >< , then M E Pl if there exists a unique

index set cti C {1, ..., n} such that det Maa = 0. Members of this class are

called P1 -matrices.

The definition says that M E Pi if and only if it has nonnegative

principal minors precisely one of which is 0. Matrices of this sort may or

may not belong to Q. Indeed,

1	 1 1
M=	 EP1nQ,

1	 0

whereas

1	 1
M=	 ]EPi\Q.

1	 1

Despite the latter example, it is shown below that P1-matrices must always

belong to Q0 .

4.1.10 Theorem. For every P1 -matrix M E Rn X n there exists a unique

index set ß such that M = pß (M) is a P1-matrix with determinant equal

to zero.

Proof. By definition, there exists a unique index set cti such that det Maa =

0. Let ß = a, the complementary index set. Then det Mßß > 0. It follows

from the symmetric difference formula (4) that det M = 0. Furthermore,

if 'y is an index set not equal to {1, ..., n}, then

det A y = 
det M.r 	ß > 0.

det Mpp
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The inequality follows (set-theoretically) from the fact that the numerator

cannot be the single zero minor of M. ❑

4.1.11 Corollary. Every P1-matrix is (row and column) sufficient, hence

P1 C Q0 (properly).

Proof. By the preceding theorem, every P1-matrix M has a singular prin-

cipal pivotal transform M whose proper principal minors are positive. The

matrix M must be adequate and hence (as noted in Section 3.5) sufficient.

The class of sufficient matrices is invariant under principal pivoting (see

4.1.7 and 4.1.8). Thus, it follows that M is sufficient since it is a prin-

cipal pivotal transform of the sufficient matrix Al. As we know, all (row)

sufficient matrices belong to Q 0 . The inclusion is obviously proper. ❑

This corollary implies that when M E Pl n R7 >< the cone K(M) is

convex. The next theorem describes a distinctive feature of such a matrix.

In particular, if K(M) RTh, then it must be a halfspace. Furthermore,

except for vectors q on the boundary of this halfspace, solvable problems

have unique solutions. The full statement of the next theorem is facilitated

by using the following definition.

4.1.12 Definition. The matrix M E Rn X n belongs to U if the LCP (q, M)

has a unique solution for all q E int K(M). Members of this class are called

U-matrices.

4.1.13 Theorem. If the nxn matrix M E Pl \Q, then M E U, and K(M)

is a halfspace. If, in addition to the preceding hypothesis, det M = 0, then

the normal to the hyperplane bd K(M) can be chosen as a positive vector.

Proof. The assertion is trivial when n = 1, so hereafter we shall assume

n > 2. Under the present conditions, the cone K(M) is a proper convex

subset of R, hence it must be contained in a halfspace. In particular,

suppose q E Rn \ K(M). Then there exists a nonzero vector v such that

v>0,  vTM < 0, and vTq < 0.

Note that a = supp v is nonempty. These inequalities imply that

K(M) C H(v) = {x : vTx > 0}.
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Moreover, by the sufficiency of M, it follows that M ̂ .vo. = 0, hence or is

the index set corresponding to the unique vanishing minor of M. To prove

the reverse inclusion, suppose there exists a vector q E H+(v) \ K(M).
Then once again, there exists a nonzero vector u such that

u>0,  uTM < 0, and UT < 0.

The index set r = supp u is likewise nonempty, and it follows that Mu =
0. But this means that 'r = or and in fact that v = Au for some A > 0. Now

we have

0<vTq=AuTq<0

which is impossible. Hence K(M) = H+(v). Note that in the case where

det M = 0, the support of v must be {1, ..., n} (i.e., v > 0).
To show that M E U, note that U is invariant under principal pivoting.

This fact and Theorem 4.1.10 allow us to assume that det M = 0, hence

M is adequate. Choose an arbitrary q E int K(M). From what has been

proved above, it must be the case that vTq > 0. Suppose there exist

distinct vectors z l and z2 in SOL(q, M). Let w z = q +Mz i for i = 1, 2. The

adequacy of M implies w l = w 2 . This, in turn, means that M(z I —z2 ) = 0,

hence the vector z l — z 2 is a nonzero multiple of z, the generator of the

1-dimensional nullspace of M. As shown above, v > 0 and MTV = 0.

Using Exercise 3.12.11 and the adequacy of M, we conclude that z > 0.
As M e P1 , we must have z > 0. It is not restrictive to write

Z l = z 2 + Bz, 9>0,

which implies that w l = 0. From this we have the contradiction

0 = vTw l = vTq + vTMz 1 = vTq > 0.

This contradiction proves that M E U. ❑

4.1.14 Remark. Membership in U is not guaranteed for matrices in the

class Pl f1 Q. This can be seen from the case where

	—1	 1 1
q= 	and M= 	E P1 n Q.

	

—1	 1 1

In this case,

SOL(q, M) _ {(z1 i z2) : zl + z2 = 1, zl, z2 > 0 }.
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4.2 Simple Principal Pivoting Methods

In this section and the next we study algorithms based on the idea of

principal pivoting. These methods work with principal pivotal transforms

of the system

w = q + Mz.	 (1)

To distinguish successive pivotal transforms of (1), we shall use the super-

script v as an iteration counter. The initial value of v will be 0, and the

system shown in (1) will be written as

m° = q° + M°z° .	 (2)

In general, after u principal pivots, the system will be

wv = q
" + M"zv.	

(3)

Each system (3) can also be represented in the tableau form

1	 zl	 zn

	wi iii Mil	 ... min
(4)

	wn qn 1?7n1	 112nn

The vectors w" and z', which represent the system's basic and nonba-

sic variables, respectively, may each be composed of the original w- and

z-variables. Principal rearrangements can be used to make {w, z'} _

{w^, zz}, i = 1, ... , n.

Under certain circumstances, one can process linear complementarity

problems by methods that use only principal pivots of order 1, that is,

pivot elements situated along the main diagonal of the current principal

transform of the matrix M. We call these simple principal pivoting meth-

ods; in the literature they also go by the name Bard-type methods.

Perhaps the earliest example of a simple principal pivoting method was

proposed by Zoutendijk. The LCP considered by Zoutendijk—and some-

what later by Bard—is of a very special form, namely, (q, M) = (Pb, PPT )
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for some given vector b E R and some matrix P E R"'. Thus, q is

in the range of the matrix P. This LCP is equivalent to the problem of

finding a point in the cone K = {y E Rm : Pp > 0} that is closest to the

vector b E R'" under the 12-norm (cf. Exercise 1.6.1).

In the sequel, we consider a slight generalization of this class of LCPs

by assuming that M = PAPT where the matrix A E Rmxm is positive

definite. It is not hard to show that a matrix M of this form must be ade-

quate and positive semi-definite (but not necessarily symmetric); moreover,

an LCP of this type must have a solution. The following theorem provides

the key to the solvability of the LCP (Pb, PAPT) by a simple principal

pivoting method, namely 4.2.2.

4.2.1 Theorem. Let (q, M) be a linear complementarity problem with

M = PAPT and q = Pb where A is positive definite. Let (q', M') =

pa (q, M) be obtained from (q, M) by a (possibly vacuous) principal (block)

pivot on the principal submatrix M. of M. Then, qs 0 only if m, > 0.

Proof. A precondition for the principal pivotal transform pa (q, M) to be

well defined is that the principal submatrix MMa is nonsingular. Since

Maw = Pa.A(Pa.) T

and A is positive definite, it follows that M. must be positive definite

and the rows of Pa . are linearly independent. Hence m' ,s > 0 for all indices

s E a. Consider an index s a. Since principal pivoting preserves positive

semi-definiteness, we have ms s > 0. Suppose this diagonal entry is equal

to zero. Then, the principal submatrix MIX / a' where cti' = ce U {s} must

be singular. In turn, this implies that the rows of Pay. must be linearly

dependent. Hence, Ps . is linearly dependent on Pa .. Write

Ps . = väPa .

for some vector va . This yields PS.A(Pa.) T = väMaa. By the expression

(2.3.10) and a simple manipulation, we obtain

q' = Ps.b — PS .A(Pa .) T(Mau ) —l Pa.b = 0.

Consequently, qs 0 only if rn', > 0. ❑
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It is clear from this theorem that in any principal pivotal transform of

(Pb, PAPT ), it is possible to pivot on the diagonal entry corresponding

to any negative entry in the "constant column." This is the essence of

Zoutendijk's procedure which can be stated as follows.

4.2.2 Algorithm. (Zoutendijk/Bard)

Step 0. Initialization. Input (q° , M°) _ (Pb, PAPT). Set v = 0.

Step 1. Test for termination. If q" > 0, then stop: zv = 0 solves

(q", Mv). Recover a solution of (Pb, PAP.

Step 2. Choose pivot row. Choose an index r such that q < 0.

Step 3. Pivoting. Pivot on mrr . Define

v+1	 v	 v+l	 vw^	 = z: '
	= w,.

w' = w? z 1 = zi i r.

Return to Step 1 with v F-- v + 1.

While the steps of this algorithm are executable, there is no guarantee

that the method, as stated, is finite. In this case, giving a finiteness proof

is tantamount to showing that the algorithm actually solves the problem:

the algorithm has only one form of termination, namely with a solution.

It is known that cycling (and hence nontermination) can occur when the

pivot row (in Step 2) is chosen according to the rule

	r E arg min q' .	 (5)

Nevertheless, the use of Algorithm 4.2.2 with r chosen as in (5) has been

advocated on the grounds of simplicity and speed. According to Bard

(see 4.12.3), it "has not failed in hundreds of applications." Even so, the

algorithm cannot be justified without a suitable modification of Step 2.

How can this be done? Recall that at each iteration of the simplex

method for linear programming one has a feasible basis of which there are

at most a finite number. The finiteness of the simplex method rests on

the fact that when suitable precautions are taken, no feasible basis can

be used more than once. This property can be assured by introducing a
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function whose value is uniquely determined by a (feasible) basis and which

is strictly monotone in the iteration count.

As applied to a linear complementarity problem (Pb, PAPT ) of order n,

Algorithm 4.2.2 uses complementary bases of which there are at most 2".

Any technique that prevents a complementary basis from being repeated

will render the algorithm finite. To do this one must modify Step 2 of the

algorithm where the choice of pivot row is made. Zoutendijk asserted that

the finiteness could be established by adapting the linear programming

techniques of perturbation and lexicographic ordering. Remarking that

these "proposals ... do not seem very efficient," Zoutendijk suggested two

other schemes and proved that they lead to finite algorithms. We shall

develop the first of these.

Let B E Rn x n' be an invertible matrix with lexicographically positive

rows. The columns of this matrix will be transformed by the simple prin-

cipal pivoting in exactly the same manner as q is transformed. At any

iteration v there will be a triple (q", Mv, B") which, if desired, can be

written in tabular form

1 z x
(6)

w q M B

We attach no special meaning to the column headings x1, ... , x,,,, but we

do think of these variables as being equal to zero so that the extra columns

do not affect the values of the basic variables. After v pivots, the triple

(q, M, B) = (q°, M°, B° ) will become (q", M", Bv).

The pivot selection rule we have in mind involves a vector-valued func-

tion that strictly decreases in the lexicographic sense. This function is given

by

	B 	 B.	v 	 v

by = v' = lexico max Ü	 : q2 < 0 .	 (7)
	qr	 qi

4.2.3 Lemma. Algorithm 4.2.2 with the lexicographic pivot selection rule

(7) preserves the property

Bi qZ 
(f,^)
	(i r).(8)

 qr
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Proof. We first check that (8) is satisfied when v = 0. In the case where

qi < 0, this follows from the definition of r and the invertibility of B.
When qz > 0, it follows from the initially given lexicographic positivity of

the rows of B.

The first iteration calls for a pivot on m°r . The effects this has on

q° and B° are as follows:

o
1
	_Bo

	qr	1	 r•
	q r = m0 ^	 B 	 m°
	rr	 rr

while for all i 54 r,

0	 0
1	 o

 (m )

0 	1	 o	 mgr 	o
qi	= — m° qr	 B. = B. 	m0 B..

rr	 rr

The transformed data q 1 and B 1 also satisfy (8) for the index r correspond-

ing to the first iteration. Indeed,

1 ( B• 1 _
(ii—

[qo
— 

( m r ) o l  B?• ?̂° 1
2  morr qr j \ morr /	 \ — qO /

=
[qo

— ( m ) -0m0 qr \	 /

= q° (B ( mr '\ Bof
dir

I
o / morr

Bo
0

( m \
—

Bo
Z . 0 Ji rr

r.

That is,

1	 1 (B ,̂ )

Bi• >qi 	q lr
(9)

	

Suppose that q2 < 0 for some	 i	 r. (If no such i exists, the problem is

solved.) Then from (9) it follows that

Bi.
	1 	 1

B. _ B
0

.
	1 	 1	 0
	qi	 qr 	'Ir

 



242	 4 PIVOTING METHODS

Consequently,

	B
i	 B '
	0

lexico max ^^ - B" = Br*
0 • 	(10)

	1 	 1	{i:q^ <0} q i 	qr	 qr

Now for the data of the new tableau, let s denote the index determined by

the lexicographic pivot selection rule (7) of Algorithm 4.2.2. We need to

prove
1

	Bz >- qi (Bs ' )	 (i s).	 (11)
qs

There are three cases, depending on the sign of q.

Case 1.. If q ' < 0, then (11) holds by definition of s.

Case 2. If qZ > 0, the inequality (9) yields

Bi Br.
q 	qr

Inequality (10) gives

B. 	Bs,
qr	 q8

Hence

Bz Bs.
qi	 qs

Multiplication through this inequality by qi > 0 gives (11).

Case 3. If qz = 0, (9) reduces to Bz .- 0 which is the same as (11) in

this case.
This shows that the property is inherited by the tableau after the first

pivot. The same argument can be repeated to show that each successive

tableau inherits the property. ❑

We can now prove the finiteness of the algorithm.

4.2.4 Theorem. Algorithm 4.2.2 with the lexicographic pivot selection

rule (7) is finite. Furthermore, no complementary basis will ever be used

more than once.
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Proof. As shown in the preceding lemma, the property (8) is preserved

from one iteration to the next. In this lexicographic inequality, the sub-

script r = r(v) is defined by (7). By the principal pivoting formulas, it

follows that

	B" '	 By
	r(v).	 r(v).

	(12)qr(v)
 _ 

qr(v) .

Since qrw' > 0, it follows that r(v + 1) r(v). Applying (8) for iteration

v + 1 and (12), we obtain

By	 B"	 By {-1
	by _ r(v). = r(v)•	 r(v+l)• = by+l	 (13)

V	qr(v)	 qr(v)	 q(+l)
The inequality (13) shows that the special vectors by decrease in a strict

lexicographic sense from one iteration to the next. The data from which

these vectors are computed are uniquely determined by the finite collection

of complementary bases. It follows that the sequence must terminate after

finitely many iterations. ❑

4.2.5 Remark. As noted above, for problems of the sort under consider-

ation in this theorem, termination occurs only when a solution has been

found. In the general positive semi-definite case where the positivity of di-

agonal entries in M" corresponding to negative entries in q" may not hold,

it is possible to handle the problem using 2 x 2 pivots as well as simple

principal pivots.

Murty's least-index method

The fact that Bard's version of Algorithm 4.2.2 applied to an LCP

(q, M) with M E P can cycle has been noted by several authors. The

following data yield such a problem:

	

1	 .1	 0 .2

	q = — 1	 M = .2 .1 0	 (14)

	

—1	 0 .2 .1

After a pivot in row 1 (where the pivot row choice is made by arbitrarily

breaking the tie), the application of Bard's pivot rule leads to a sequence of
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pivots in rows 3, 1, 2, 3, 1, and 2 which then produces the complementary

basis obtained after the initial pivot. For further discussion of this example,

see Exercise 4.11.8.

When M E P, the LCP (q, M) can be solved by another simple prin-

cipal pivoting method due to Murty; this algorithm involves choosing the

pivot row in Step 2 of Algorithm 4.2.2 according to the least (i.e., smallest)

of the candidate indices. This variant is stated as follows:

4.2.6 Algorithm. (Murty)

Step 0. Initialization. Input (q° , M°) = (q, M) with M E P. Set v = 0.

Step 1. Test for termination. If q" > 0, then stop: z' = 0 solves

(q", M"). Recover a solution of (q, M).

Step 2. Choose pivot row. Choose the index r so that

r = min{i : qz <0}.

Step 3. Pivoting. Pivot on m,r . Define

v+1	 v	 v+1	 v
wr =z zr =

 +1 = wi zi +1 = zi i ^ r.

Return to Step 1 with v <— v + 1.

It should be noted that this algorithm operates on linear complemen-

tarity problems with P-matrices. This and the special rule for selecting

the pivot row are the only ways in which it differs from 4.2.2. The method

is obviously easy to implement; moreover, it is finite, even in the presence

of degeneracy.

The finiteness of Murty's least-index method is justified by an inductive

argument that uses a string of elementary observations. Their statements

will be facilitated by the following definition.

4.2.7 Definition. Let (q, M) be a linear complementarity problem of or-

der n, and let cti denote the index set {1, ... , s} where s < n. Relative to

(q, M), the LCP (qa , Maa) is called the leading principal subproblem of

order s.
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4.2.8 Proposition. Let z = (zl, ... , z ) be a solution of the LCP (q, M)
of order n. If z,, = 0, then za = (h,. .' z,,,_1) solves the leading principal

subproblem of order n — 1. Conversely, if z, = (zl, ..., z n _ 1 ) solves the

leading principal subproblem of order n-1 and w^,, = qn,+ j? il mnzzj > 0,

then z = (zi, ... , z1, 0) solves (q, M).

Proof. This is Exercise 4.11.9. ❑

Notice that Proposition 4.2.8 is valid for any real n x n matrix M. When

this matrix belongs to P, however, the LCP (q, M) always has a unique

solution and so does each of its corresponding principal subproblems, in

particular the leading principal subproblem of order n — 1. Thus, in the

converse part of the proposition, z = (zl , ... , zn_i, 0) is the only solution

of (q, M).

4.2.9 Theorem. Let (q, M) be an LCP of order n with M E P. Then for

any q E R, Algorithm 4.2.6 will solve (q, M) in a finite number of steps.

Furthermore, no complementary basis will ever be used more than once.

Proof. The proof is by induction on n. For n = 1, the theorem is clear.

In this case at most one pivot step is required. Inductively, assume that

n> 1 and that the theorem holds for all linear complementarity problems

(of the P-matrix type) of order n — 1 or less.

The LCP (q, M) under consideration has a unique solution, z. There

are two main cases, according to whether z,,, = 0 or not.

Case 1. zn = 0. Suppose Algorithm 4.2.6 is applied to the leading

principal subproblem of order n — 1. By the inductive hypothesis, the

algorithm obtains the unique solution z E Rn-1 of this problem in a finite

number of steps, during the course of which no complementary basis is

repeated.

Now when 4.2.6 is applied to the full problem (q, M), it will not call for

a pivot in row n unless the leading principal subproblem has already been

solved in the process, for n is the largest index in the full problem. The

assumption z,,, = 0 implies that (h,. . . ' z ß,,_ 1 ) is the solution of the leading

principal subproblem , so z = (h,. . . zn _ 1 ). Hence qn + II' mnZ z > 0.

Therefore in this case, the theorem holds.

Case 2. zn > 0. Applying the algorithm to (q, M), we arrive after a

finite number of steps at a complementary basis C such that (C -1q) z > 0
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for i = 1, ... , n — 1 and (C—l q) z < 0. In other words, the leading prin

cipal subproblem of order n — 1 has been solved—without repetition of a

complementary basis. The algorithm then calls for a pivot on the last di-

agonal element of the current principal pivotal transform of M. The new

principal pivotal transform of (q, M) is a linear complementarity problem

of the P-matrix type having the property covered in Case 1. Accordingly,

when the algorithm continues, it solves this new LCP in a finite number of

steps without repeating a complementary basis. Hence it solves the original

problem in the manner asserted by the theorem. ❑

4.2.10 Remark. The computational efficiency of 4.2.6 can very well de-

pend on the order in which the constraints are written down. Examples

have been published showing that for certain (specially constructed) prob-

lems of order n, Algorithm 4.2.6 requires 2n — 1 pivots, whereas for a

suitable principal rearrangement of the problem, the same algorithm finds

the solution after executing only one simple principal pivot. (See Section

4.10 for further discussion along these lines.) Thus the ordering of the

constraints can have a profound impact on the performance of the method.

Disconcerting as this may be, it should be remembered that such strikingly

nasty problems are not typical. At least one computational study has found

Murty's least-index method to be computationally superior to others that

are applicable to the same class of problems. See 4.12.7 for references on

the computational behavior of Murty's method.

It should also be noted that Algorithm 4.2.6 can be implemented with-

out actually doing the principal pivoting. The algorithm merely generates

a sequence of complementary bases C' each of which (except the first) dif-

fers from its predecessor in just one column. The passage from C" to C'+ 1

is determined by the solution of the equation

C"x = q.

If x > 0, the algorithm stops. Otherwise, the negative component of x

having the smallest index is used to determine the new complementary

basis.

Algorithms 4.2.2 and 4.2.6 make no effort to preserve the nonnegativity

(if any) of the basic variables. This being so, these algorithms do not require

the minimum ratio tests by which such nonnegativity would be maintained,
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a feature that sets them apart from most of the other algorithms presented

in this chapter.

For a better understanding of the material to follow, the reader is en-

couraged to review the discussion of minimum ratio tests given near the

end of Section 2.3. A word of caution is in order, however. Appropriate

adjustments will need to be made for the way we express the basic variables

in terms of the nonbasic variables. (Cf. (1) and (2.3.20).) Moreover, in the

present context, it is not necessary that all basic variables have nonnega-

tive values. We shall heavily use the terms driving variable and blocking

variable which were introduced in Section 2.3, but the latter will take on

a slightly more general meaning. The principal pivoting methods of this

section and the next generate sequences of major cycles; the purpose of

each major cycle is to make a particular negative basic variable increase

to zero. The latter is called the distinguished variable of that major cycle.

This distinguished variable can also block the driving variable by reaching

zero before any other specified basic variables do. By "specified" we mean

that—in some instances—only a subset of the basic variables are taken into

consideration when the minimum ratio test is performed. These are called

the eligible blocking variables. Basic variables that are not in the cur-

rent set of eligible blocking variables are not "eligible" to block the driving

variable, even if they become negative as the driving variable increases.

The symmetric positive semi-definite case

As noted in Section 1.2, a linear complementarity problem (q, M) in

which M is symmetric and positive semi-definite is completely equivalent

to the quadratic program

minimize f (z) = qTz + 2zTMz	
(15)

subject to	 z > 0.

In fact, the KKT conditions of (15) are just the LCP (q, M). The two

problems have exactly the same solutions.

Instances of such problems were also mentioned in Section 1.2. To these

can be added the "dualized" form of a strictly convex quadratic program

minimize cTx + 2 xTQx	
(16)

subject to	 Ax > b
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in which Q E Rm'<m is symmetric and positive definite and A E R < ". By

eliminating the vector x from the KKT conditions of (16), one obtains an

LCP (q, M) with data

q = —b — AQ —lc and M = AQ -1AT .

The variables in this LCP are the Lagrange multipliers (dual variables)

associated with the quadratic program (16). Once the LCP is solved, the

original x-variables of (16) can be reconstructed from the equation through

which they were eliminated, namely

x = Q—i (ATz — c).

For this reason, algorithms for solving these special LCPs have been called

"dual methods" for solving (16).

Our present aim is to exhibit a principal pivoting method for LCPs

of the symmetric positive semi-definite type. The one below is actually

a specialization of a quadratic programming algorithm presented in the

language of linear complementarity. Specifically, it is a simple principal

pivoting method somewhat like Algorithm 4.2.2, yet different from it in

three important respects. First, the vector q is more general. Second the

pivot locations are determined through a minimum ratio test that preserves

the nonnegativity of basic z-variables. (Algorithm 4.2.2 uses no minimum

ratio test.) Third (and quite interestingly), the algorithm cannot cycle,

even when the given problem is degenerate! The procedure makes strong

use of two important results: the invariance of positive semi-definiteness

(see 4.1.5) and of bisymmetry (see Exercise 4.11.2) under principal piv-

oting.

4.2.11 Algorithm. (Dantzig; van de Panne and Whinston)

Step 0. Initialization. Input (q, M) with M being symmetric and pos-

itive semi-definite. Set (q°, M°) = (q, M), v = 0, a = 0, and

Step 1. Test for termination. Breaking ties arbitrarily, choose

rE arg min {q? :iE/0}.
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Step IA. If q,; > 0, stop. A solution of (q, M) is given by z

where za = qä, zp = 0.

Step 1B. If qr < 0, choose wT as the distinguished variable

and zr as the driving variable.

Step 1C. If mrr = 0 and m. > 0 for all i E cti stop. There is

no solution.

Step 2. Determination of the blocking variable. The eligible blocking

variables are the distinguished variable and the basic z-variables.

Use the minimum ratio test to define the index s of a blocking

variable. (Break ties arbitrarily, but if wr is involved in a tie,

choose it as the blocking variable.)

Step 3. Pivoting. The driving variable zr is blocked by w'.

Pivot (ws, zr), getting (q"+ 1 M'). Let

v+1	 v	 v+lws = zs zs = wsv

w v+i = w? z2 +1 = z2 i S.

If s = r, transfer r from ß to cti. Go to Step 1 with v	 v + 1.

If s r, transfer s from cti to ß. Go to Step 2 with v	 v + 1.

In justifying this algorithm, we find it convenient to use the schema

1	 z

0	 0	 qT	 (17)

w q M

The first row of the schema gives a way of evaluating the objective function.

Indeed, it is a simple matter to demonstrate that for any vector z satisfying

zT(q + Mz) = 0,	 (18)

the objective function of (15) satisfies

f(z) = 2gTz.	 (19)
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Thus, in the the first row of schema (17), we have 8 = qTz = 2f (z), provided

z satisfies (18).

Up to a principal rearrangement, each schema produced by the algo-

rithm has the bisymmetric form

1	 wcv	 zp

—qa Maa qa qa M/ q0	 qa M/ MaQ

— Maa qqa Mac —Maa Maß

qß — M4c, Ma,, q. MßaMaa M0Q — Mßa Maa Maß

The number in the upper left-hand corner of the schema (20) has a special

significance. At the basic solution corresponding to this schema, it equals

twice the value of the function f (z) as defined in (15). The argument for the

finite termination of this algorithm is based (in part) on how this number

changes in the course of the procedure; note, however, that the algorithm

itself makes no direct use of the information provided by the first row in

any of these schemas.

The condition described in Step 1A is clearly the desired outcome; if it

holds, the vector z so defined would be a solution of the problem. If that

condition does not hold, then the distinguished basic variable w,r and the

(complementary) driving variable z; are specified. The reason for the kind

of termination indicated in Step 1C is related to the bisymmetry property

of the schema. The condition mr = 0 implies mri = 0 for all i E ß, and

the condition m ,. > 0 for all i E cti implies mri < 0 for all i E cti. Thus,

the rth equation of the transformed system has no nonnegative solution.

If the preceding steps do not force termination, the driving variable must

be blocked by some eligible basic variable: either the distinguished variable

wr increasing to zero, or a basic z-variable, decreasing to zero (or, in the

degenerate case, already at the value zero, but a decreasing function of

z/). The principal pivot (ws  zs) called for in Step 3 is possible. If s = r,

the diagonal entry m;,r is positive. If s r, then s e a, and since M a

is positive definite, its diagonal entries are positive. In either case, the

principal pivot can be executed, thereby leading to m/'  > 0. The transfer

8

za

wp

(20)
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of the blocking variable's index means that a will be the set of indices of

the basic z-variables at iteration v + 1.

Step 1 marks the beginning of a new major cycle. There can be only

finitely many minor cycles (returns to Step 2) within a major cycle because

each of them reduces the cardinality of a. Within a minor cycle, the value

of 0 is given by

0= SIC, qa+q..,z,". (21)

and is easily seen to be nonincreasing. Indeed, since q,r < 0, it strictly

decreases whenever zr strictly increases. Only basic z-variables whose value

is zero can prevent zr from increasing strictly. When the major cycle ends,

and the algorithm returns to Step 1, there is a strict decrease in the value

of 0. To complete the argument for finite termination, we observe that at

every iteration, there is a complementary basis, and there are only finitely

many complementary bases. Each major iteration is finite in length, and

no complementary basis can be repeated because of the (eventual) strict

decrease property. Hence Algorithm 4.2.11 processes (q, M) after finitely

many steps.

4.3 General Principal Pivoting Methods

A given linear complementarity problem and its principal pivotal trans-

forms are all equivalent linear complementarity problems in the sense that

from a solution of one such transformed problem, a solution of the original

can be constructed. A linear complementarity problem (q, M) in which

q > 0 is certainly easy to solve. One immediately obtains a solution by

setting the nonbasic variables z equal to zero. Pivoting methods for the

LCP are motivated by the idea that although a given LCP (q, M) might not

have q > 0, the problem might still possess a principal pivotal transform

that does satisfy this condition.

It is tempting to believe that if the LCP (q, M) is solvable, then it

must possess a principal pivotal transform (q', M') in which q' > 0. Un-

fortunately, this is not true as shown by any problem of the form (q, M)

where

q ^ I 0 ^ and *f	
] .	 (1)
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Such linear complementarity problems have no nontrivial principal pivotal

transforms at all. (Geometrically speaking, there exist problems (q, M)
such that q belongs to K(M) but not to any full complementary cone

relative to M.) Nevertheless, many linear complementarity problems have

trivially solvable principal pivotal transforms. In fact, it could be said that

most LCPs encountered in practice—and certainly the ones treated in this

section do have this property.

The algorithms presented in this section involve sequences of principal

pivoting operations. The algorithms are "general" in the sense that they do

not exclusively involve "simple" principal pivots. They are definitely not

general with respect to the matrix class to which M must belong. In the

so-called "symmetric version" of the principal pivoting method (PPM), all

the pivot blocks are either 1 x 1 or 2 x 2 principal submatrices of the matrix

used in defining the problem. The "asymmetric" variant of the algorithm

can (but need not) execute block principal pivots of larger order. The sense

in which a particular version of the PPM is symmetric or asymmetric has

to do with the index sets of the basic and nonbasic variables rather than

with a symmetry property of the matrix M; in fact, these methods require

no such symmetry assumption on M.

The principal pivoting method—symmetric version

The symmetric version of the PPM uses principal pivotal transforma-

tions (of order 1 or 2) in order to achieve one of two possible terminal sign

configurations in the tableau (4.2.4). The first is a nonnegative "constant

column", that is, qi > 0 for all i = 1, ... , n. The other is a row of the form

qr <0 and mr^ <0 j= 1,...,n. (2)

The first sign configuration signals the discovery of a solution to (q, M).
The second sign configuration reveals that the problem has no feasible

solution. The PPM (as originally conceived) does not actually check for

this condition. Indeed, it cannot occur when M is a P-matrix. When M
is positive semi-definite, it can be inferred from the condition

qr <0, mTr =0 and mr >0 Vi r,	 (3)

which is checked in the "minimum ratio test." A key observation is that
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the same inference can be made when M is (row) sufficient. (See 3.5.3 and

4.1.8.)

The PPM consists of a sequence of major cycles, each of which be-

gins with the selection of a distinguished variable whose value is currently

negative. That variable remains the one and only distinguished variable

throughout the major cycle. The object during the major cycle is to make

the value of the distinguished variable increase to zero, if possible. Each

iteration involves the increase of a nonbasic variable in an effort to drive

the distinguished variable up to zero. This increasing nonbasic variable is

called the driving variable. According to the rules of the method, all vari-

ables whose values are currently nonnegative must remain so. The initial

trial solution is (w° , z° ) = (q° , 0), hence at least n of the variables must

be nonnegative. For those variables w° whose initial value is q° < 0, we

impose a negative lower bound A where

A < min {q°}.
1<<n

ThisThis artifice is used in all cases except that of M E P where it is not needed;

although the artifice is not needed in the P-matrix case, it is not mathe-

matically incorrect to include it in the statement of the algorithm. Then,

in addition to requiring all variables with currently nonnegative values to

remain so, the PPM also demands that the variables currently having a

negative value remain at least as large as A. To accommodate this feature,

we broaden the notion of basic solution by allowing the nonbasic variables

to have the value 0 or A. We also say that a solution of the system (4.2.3)
is nondegenerate if at most it of its 2n variables have the value 0 or A.

Otherwise, the solution is called degenerate. In this section we assume

the nondegeneracy of all the basic solutions arising in the execution of the

methods under discussion. Procedures for handling degenerate problems

will be taken up in Section 4.9.

For greater clarity, we introduce the following notations. To distinguish

between the names of variables and their values, we use bars over the generic

variable names w? and zz to indicate definite values of these variables. At

the beginning of a major cycle in which negative lower bounds A are in use,
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we will have z = 0 or z? =.\ i = 1,... , n. Next, we use the notation

W (z") qV + M v z".

The definition of the mapping W" is identical to that of w"; it merely

emphasizes the argument z".

4.3.1 Example. A simple example will help to motivate the preceding

ideas, especially the need for the negative lower bounds, A. Consider the

LCP of order 2 in which

	—3	 0 2
q= 	and M= 	.

	—2	 —1 1

The matrix M is sufficient, i.e., row and column sufficient. At the outset

we have (w° , z°) _ (-3, —2, 0, 0). Suppose we choose w° as the initial dis-

tinguished variable. The PPM then calls for z° to be used as the initial

driving variable. If only nonnegative variables are required to remain non-

negative, there is no limit to the allowable increase of the driving variable.

Under ordinary circumstances, such an outcome would indicate that the

problem is unsolvable (at least by this method). But notice that this LCP

has the solution (w, z) = (1, 0, 0, 2). Hence some sort of modification is

needed. Imposing a lower bound on the negative basic variables leads to

blocking unless (3) holds.

If, at the outset of a major cycle, the selected distinguished variable

is basic, the first driving variable is the complement of the distinguished

variable. Thus, if w,r is the distinguished variable for the current major

cycle, then z; is the first driving variable. The distinguished variable need

not be a basic variable, however. With the broader definition of basic

solution (given above), the current solution (wv, z") may have zr = .\ < 0
at the beginning of a major cycle. In such circumstances, z,; can be the

distinguished variable as well as the driving variable. In this event, the

increase of the driving variable will always be blocked, either when a basic

variable reaches its (current) lower bound (0 or )) or when zr reaches zero

(in which case the major cycle ends).

The following is a formal statement of this algorithm.
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4.3.2 Algorithm. (Symmetric PPM, Nondegenerate Case)

Step 0. Initialization. Input (q, M) with M a row sufficient matrix.

Define (q° , M°) = (q, M) and (w° , z°) = (q° , 0). Let \ be any

number less than mine {q°}. Set v = 0.

Step 1. Determine the distinguished variable. If q' > 0, stop; a solu-

tion can be recovered from the vector (w 1 z"+ 1 ) := (q,
Otherwise, determine an index r such that either z,r = A (in

which case zr is both the distinguished variable and the driving

variable) or (if z" = 0) an index r such that wr < 0 (in which

case w,r is the distinguished variable, and its complement zr is
the driving variable).

Step 2. Determine the blocking variable (if any). With zr as the driving

variable and all other nonbasic variables fixed at their current

values, let (T be the largest value of zT > z; satisfying the

following conditions:

(i) the distinguished variable remains nonpositive;

(ii) all nondistinguished basic variables remain greater than

or equal to their current lower bounds.

If	 = +oc, stop. No feasible solution exists.

If r = 0, no pivoting is necessary. Let zr+ l = 0, z +' = z2 for

all i	 r, and let

wv+l = Wv+1(zv+l) 
= W V (zv+l )

Return to Step 1 with v F– v + 1.

If ç r < +oo, let t be the index of the blocking basic variable.

Step 3. Pivoting. If nr > 0, perform the principal pivot (wt, zt ), mak-

ing wt nonbasic at its lower bound value.

If t = r, return to Step 1 with v — v + 1.
If t r, return to Step 2 with v	 v + 1.
If mtt = 0, perform the principal pivot {(w',  zT) , (w, z')}.
Return to Step 2 with v F– v + 1 and r — t.
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Discussion

Here we discuss what the algorithm does and why it actually processes

any (nondegenerate) LCP (q, M) with a row sufficient matrix M.
All major cycles of the PPM begin at Step 1 where the algorithm checks

whether it is possible to terminate with a solution. This will be the case

if (wv, zv) > (0, 0) since (wv, z") must then be a nonnegative solution of

(4.2.3) with z" = 0. As illustrated in the example below, it can happen

that the constant column q" becomes nonnegative before z" does. In such

a case, resetting z' to zero yields a solution. If neither of these forms of

termination occurs, there is an index r such that z; < 0 or wr < 0 and it

becomes the distinguished variable for the current major cycle.

For a linear complementarity problem (q, M) of order n, there are 2n
variables in equation (4.2.2). The number of negative components in a

solution of (4.2.2) is called its infeasibility count. The conditions imposed

in Step 2 of the symmetric PPM prevent this number from increasing.

Furthermore, with each return to Step 1, the algorithm produces a basic

solution having a smaller infeasibility count than its predecessor, hence

there can be at most finitely many returns to Step 1. The proof of finiteness

therefore boils down to showing that each major cycle consists of at most

a finite number of steps.

Termination can also occur in Step 2. In this event, ç r = -boo. For this

to happen, the distinguished variable must be w; it must also be true that

mTr =0 and m,. >0 Vi r.

From 3.5.4(c), it follows that m; j <0 j = 1,... , n. Now, since 	<0 for

all j and
n

wr = qr + E mrj <0,
j=1

it follows that qr < 0, so that the r-th equation

n

wv_ v	 mvzv
r — qr+	 rj ^

j=1

has no nonnegative solution. Another outcome in Step 2 is that cT = 0 in

which case (by nondegeneracy) the distinguished variable and the driving
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variable must have been z,r which increased to zero. This brings the major

cycle to a close without necessitating a pivot. The remaining possibility

0 (r < +oo means that some basic variable wt blocked the increase of

zr

The various alternatives that arise in the latter situation are addressed

in Step 3. If mtt > 0, the indicated principal pivot is executable. If t = r,
the distinguished variable must have increased to 0. This brings about a

return to Step 1 and a reduction of the infeasibility count by at least one.

If t r, the principal pivot is made and the increase of the driving variable

continues in accordance with the rules of Step 2. If mtt = 0, then t r.
The fact that wt blocked z; means mt,. < 0. The principal pivot of order

2 is executable because the row sufficiency of

v vMrr mrt

mt^ met

and the negativity of mtr implies that mTt > 0. The values of the variables

immediately after the pivot are those they had when blocking occurred. At

the return to Step 2, the variable w,; becomes zt +1 ; a principal rearrange-

ment to restore the natural order of subscripts would be possible.

As noted above, the argument that the algorithm will process any non-

degenerate LCP with a row sufficient matrix comes down to showing that

there can be at most finitely many returns to Step 2. But this is clear

from the fact that there are only finitely many principal transformations

of the system and finitely many ways to evaluate the nonbasic variables

z' (i r). As for zr, its value and that of its complement wT increase

monotonically and their sum increases strictly throughout the major cycle.

Hence the definition of c; and ^,r+" (i > 0) make it impossible to have

z? = zZ ' (i = 1, ... , n) and z? = z? +" (i r) as would have to be the

case with infinitely many steps within a major cycle.

It should also be noted that within a major cycle (whose purpose is to

make the distinguished variable wr or zr nonnegative) a basic variable wi
with w? < 0 can serendipitously become nonnegative. When this occurs,

its lower bound (for all future iterations) becomes zero. That is, once a

variable becomes nonnegative, it stays nonnegative.
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4.3.3 Example. Consider the LCP (q, M) where

	—3	 0 —1	 2

q=	 6	 and M=	 2 0 —2

	

—1	 —1	 1	 0

The PPM applies to this problem because the matrix M is sufficient (as

shown in 3.12.16). It is easy to verify that (q, M) has the solution (w; z) =
(2,0,0; 0, 1, 3). The discussion below illustrates how this solution can be

obtained by the symmetric version of the PPM. For simplicity, the super-

scripts (iteration counters) and bars (denoting fixed values of variables)

have been omitted.

For this choice of data, the problem (q, M) has the tabular form

	1 	 zl 	Z2	 Z3

	w 1 —3	 0 —1	 2 —3

	W2	 6	 2	 0 —2	 6

	W 3 —1 —1	 1	 0 —1

	

1	 0	 0	 0

The number A = —4 will serve as the negative lower bound for the initial

negative basic variables w l and W3 . Choose w l as the distinguished vari-

able and its complement z l as the driving variable. The blocking variable

is W3 which decreases and reaches its lower bound —4 when z l increases

to 3. Since the corresponding diagonal entry m 33 equals 0, it is necessary

to perform a principal pivot of order 2: (w3i z l ) and (w 1 , z3 ). The new

tableau is

1	 W3	 Z2	 wl

z 3 3 0	 1	 12 2	 2

W2 1 —2	 1	 —1 12

zl —1 —1	 1	 0 3

1	 —4	 0	 —3

The numbers below the tableau are the current values of the nonbasic vari-

ables whereas the numbers to the right of the tableau are the corresponding
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values of the basic variables. At this stage the distinguished variable w 1 is

nonbasic and can be increased directly as the driving variable. In this case,

the driving variable blocks itself. Thus, the first major cycle ends with the

tableau

	

1	 W3 Z2 W1

	31 	 1	 3
Z3	 2	 U	 2	 2	 2

W2 	1 —2 1 —1 9

	z l —1 —1	 1	 0 3

	

1 —4 0	 0

For the next major cycle, the only possible distinguished variable is w3

which is nonbasic at value —4. This becomes the driving variable and is

blocked when it reaches —1 and zl decreases to 0. Once again a principal

pivot of order 2 is needed. This time it is (zl, w3) and (z3, wl) which leads

to

	1 	 zl	 Z2	 Z3

	W1 —3	 0 —1	 2
	

0

W2
	

6	 2	 0 —2
	

3

	W3 —1 —1	 1	 0 —1

	1 	 0	 0	 2
Here the driving variable is z3 which starts from the value 2 ; it is blocked

when it reaches 3 and w2 decreases to 0. This time the algorithm performs

a different principal pivot of order 2: (w 2i z3 ) and (w3, z2 ). This yields

W 1 3

z3 3

Z2 0

1 0 —1 0

1 zl W3 W2

2 1 —1 —1

3 1	 0 —2
1	 1	 1	 0

The distinguished variable is still w 3 whose current value is —1. If used

as the driving variable, it will block itself and a solution will be obtained.
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Another option is to observe that the "constant column" is positive. In

such a case the negative basic variable(s) can be set equal to zero. Either

way, the solution found is (w; z) = (2, 0, 0; 0, 1, 3).

4.3.4 Remark. The device of imposing artificial negative lower bounds A

on negative variables in the PPM is not needed when the matrix M E P.
In such instances, the algorithm executes only simple principal pivots since

rn is always positive. In the initial major cycle, the distinguished variable

is basic and the driving variable cannot be unblocked because the distin-

guished variable is bounded above by zero and (in the nondegenerate case)

will always increase strictly as the driving variable increases. Subsequent

major cycles enjoy the same property.

The asymmetric version of the PPM

The so-called asymmetric version of the PPM also consists of a sequence

of major cycles, each of which aims to make a distinguished variable be-

come zero. But, instead of executing only principal pivots of order 1 or 2 as

in the symmetric version, each major cycle involves a sequence of "simple

pivots" whose effect may be a principal pivot of larger order. The rules

governing blocking are the same as those in the symmetric PPM. (Nonneg-

ative variables are bounded below by 0, and negative variables are bounded

below by A. A negative driving variable is bounded above by 0.) The main

difference between the two versions of the algorithm is that the asymmetric

one entails pivotal exchanges between the driving variable and the blocking

variable; then it takes the new driving variable to be the complement of the

blocking variable. We are assuming the problem (q, M) is nondegenerate

and the matrix M is row sufficient. Under these conditions, the distin-

guished variable and the driving variable increase monotonically and their

sum increases strictly.

4.3.5 Algorithm. (Asymmetric PPM, Nondegenerate Case)

Step 0. Initialization. Input (q, M) with M a row sufficient matrix.

Define (q° , M°) = (q, M) and (w° , z °) = ( q° , 0). Let A be any

number less than mini {q°}. Set v = 0.

Step 1. Determine the distinguished variable. If qv _> 0, stop; a solution

can be recovered from the vector (w"+1 zv+l) :_ (q', 0). Other-
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wise, determine either a nonbasic variable whose current value is

A (in which case this variable is both the distinguished variable

and the driving variable) or (if zv = 0) a basic variable whose

current value is negative (in which case it is the distinguished

variable, and its complement is the driving variable).

Step 2. Determine the blocking variable (if any). Let c' denote the

largest value of the driving variable such that when all other

nonbasic variables are fixed at their current values,

(i) the distinguished variable remains nonpositive;

(ii) all basic variables remain greater than or equal to their

current lower bounds.

If	 _ +oc, stop. No feasible solution exists.

If " = 0, no pivoting is necessary. Set the value of the driving

variable to 0 and return to Step 1 with v	 v + 1.

If 0 ç" < +cc, some variable blocks the driving variable.

Step 3. Pivoting. Pivot

( blocking variable, driving variable ),

making the blocking variable nonbasic at the value it attains

when the driving variable equals (v.

If the blocking variable is the distinguished variable, return to

Step l with v — v + 1.

Otherwise, return to Step 2 with the complement of the blocking

variable as the new driving variable and v *- v + 1.

Discussion

The reader may have noticed that the primary difference between the

symmetric and asymmetric versions of the principal pivoting method oc-

curs in Step 3. A precise statement of the asymmetric PPM requires rather

elaborate notational apparatus to handle the identification of the distin-

guished, driving and blocking variables. We have deliberately chosen to

use words to express how the algorithm operates and to avoid the symbolic

complications that would otherwise be employed in stating it.
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The conditions imposed on the driving variable prevent the infeasibility

count from increasing. Returns to Step 1 are accompanied by a reduction

(by at least one) in this measure. The issue, as before, is the finiteness of

the algorithm's major cycles.

When Algorithm 4.3.5 returns to Step 2, the schema is almost comple-

mentary. It has a basic pair (the distinguished variable and its complement)

and a nonbasic pair (the last blocking variable and its complement which

is the new driving variable). Because we are dealing with row sufficient

matrices—the class of which is invariant under principal pivoting the pair
matrix has the characteristics described in the following proposition.

4.3.6 Proposition. Let A be a 2 x 2 matrix with the following properties:

(i) all < 0;

(ii) a21 <_ 0 ;

(iii) all + a21 < 0;

(iv) if all < 0, then

A l := —1---- [
	 — a12

all L a11a22 — a12a21 a21

is row sufficient;

(v) if a21 < 0, then

A2 :_  1	 all a12a21 — a11a22

a21 	1	 —a22

is row sufficient.

Then A must have the following properties:

(vi) a12 > 0 ;

(vii) a22 > 0;

(viii) a12 + a22 > 0 .

Proof. By (i)—(iii), at least one of all, a21 must be negative. Suppose

all < 0. Then because Al is row sufficient, we must have ( - 1 /all)a12 > 0
and det Al > 0. Hence a12 > 0 and
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	all )2 (—a12a21 + a12a21 — a11a22)	
(all

1) a22 > 0

so that a22 > 0. If a12 = a22 = 0, then

1 01
A 1 =—

a11
0 a21

It is easily shown that a 2 x 2 matrix with one zero column and one nonzero

off-diagonal element cannot be row sufficient. This contradiction proves

a12+a22 > 0. The case where a2 1 <0 is analogous to that of all < 0, hence

we omit the argument and declare that, in either case, a12 + a22 > 0. ❑

It follows from this proposition that the members of the basic pair are

nondecreasing functions of the driving variable. Moreover, in the present

nondegenerate case, the driving variable can be increased, and at least one

of the variables in the basic pair strictly increases as this happens. The

argument for finite termination of the major cycle now follows in the usual

way: there are only finitely many almost complementary basic solutions

and none of them can be repeated because of the aforementioned strict

increase property.

4.3.7 Example. Let us consider what happens when we use Algorithm

4.3.5 to solve the LCP given in Example 4.3.3. Again we take A = —4 as

the negative lower bound on w1 and w3. Essentially the same preliminary

remarks about M and the superscripts apply here too. Recall that the

schema is

1 z1 Z2 Z3

w 1 —3 0 —1 2 —3

w2 6 2 0 —2 6

W3 —1 1 1 0 —1

1	 0	 0	 0

We may select either w l or w3 as the first distinguished variable. Let us

arbitrarily take w l for this purpose. Its complement, z l , will be the first

 



264	 4 PIVOTING METHODS

driving variable. It turns out that the first blocking variable is w3. After

the pivot (w3 i zl), we obtain the schema

W1 —3

W2 12

zl 3

1 —4 0 0

Notice that the values of the basic and nonbasic variables are recorded

below and to the right of the schema. The variable w l is still negative

and distinguished. The next driving variable is z3, the complement of the

previous blocking variable. It can be increased up to Z at which point wl

rises to 0. The pivot (w1, z3) yields the complementary schema

Z3 3
2

W2 9

zl 3

1 —4 0 0

Hereafter, the lower bound on wl will be 0, rather than A.

The first major cycle is complete, but since the termination criteria

are not satisfied, it is time to choose a new distinguished variable. In

accordance with the statement of the algorithm, we select the nonbasic

variable w3i it is, in fact, the only choice for this schema. Here we have

the situation where w3 is the driving variable as well as the distinguished

variable. Its increase is blocked by z l which decreases when w3 increases

(from —4) to —1. The corresponding pivot (z1, w3) leads to the schema

1	 zl 	Z2	 W1

z3
3 i	 1	 1 3
2 2	 2 2

W2 3 2	 —1	 —1 3

W3 —1 —1	 1	 0 —1

1	 0	 0	 0

1	 W3 Z2	 Z3

—3	 0 —1	 2

4 —2	 2	 —2

—1 —1	 1	 0

1	 W3 Z2 w1

3	 0	 1	 1
2	 2	 2

1 —2 1 —1

—1 —1 1	 0
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The new driving variable is wl, the complement of the blocking variable.

In this instance, the new blocking variable is w 2 which decreases to 0 when

w l reaches 3. This time the pivot is (w2, wl). The resulting schema is

1	 zl	 Z2	 W2

Z3 	3	 1	 0	 —2	 3
w1	 3	 2	 —1	 —1	 3

	W 3 —1 —1	 1	 0 —1

1	 0	 0	 0

The distinguished variable is still w 3 , and the driving variable is now z2 .

The minimum ratio test shows that w 3 rises to 0 before the positive variable

w l decreases to 0. The next pivot is (w3 , z2 ), and the major cycle ends with

1 zl	 W3	 W2

z3 3 1	 0	 — 2 3

w l 2 1	 —1	 —1 2

Z2 1 1	 1	 0 1

1	 0	 0	 0

This complementary schema reveals that we have found a solution of the

given LCP.

4.4 Lemke's Method

In this section we turn to the complementary pivoting schemes due

to C.E. Lemke. In some respects these algorithms resemble the principal

pivoting method inasmuch as they use pivotal exchanges and a choice of

driving variable like that of the asymmetric PPM. One advantage of these

complementary pivoting schemes is that they are very easy to state. They

are also more versatile than the PPM as they do not rely on the invariance

of matrix classes under principal pivoting. Over the years, these algorithms

have stimulated a considerable amount of research into the classes of ma-

trices M for which they can process the LCP (q, M).
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Lemke's complementary pivoting schemes were preceded by the closely

related Lemke-Howson algorithm for the bimatrix game problem as formu-

lated in Section 1.2. We shall treat this special class of linear complemen-

tarity problems later in this section.

Scheme I

The stage for the algorithm we are about to discuss has already been

set in Section 3.7 where an augmented LCP based upon a given LCP is

formulated. In fact, this algorithm is mentioned there as one way of proving

the existence of a solution to the augmented problem (3.7.2). For the

sake of notational uniformity, however, we take the liberty of principally

rearranging the system and renaming three of its ingredients. Thus, for a

given LCP (q, M) we now write the augmented LCP as (q, M) where

qo	 r 0 —d T

	q= q I 
and M= I d M	(1)

In this representation, qo > 0 is a sufficiently large constant.' The aug-

mented LCP then takes the form

wo =go+0•zo — d Tz>0, zo>0, zowo =0

w = q +dzo+Mz>0,	 z >0, zTw0.	 (2)

The (user-supplied) vector d is often called the covering vector. Recall that

d > 0. Accordingly, there exists a smallest scalar zo such that

	w = q +dzo >0for all zo>zo.	 (3)

In fact,

zo = max{— q2 /di }.	 (4)
i

Under the reasonable2 assumption that qj < 0 for some i, it follows that zo

will be positive. A solution of (q, M) in which zo = 0 yields a solution of

the original problem (q, M). Lemke's complementary pivoting algorithm

known as "Scheme I" attempts to find such a solution.

'In (3.7.2), the symbols used for qo, wo and z0, respectively, are )‚o, and 0.
2 In the standard case where only one solution of the LCP is to be found, an LCP

(q, M) with q > 0 is trivial in the sense that z = 0 is an obvious solution and nothing

more need be done.
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Throughout this section, it will be assumed in our discussion of Lemke's

method that all basic solutions of the system of equations

wo	 qo	 0 —d 	 zo
=	 +	 (5)

w	 q	 d M	 z

are nondegenerate: With suitable precautions (discussed in Section 4.9),

this assumption can be relaxed.

4.4.1 Algorithm. (Lemke, Scheme I — Augmented Problem)

Step 0. Initialization. Input (q, M). If q > 0, then stop: z = 0 solves

(q, M). Otherwise, let zo be the smallest value of the (artifi-

cial) variable zo for which w = q + dzo > 0. Let wr denote

the (unique, by the nondegeneracy assumption) component of

w that equals zero when zo = zo. Pivot (w,., zo). (The comple-

ments wo and zo are now basic whereas w,, and zr are nonbasic.)

Choose the driving variable to be the complement of w,., namely

Z.

Step 1. Determination of the blocking variable. Use the minimum ratio

test to determine the basic variable that blocks the increase of

the driving variable. If wo is the blocking variable, then stop.

(Interpret this outcome, if possible.)

Step 2. Pivoting. The driving variable is blocked.

• If zo is the blocking variable, then pivot

( zo, driving variable )

and stop. A solution to (q, M) is at hand.

• If some other variable blocks the driving variable, then

pivot

( blocking variable, driving variable ).

Return to Step 1 using the complement of the most recent

blocking variable as the new driving variable.
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In Algorithm 4.4.1, the phrasing of Steps 1 and 2 begs an important

question: the existence of the blocking variable. The ability to execute

the algorithm depends critically on the fact that after the first pivot step

(wr , z0), the column of the driving variable always contains at least one

negative entry. This assertion rests on the following lemma.

4.4.2 Lemma. Let M denote a square matrix of the form

aT S 1
M =I B cJ

in which a < 0, 6 < 0, and B is nonsingular. Then the pivotal transform

of M obtained by using B as the pivot block has at least one negative entry

in its last column.

Proof. The pivotal transform is the matrix

aTB -1 6 — aTB —l c

B -1 	—B—lc

Its last column consists of the scalar S — aTB —l c and the vector —B —l c.
If —B — lc > 0, then S — aTB —l c < 0 by virtue of the sign assumptions on

a and 6. ❑

To apply this lemma to the issue under discussion, we think of M as a

submatrix of M. The submatrix B stands for the cumulative pivot block

at any stage of the process. The positioning of B as described in the lemma

is only for ease of discussion; moreover, it can be moved there by suitable

rearrangement of the rows and columns of M. The first column of M is to

be regarded as a subvector of the first column of M. This is appropriate

since zo and its column are involved in the first pivot step. The first row of

M is likewise a subvector of the first. row of M. Notice that a and S derive

their sign properties from the assumption d> 0 and the definition of M.

With this interpretation, we immediately obtain the following result.

4.4.3 Theorem. In Algorithm 4.4.1, when w0 and zo are basic, the col-

umn of the driving variable contains at least one negative entry. ❑

In 3.7.4, it was noted that it is not necessary to use the vector d twice

in defining the augmented LCP. Instead, we could replace the constraint
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involving wo by one of the form w0 = qo — d Tz > 0 where c> 0. The

argument for this was made on the basis of 3.7.3, but we can see it again

as a consequence of 4.4.2.

Another interesting point can be made here. Recall that we are assum-

ing mini qi < 0. In the definition of M we used d > 0 (in the first column).

Actually, this vector plays the role of making q + dz0 > 0 for suitably large

z0. To achieve this we need only di > 0 when qi < 0. It is not necessary for

every component of d to be positive unless q < 0. To put this another way,

it is enough to choose the column vector d so as to make the n x 2 matrix

[d, q] have lexicographically nonnegative rows.

Almost complementary paths

Lemke's method (Scheme I) is initialized in a particular way. Making

zo > zo and z = 0 yields a set of "feasible solutions" to the augmented

problem (q, M). These points constitute what is called the primary ray. 3

They satisfy the conditions

z0wo > 0 and ziwi=0 for all i 0.

Such vectors (zo, z) are said to be almost complementary with respect to

(5). 4 Thus, the primary ray consists of almost complementary feasible

points for (‚1[).
The basic solutions generated by Scheme I correspond to almost com-

plementary extreme points of FEA(q, M). At each such basic solution

generated by 4.4.1, there is a nonbasic pair wT , zr.. One of these variables

just became nonbasic, and the other is the next driving variable. Notice

that even when this driving variable is positive, the corresponding feasible

vector will be almost complementary because for all i 0, at least one of

the two complementary variables z2 , wi will be nonbasic at value 0. (The

same would be true if the other member of the nonbasic pair were made pos-

itive.) The point sets generated by the algorithm between extreme points

are almost complementary edges of FEA(q, M).

Altogether, Algorithm 4.4.1 produces an almost complementary path

of feasible solutions to (q, M). In the favorable outcome where the algo-

3 Strictly speaking, these points form a halfline rather than a ray.

4 In general, if f : RN --> RN , the vector x E RN is almost complementary with

respect to the equation y = f(x) if there exists an index k such that xjyj = 0 for all i 0 k.
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rithm terminates with z0 as the blocking variable and hence at value 0,

the solution at hand is actually complementary, and the final pivot step

exhibits the values of the basic variables. In particular, the zi that are

nonbasic in the final tableau have value 0; the other zi can be read off from

the current update of the system (2).

Finiteness of the algorithm

It remains to be shown that Algorithm 4.4.1 must terminate after

finitely many steps.

4.4.4 Theorem. When applied to a nondegenerate instance of the aug-

mented problem (q, M), Algorithm 4.4.1 terminates in finitely many steps.

Proof. By 4.4.3, a suitable pivot entry is available at every iteration. The

nondegeneracy assumption implies that the algorithm generates a unique

almost complementary path. The almost complementary extreme points of

FEA(q, M) that occur along this path correspond to almost complementary

nonnegative basic solutions of (2). There are at most two almost comple-

mentary edges of the path incident to an almost complementary extreme

point of FEA(q, M). These edges can be swept out by making one of the

members of the nonbasic pair increase from the value 0. The nondegener-

acy assumption guarantees that all nonbasic variables can be made positive

before a basic variable decreases to zero. The almost complementary path

cannot return to a previously encountered almost complementary extreme

point, for otherwise, there would have to be at least three almost comple-

mentary edges incident to it. For a given problem, there are only finitely

many bases of any kind and a fortiori only finitely many almost comple-

mentary bases. Hence the algorithm must terminate in a finite number of

steps. ❑

A streamlined version of Scheme I

Choosing a suitable value of q0 may seem a bit mysterious. When it

actually comes down to computing, it is disturbing to be instructed to

make qo sufficiently large. Fortunately, it is possible to dispense with the

constraint w0 = q0 — d T z > 0 and hence with the question of selecting this

constant. The more practical version of the augmented problem is defined
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as

w = q + dzo + Mz > 0, zo > O, z > O, z Tw = O.	 (6)

We denote this system by (q, d, M). A solution of (q, d, M) with zo = 0

furnishes a solution to the original LCP (q, M).

The version of Lemke's Scheme I for (q, d, M) is a simple variant of

the one for (q, M). But, without the constraint w0 > 0 that is used in

(q, NI), we have to allow for the possibility that the column of a driving

variable may be nonnegative and hence that the variable may be unblocked.

Such a situation corresponds to the case where q 0 is large and wo is the

blocking variable in Algorithm 4.4.1 for the full augmented problem. In

the event that no blocking variable is found when a driving variable is

increased, a secondary ray is generated. A secondary ray is also an almost

complementary edge of FEA(q, d, M), but it is necessarily unbounded.

The streamlined version of Lemke's Scheme I runs as follows.

4.4.5 Algorithm. (Lemke, Scheme I)

Step 0. Initialization. Input (q, d, M). If q > 0, then stop: z = 0 solves

(q, M). Otherwise, let zo be the smallest value of the (artifi-

cial) variable z0 for which w = q + dz0 > 0. Let w, denote

the (unique, by the nondegeneracy assumption) component of

w that equals zero when z0 = zo . Pivot (w,-, zo). (After this

pivot, the complementary variables wr and Zr are both nonba-

sic.) Choose the driving variable to be the complement of w,.,

namely Zr .

Step 1. Determination of the blocking variable (if any). If the column

of the driving variable has at least one negative entry, use the

minimum ratio test to determine the basic variable that blocks

the increase of the driving variable. If the driving variable is

unblocked, then stop. (Interpret this outcome, if possible.)

Step 2. Pivoting. The driving variable is blocked.

• If z0 blocks the driving variable, then pivot

( zo, driving variable)

and stop. A solution to (q, M) is at hand.

 



272	 4 PIVOTING METHODS

• If some other variable blocks the driving variable, then

pivot

(blocking  variable, driving variable ).

Return to Step 1 using the complement of the most recent

blocking variable as the new driving variable.

4.4.6 Remarks. (a) The n-vector e whose components are all 1 is often

used as the default covering vector. Other choices are possible, however.

The choice of the covering vector can drastically affect the outcome of

the procedure. This point is illustrated in Exercise 4.11.13 where we

consider a Q-matrix and match it with different vectors q and d to form

systems (q, d, M) for solution by 4.4.5. The results of the computation

differ considerably. A related discussion on the choice of the covering vector

is given in Section 4.8. See also 4.12.14.

(b) After the initial pivot which makes the artificial variable zo basic,

there is one (and only one) complementary pair of nonbasic variables, ini-

tially, wr and Zr are such a pair. In general, the nonbasic complementary

variables make up the non basic pair.

(c) After the initial increase of zo to the value zo, all the basic variables

are nonnegative and are required to stay so. All of them are eligible to

block the driving variable. In general, after a pivot occurs, the new driving

variable is the complement of the variable that just became nonbasic.

(d) The above discussion is couched in the language of pivoting and

tableaux (schemas) — even though none of the latter have actually been

written down. This conception of the algorithm is not essential. One can

implement the algorithm in a "revised simplex method fashion." Notice

that only two columns are needed to execute the minimum ratio test in Step

1. These are the updated constant column and the updated column of the

current driving variable. Thus, if the current basis is known, these updated

columns can be determined by solving two systems of linear equations. For

more on this see Section 4.10.

(e) Interpreting the nonexistence of a blocking variable (as mentioned in

Step 1) is a major subject in itself. The essence of the idea is that there are

certain classes of matrices for which the nonexistence of a blocking variable

implies the infeasibility of the given LCP (q, M).
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4.4.7 Example. Consider the LCP that was solved in Example 4.3.3 us-

ing the symmetric PPM. In the solution given below, we use the covering

vector e = (1, 1, 1). The practical version of Lemke's Scheme I then has the

initial tableau

1	 z0	 Z1	 Z2	 Z3

w 1 —3 1	 0 —1	 2

W2 	6 1	 2	 0 —2

W3 —1	 1 —1	 1	 0

In this case, zo = 3. At this value, the blocking variable is w l , and the

pivot to be performed is (w l , zo). The resulting tableau is

1 wl	 zl	 Z2	 Z3

z0 	3	 1	 0	 1 —2

W2 9	 1	 2 1 —4

W3 2	 1 —1 2 —2

The driving variable is now z l , the complement of the preceding blocking

variable. There is only one candidate for blocking variable, namely w3 .

The pivot operation, then, is (W3 , z 1 ).

1 W1 W3 Z2 Z3

zo 	3	 1	 0	 1 —2

W2 13	 3 —2 5 —8

zl 	2	 1 —1	 2 —2

The driving variable is now z3 . This time, the minimum ratio test is needed

to determine the blocking variable. We find that

min{3/2, 13/8, 2/2} = 2/2,

hence the blocking variable is z 1 . Performing the pivot operation (z l , z3 ),

we obtain the tableau

1	 wl	 W3	 Z2	 Z1

zo 1 0 1 —1 1

W2 5 —1 2 —3 4

Z3 1 1
2

-1
2

1 - 1
2
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The new driving variable wl is blocked by w2, so the pivot operation is

(w2, W1).

zo

W1

z3

The column of the driving variable z2 contains three negative entries. Per-

forming the corresponding minimum ratio test, we find that the blocking

variable is z0 . This indicates that after perfoming the pivot step (zo,  Z2), a

solution will be recovered from the resulting tableau which is

1 W2 W3 z0 zl
z2 1 0 1 —1 1

w1 2 —1 1 3 1

z3 3— 1 0 12

Thus, we have found the solution (zl,1 , z3) _ ( 0, 1, 3).

4.4.8 Theorem. When applied to a nondegenerate instance of (q, d, M),

Algorithm 4.4.5 will terminate in finitely many steps with either a sec-

ondary ray or else a complementary feasible solution of (q, d, M) and hence

with a solution of (q, M).

Proof. This follows from 4.4.4. Termination on a secondary ray in solving

(q, d, M) with 4.4.5 is analogous to having w0 as the final blocking variable

in solving the corresponding LCP (q, NI) with 4.4.1. In particular, if 4.4.5

does not terminate with a complementary feasible solution of (q, d, M),

then it must terminate with a secondary ray. ❑

It is interesting and fruitful to explore the consequences of termination

with a secondary ray. Before doing so, however, a word of caution is in

order. We have previously suggested that lexicographic nonnegativity of

[d, q] is enough to initiate Algorithm 4.4.5. Despite this, the meaningful

interpretation of termination with a secondary ray usually requires the

strict positivity of the covering vector d. Accordingly, this assumption will

be in force for the remainder of the discussion of Scheme I.

1 W2 W3 Z2 Z1

1	 0	 1 —1	 1

5 —1	 2 —3 4
7	 _1 	1	 1	 3
2	 2	 2	 2	 2
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4.4.9 Theorem. If Algorithm 4.4.5 applied to (q, d, M) terminates with

a secondary ray, then M reverses the sign of some nonzero nonnegative

vector z, that is

zi(Mz)z < 0 i = 1,...,n.	 (7)

Proof. In general, let w = q + dzo + Mz and let (w*, z*, z*) be the

nonnegative basic solution of this equation corresponding to the almost

complementary extreme point incident to the terminal secondary ray. The

points of this ray correspond to vectors of the form

(w* + Ar, zö +Azo,z*+Az)

where A > 0 and (ii, zo, z) is a nonzero nonnegative solution of the homo-

geneous system

w = dzo + Mz.	 (8)

In particular, for all ) > 0

w* + Aw = q + d(zö + azo ) + M(z* + Az)	 (9)

and

(wz +.^w^)(zz +Azi)=0 i =l,...,n.	 (10)

We claim that z 0. Indeed, if z = 0, then zo > 0 since 0 (iv, zo, z) > 0.
This implies w = dzo > 0, and hence by (10), z* + Xz = z* = 0. But then

the secondary ray is the primary ray, which is a contradiction.

From (10), it follows that

zz wi = zi wi = zzwz = ziwi = 0 i = 1, ... , 72.	 (11)

Taking the i-th equation of (8) and multiplying it by zi we obtain

zz (dzo + Mz)^ = 0 i = 1, ... , n

which implies

zi(Mz)i < 0 i = 1,...,n.

Accordingly, M reverses the sign of the nonzero nonnegative vector z. ❑
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More existence results

Theorem 4.4.9 implies that Algorithm 4.4.5 cannot terminate with

a secondary ray when M E P, for a P-matrix never reverses the sign

of a nonzero vector. Hence for any nondegenerate linear complementarity

problem of the P-matrix type, Lemke's Scheme I will obtain its (necessarily

unique) solution. Apart from the nondegeneracy issue, this proves once

again that all P-matrices belong to the class Q.
In fact, we can easily obtain a more general result by recalling the class

E of strictly semimonotone matrices introduced in Section 3.9. We noted

there that E contains all P-matrices and all strictly copositive matrices.

4.4.10 Theorem. Algorithm 4.4.5 will solve any nondegenerate LCP

(q, M) such that M E E.

Proof. If 4.4.5 does not solve the LCP (q, M), then there must be a

nonzero nonnegative vector z whose sign is reversed by M. But M E E
and (by 3.9.11) an E-matrix cannot do such a thing. ❑

Theorem 4.4.9 has provided a necessary condition for termination on a

secondary ray to occur in Algorithm 4.4.5 applied to (q, d, M). This result

relies on no assumption of the matrix M, and we have seen two conse-

quences of the result when the matrix M possesses some special property.

In what follows, we show that many of the existence results for the LCP

(q, M) that we derived in Chapter 3 using an analytic approach can actually

be reproved constructively by means of Algorithm 4.4.5. The significance

of this constructive proof is that not only do solutions exist under the as-

sumptions of these earlier results, they can be computed by an effective

method.

Rather than repeating each individual existence conclusion proved in

Chapter 3, we single out two fairly general results, 3.8.6 and 3.9.17, and

show why Algorithm 4.4.5 cannot terminate with a secondary ray under

the usual nondegeneracy assumption of the LCP. For this purpose, we first

derive a sharper ray-termination consequence for the class of semimonotone

LCPs.

4.4.11 Theorem. Let M E Rn x n n E0. If Algorithm 4.4.5 applied to

(q, d, M) terminates with a secondary ray, then SOL(O, M) {0 }.
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Proof. We continue to use the notation in the proof of 4.4.9. As shown

in that proof, 0 z E SOL(dzo, M). As d > 0 and M is semimonotone,

Theorem 3.9.3 implies that zo = 0. Consequently, z is a nonzero solution

of the homogeneous LCP (0, M). ❑

If the matrix M is copositive, even more can be said about the vector

z obtained in 4.4.11.

4.4.12 Corollary. Let M E R'nxn be copositive. If Algorithm 4.4.5 ap-

plied to (q, d, M) terminates with a secondary ray, then the vector y =

z/^^zII satisfies: (i) 0 y E SOL(0, M), and (ii) qTy <o

Proof. It suffices to prove that y satisfies the second property (ii). Since

zo = 0 (as proved in 4.4.9), it follows from equations (9) and (10) that for

all .>0,

0 = (z* + \z) T(q + dz* + M(z* + Az)) > (z* + Az) T(q + dz*)

where the last inequality follows because of the copositivity of M. Normal-

izing by z* + )zjj and passing to the limit ) — oc, we deduce

0> yT(q +dz * )

which implies (ii) because yTdzö > 0. ❑

An immediate consequence of 4.4.12 is that if M is copositive and q is

in (SOL(q, M))*, then Algorithm 4.4.5 cannot terminate with a secondary

ray; therefore, the algorithm must terminate with a solution of the LCP

(q, M). Thus, we have proved

4.4.13 Theorem. If M is copositive and q E (SOL(0, M))*, Algorithm

4.4.5 will compute a solution of the LCP (q, M) if the problem is nonde-

generate.

4.4.14 Remark. Using an analytic argument, we have proved in Theorem

3.8.6 that the LCP (q, M) must have a solution under the assumption of

4.4.13. The derivation herein therefore provides a constructive proof to

the same result (except for the nondegeneracy assumption). We also recall

from Corollary 3.8.10 that if M is copositive-plus, then q E (SOL(0, M))*
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if and only if (q, M) is feasible. Hence for a feasible, nondegenerate LCP

(q, M) with M being copositive-plus, Algorithm 4.4.5 will always compute

a solution of this problem.

The next result shows that the conclusion of Theorem 4.4.13 remains

valid for the class of semimonotone LCP (q, M) if q and M satisfy the

assumptions of Corollary 3.9.17.

4.4.15 Theorem. Under the assumptions of Corollary 3.9.17, Algorithm

4.4.5 will compute a solution of the LCP (q, M) if the problem is nonde-

generate.

Proof. By the proof of 4.4.11, the vector z is a nonzero solution of

(0, M). Let cti = supp z, y = supp w and ß = {i : zi = wi = 0}. Then by

the complementarity relations stated in (11), it follows that wä = 0 and

zry = 0. By the assumption of 3.9.17, there exists a nonzero vector y,
satisfying

YaWa a ^ 0, Yc X, 13 > 0 , yaga ^ 0.

Since z* > 0 and zry = 0, it follows that

ya(q + Mz*) a > 0.

On the other hand, we have

0 =yw	 > yadaz*

which is impossible. Consequently, termination on a secondary ray is ruled

out and the algorithm must compute a solution of (q, M). ❑

Further generalization of the above results is possible, see Exercise

4.11.21.

Caveats

So far, our discussion of Lemke's Scheme I has been restricted to the

nondegenerate case. It is well known that this algorithm can cycle on

certain degenerate linear complementarity problems, and in Section 4.9,
we shall treat this topic in detail. At this point, though, we take up a

different complication that can occur when degeneracy is present.
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Recall that Step 1 of Algorithm 4.4.5 is concerned with the determina-

tion of the blocking variable. In a degenerate problem, it can happen that

two or more basic variables reach zero at the same time and become choices

for the blocking variable. Consider a case where zo and at least one other

basic variable are involved in a tie for blocking. In a strict implementation

of Step 2 of Algorithm 4.4.5, the artificial variable zo will be chosen as

the blocking variable, and a solution of the LCP will be at hand. If, in

this situation, some other blocking variable is chosen (instead of z0 ), the

algorithm will choose the complement of the blocking variable as the next

driving variable. It might happen that, after the pivot, the current column

of this driving variable is nonnegative, in which case the algorithm would

terminate with a ray. Such a thing can happen even when Algorithm 4.4.5

is capable of processing the problem. In such circumstances, ray termina-

tion would appear to indicate that the problem is infeasible. But as noted

above, choosing z0 as the blocking variable would have led to a solution.

This phenomenon is illustrated in the following example.

4.4.16 Example. Consider the LCP (q, M) in which

1	 1 —1
q=	 and M=

—1	 —1

The matrix M is clearly positive semi-definite, so Algorithm 4.4.5 should

be able to process the problem. Choosing the covering vector c = (1, 1),

we set up the tableau

1	 z0	 zl	 Z2

wl	 1	 1	 1 —1

W2 —1 1 —1	 1

The critical value of the artificial variable is zo = 1. The first pivot, (W2, zoi,

leads to the tableau

1 W2 zl	 Z2

w 1 2	 1 2 —2

zo	 1	 1	 1 —1
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Since w2 just became nonbasic, the driving variable is its complement,

z2. We now find that wl and zo simultaneously reach zero when Z2 = 1.
Choosing wl as the blocking variable and performing the pivot (w1, z2 ), we

obtain the tableau

1 W2 zl W1

z2	 1	 2	 1 —

za 0 2 0 2

The next driving variable is zl. Since its column is nonnegative, it is un-

blocked, and hence the computation terminates with a ray. This illustrates

the importance of choosing z0 as the blocking variable when it is involved

in a tie.

The ability of Lemke's Scheme Ito process many different classes of lin-

ear complementarity problems gives rise to the idea of using it for solving

non convex quadratic programming problems by way of their KKT condi-

tions. By "solving" we mean actually finding global minima for quadratic

programs with nonconvex minimands. While this approach can sometimes

be used to advantage, the following example shows that it does not always

work.

4.4.17 Example. Consider the quadratic program

minimize 2x1 — 2X2 — IX2 + 1 x2

subject to	 2x1 + x2 < 6
(12)

—x l + 4x2 <6

X1 > 0, x2 >0.

A global minimum for this nonconvex quadratic program must exist as

its feasible region is nonempty and compact. The KKT conditions of this

program yield an LCP (q, M) where

2 —1	 0	 2	 —1

—Z 0	 11	 4
q=i I	 and	 M=I I.

6 —2	 —1	 0	 0

6 1	 —4	 0	 0
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Let d = (di, d2, d3, d4) be the covering vector introduced in an application

of Algorithm 4.4.5. The components of d must be nonnegative and d2

must be positive. Since any positive multiple of d will produce the same

almost complementary path, we may assume that d2 = 1. In tableau form

we have

1	 zo X1	 X2 l3 P4

12 dl —1 0 2 —1

2 1 0 1 1 4

6 d3 —2 —1 0 0

6 d4 1 —4 0 0

Regardless of the (nonnegative) values of dl, d3, and d4, the initial pivot

must be (y2, zo). The next tableau is

1	 P2 Xi	 x2	 P3	 P4

2Pi
	

(1+d 1) d l —1	 —dl	 2—d1  —1-4d 1

x3

X4

zo 

2
2
(12+d3) d3 —2 —1—d 3 	—d3	 —4d3

(12+d4) d4 	1 —4—d4 	—d4 	—4d4

2	 1	 0	 —1	 —1	 —4

The driving variable is now x 2 . It is not difficult to show that no matter

what nonnegative value d l , d3 , and d4 have, the outcome of the minimum

ratio test will be the same: z o is the blocking variable. The pivot (zo , X2)

produces

1	 P2	 X1 	zo	 y3	 P4

Pi
	 Z	 0 —1	 dl	 2 —1
x2 2	 1	 0	 —1	 —1 —4
x3 2 —1 —2 1+d3 	1	 4

X4 4 —4	 1 4+d4	 4 16

Pl

P2

x3

X4
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Thus, we see that no matter how the covering vector for this linear com-

plementarity problem is chosen, the algorithm will find the same solution:

1
(X l, x2, y3, y4) = (0, z , 0, 0).

The point (xl, x2) = (0, z) happens to be a local minimum for the quadratic

program (12) from which this LCP was derived. The corresponding objec-

tive function value is — 8 . It can be shown that the global minimum of the

QP occurs at (X1, X2) _ (3, 0) where the objective function value is —3.
This global minimum is simply inaccessible by means of this algorithm.

Scheme II

In some cases, it is possible to process a linear complementarity problem

(q, M) without introducing an artificial covering vector d. A prime example

of such a problem is one in which the matrix M has a positive column.

When this condition obtains, it is a simple matter to construct an almost

complementary feasible solution of the underlying system

w =q+Mz>0, and z >0.

Assume that mini qi < 0. If M•k > 0, then putting

zk>_zi = max —q2 and zi =0 for all i k
1<i<n TrLik

yields an almost complementary feasible solution. The set of points (w, z)
such that zk >_ zk, zi = 0 for all i k constitutes an almost complementary

ray ending at an almost complementary extreme point of FEA(q, M). 5 At

this endpoint, there is at least one index r such that wr = qT + m rkzk = 0.

In the nondegenerate case—which we assume for this discussion there is

only one such index.

In formulating Lemke's Scheme II, we postulate that an almost com-

plementary extreme point at the end of an almost complementary ray is

available. This assumption is essential since there is such a thing as an al-

most complementary extreme point that is not at the endpoint of an almost

complementary ray. In fact, an LCP for which FEA(q, M) is bounded will

5 In effect, this plays the role of the primary ray in Scheme I.

 



4.4 LEMKE'S METHOD	 283

have no rays of any kind; such a set can have an almost complementary

extreme point.

4.4.18 Algorithm. (Lemke, Scheme II — Unaugmented Problem)

Step 0. Initialization. Input (q, M). If q > 0, then stop: z = 0 solves

(q, M). Otherwise, assume there exists an index k for which

q + M•kzk > 0 for all zk > zk. Let w,. denote the (unique,

by the nondegeneracy assumption) component of w that equals

zero when zk = zk. Pivot (wr , zk). (The complements wk and

zk are now basic whereas wr and zr are nonbasic.) Choose the

driving variable to be the complement of w^., namely Zr .

Step 1. Determination of the blocking variable (if any). Use the min-

imum ratio test to determine whether there is a basic variable

that blocks the increase of the driving variable. If not, stop.

(Interpret this outcome, if possible.)

Step 2. Pivoting. The driving variable is blocked. Pivot

( blocking variable, driving variable )

If zk or wk is the blocking variable, a solution to (q, M) is at

hand. Otherwise return to Step 1 using the complement of the

most recent blocking variable as the new driving variable.

With the nondegeneracy assumption in force, Algorithm 4.4.18 termi-

nates in finitely many steps.

4.4.19 Theorem. Let (q, M) be an instance of the LCP to which 4.4.18

applies. Then on this problem, the algorithm will terminate in finitely

many steps, either with a solution or a secondary ray.

Proof. The algorithm is initiated at an almost complementary extreme

point that is incident to an unbounded edge of almost complementary

points. Along the almost complementary path generated by the algorithm,

no extreme point can be repeated, for there are exactly two almost com-

plementary edges incident to each such point; a return to a previously

visited extreme point would imply the existence of more than two almost
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complementary edges incident to it. The feasible region possesses finitely

many extreme points in all; so, after a finite number of steps, the algo-

rithm must terminate with a complementary feasible solution or an almost

complementary ray. ❑

The following theorem indicates a class of problems that can be solved

by Scheme II.

4.4.20 Theorem. Scheme II will solve any (nondegenerate) LCP (q, M)
in which M> 0.

Proof. The proof is by contradiction. Let k denote the index of the basic

pair that arises in the execution of Algorithm 4.4.18. Suppose it terminates

with a ray emanating from (w, z). Then there must exist a pair of vectors

(w, z) such that

w =Mz>0,	 0z >0.	 (13)

Moreover, points along the almost complementary terminal ray are of the

form (w + A5, z + Xz) where A > 0 and

(w +MD)^(z+A^ )i=0 for all A>0 and allizhk.	 (14)

From this we deduce that

w2zz = wizi = wzz2 = wjzj = 0 for all i k.	 (15)

Now since M > 0, (13) implies that w > 0, and from (15), it follows

that zk is the only component of z that can assume a nonzero value along

the almost complementary ray. Hence the terminal ray is the initial ray;

this means that the almost complementary path must have returned to a

previously visited extreme point which is impossible. ❑

Solving bimatrix games

Bimatrix games were cited in Section 1.2 as one class of LCP source

problems. Our aim here is to develop the Lemke-Howson method for solving

the type of linear complementarity problem that is derived from a given

bimatrix game.
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The problem we want to solve was stated in (1.2.5). Repeated here for

the sake of convenience, the problem is

u=—e,,,,,+Ay?0, x > O, xTU=O,
(16)

v=—en,+BTx>0, y> 0 , yTv=O.

This leads to the LCP with data

r e,	 0 A
q= I	 and M=	 I.	 (17)

L -e, 	 BT 0
]

In this formulation, A and B are positive m x n matrices. Each component

of the constant vector q equals —1.

Since no column of M is positive, it is not possible to attain feasibility

by increasing the value of just one nonbasic variable (xi or y^) to a suitable

level. Nevertheless something close to this will work and yield an extreme

point at the end of an almost complementary ray. The technique is spelled

out in the following algorithm.

4.4.21 Algorithm. (Lemke-Howson)

Step 0. Initialization. Input the LCP (q, M) of order m + n given by

(17). Select an index k E {1, ..., m}. Let s E arg min,<i<7., bki.
Pivot (v8 , xk). [This yields an almost complementary, but infea-

sible, solution.] Let r E arg min,<i<, ais. Pivot (ur , ys ). [The

solution is now almost complementary and feasible.] The basic

pair is (xk, Uk), and the nonbasic pair is (Ur, x,). If r = k, stop.

A solution has been found. Otherwise let x r be the driving

variable.

Step 1. Determine the blocking variable (if any). Use the minimum

ratio test to determine whether there is a basic variable that

blocks the increase of the driving variable. If not, stop.

Step 2. Pivoting. The driving variable is blocked. Pivot

( blocking variable, driving variable ).

If the blocking variable belongs to the basic pair, a solution

to (q, M) is at hand. Otherwise return to Step 1 using the
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complement of the most recent blocking variable as the new

driving variable.

The choice of the index k in Step 0 can be extended. Any column (not

necessarily one of the first m columns) can be selected. The appropriate

modifications are obvious.

Step 1 of this algorithm can be stated less conservatively, for it can be

shown that in this sort of LCP, the driving variable must be blocked.

4.4.22 Theorem. Algorithm 4.4.21 finds a solution of every (nondegen-

erate) instance of the LCP corresponding to a bimatrix game.

Proof. If a solution is not found in Step 0, then an almost complementary

extreme point of the feasible set given by

u =—e, +Ay>0, x >0,

v =- 2n, +BTx>O, y>O

is at hand. The remainder of the algorithm is the same as Steps 1 and 2

of Algorithm 4.4.18. Thus, it remains to show that in Step 1, the driving

variable is always blocked, i.e., that termination with a ray is impossible.

The proof that termination with a ray is impossible is analogous to the

one used in Theorem 4.4.20 where it was shown that Scheme II solves

LCPs with M > 0. In the present circumstances, the structure of M plays

more of a role, however. Specifically, we consider the counterparts of (13),

(14), and (15). Thus, if termination with a ray occurs, there must exist

an almost complementary extreme point (ü , v, x, y) and a vector (Il, v, x, y)
with

ü	 0 A
 H 0	 (fl,y)>0	 (18)

v	 BT 0	 y

such that points along the ray are of the form (ü+.ü, 13 +w, x +ax, y +.^)
where A > 0, and for all such A

( +Aü)^(x+Ax)i =0 ill	 (19)

(v +w)z(y+Ay)i =0 ilk.	 (20)
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This implies that for all i k

	üixi = uixi = uixi = uixi = 0 ,	 (21)

	viii = viii = viyi = viüi = 0.	 (22)

It must be the case that either x00ory 0. Ifx 0, then P=BTx>0.

This implies + Aye = 0 for all j and all A > 0. But then it + Aü < 0

which is a contradiction. If x = 0, then (18) implies 	 0 from which

it follows that ii = Ay > 0. This implies that xi = 0 for all i	 k; from

P = 0 it follows that v = BTP = 0. Accordingly, v must be the same vector

as the one defined in Step 0 where the initial value of rk was specified,

i.e., the smallest positive value of Xk so that —1 + m^kxk > 0. By the

nondegeneracy assumption, only P,s = 0. The other components of v must

be positive. Thus yj+.yj = 0 for all j s. We now see that the terminating

ray is the original ray. This contradiction completes the proof. ❑

4.4.23 Example. Consider the bimatrix game F(A, B) with

10 20
A=BT =

30 15

The corresponding LCP is given by the tableau

1	 Z1	 Z2	 Z3 Z4

—1 0 0 10 20

—1 0 0 30 15

—1 10 20 0 0

Hi 30 15 0 0

Here we are using the obvious notational scheme,

zi = x i i = 1,..., m

zm+7=Yj j=1,...,n

wi = ui i = 1,..., m

Wm+.7 =Vj j = 1,...,n.

Wi

W2

W3

W4
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There are four ways to choose the column of the first pivot in Step 0.
Initializing the algorithm with k = 1 or k = 3 leads to the solution z =

(i0, 0, ice , 0) that corresponds to pivoting on M. where a = {1, 3}. In like

manner, initializing the algorithm with k = 2 or k = 4 leads to the solution

z = (0, i5 , 0, i5) that corresponds to pivoting on M. where cti = {2, 4}.

Hence, from the four choices of initial pivot column, we obtain two—and

only two—distinct solutions of this LCP. But this problem has another

solution: z = ( 1 2 1 2) which corresponds to a block pivot on M90  90 45

itself. This example illustrates the notion of an elusive equilibrium point,

an equilibrium point that cannot be reached by application of the Lemke-

Howson algorithm.

4.5 Parametric LCP Algorithms

In this section, we take up a slightly different kind of linear comple-

mentarity problem, one in which the vector generically denoted q is not

constant, but rather moves along a line (segment) in space. As will be

seen, problems of this kind have numerous applications, both practical and

theoretical.

Formulation

A parametric linear complementarity problem (PLCP) is a family of

linear complementarity problems

(q + ) d, M; A E A) (1)

where d is a nonzero vector and A is a parameter running over a closed

interval A C R. Thus, to each A E A, there corresponds an ordinary LCP

(q +Ad,M).
Geometrically, the set

{q + Ad: AeA}

is a (possibly unbounded) segment of the line passing through the point

q and having direction d. When A = R, the line segment is an entire

line. Other choices of A can give rise to halflines and closed, bounded line

segments.
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For a specific value of A, there may or may not exist a solution to the

problem (q + Ad, M). That will depend on M and specifically on K(M),

the union of the complementary cones determined by M. Thus, (q+Ad, M)

has a solution if and only if q + Ad E K(M). It is interesting to interpret

the existence of solutions in terms of the intersection of the line segment

{q + Ad: A E A} with the closed cone K(M).

A propos existence, it is clear that solutions z(A) of the parametric LCP

(q + Ad, M; A E A) must satisfy the linear feasibility relations

q+Ad+Mz>O, z>0, AEA.	 (2)

Except in the case where A = R, the condition A E A leads to at least

one inequality, and perhaps two of them. It is possible to seek the largest

and smallest values of A for which (2) has a solution. These values can be

computed by solving linear programs. Indeed, these largest and smallest

values are

A* = inf{A E A : FEA(q + Ad, M) ^ 0},

A* = sup{A E A : FEA(q + Ad, M)

 they can be used to refine the interval A. In general, it is possible for

either A * = —oo or A* = +oo, or both. For example, if A = R and the

matrix M E S, then FEA(q + Ad, M) 0 for all A; in this case, A. = —oc

and A* = +00. There is no point in seeking solutions for parameter values

A such that FEA(q + Ad, M) = 0. Recall that when matrix M C Q0 , the

LCP (q + Ad, M) will have a solution for each finite number A C [A, A*].

Note also that when A° is an interior point of A, the parametric LCP

(q + Ad, M; A E A) can be broken into a pair of problems

(q + Ad, M; A E	 A°]) and (q + Ad, M; A E [A o A*] )

This is an effective way to handle problems in which A = R.

4.5.1 Example. Consider the PLCP (q+Ad, M; A E A) with the following

data:

q= 	2 ], d=  1 ] ‚ M 	—1	
1 ]' A = R.
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2

1

2
Figure 4.1

Notice that this positive semi-definite matrix M also belongs to the class Pl

(see Section 4.1). This implies that K(M) must be a halfspace. In Figure

4.1, we plot K(M), the point q, and the line segment {q + Ad: A E Al. In

this instance, it is easy to check that

X * = — 2 and A* = oo,

hence the interval A = R can be refined to A* = [-2, +oo). Now take

A° = 0, and consider the LCP (q + A ° d, M). In schematic form we have

1	 A° 	zl 	Z2

wl —1	 1	 1 —1 —1	 (3)

w2	 2	 11	 1	 2

1	 0	 0	 0

The pivot (wl, zl) yields the schema

1 A° W1 Z2

zi 	1	 1	 1	 11	 (4)

w2 1	 2 —1	 01

10	 0	 0
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The corresponding diagram is given in Figure 4.2.

1

2

2 

1

Figure 4.2

For small values of A, the point (1, 1) + A(—1, 2) is interior to R. As
A is changed from A° = 0, this point approaches the boundary of R. In

fact,

1 	 +AI	 2 
J 

>0 for allAE[-2,1].

For A e [—‚1], the solution to the PLCP is (z l , z2 ) = ( 1— A, 0). When

A > A l = 1, the point leaves R and enters a neighboring complementary

cone. In this particular problem, the line segment remains in that cone for

all A > A. The counterpart of this fact is also visible in Figure 4.1.

Sources of parametric LCPs

The PLCP arises naturally from certain kinds of parametric linear pro-

gramming and quadratic programming problems. Parametrization of the

right-hand side or the (linear term of the) objective function (or both) in

the usual ways leads to parametric analogues of the LCP formulation of

these problems as described in Section 1.2 under the heading "Quadratic

programming."

6 See S.I. Gass (1985) and T. Gal (1979).
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A well known example of a parametric quadratic programming problem

is the portfolio selection problem (see 4.12.18). In its most elementary

form, the problem is to determine the percentage of the portfolio to allocate

to each of n given securities. Let x denote the percentage allocated to the

jth security. The expected return is given by rTx where r3 is the average

return on the jth security. One goal is to maximize this return. At the same

time, the investor wishes to minimize the risk associated with the portfolio

x. The risk is given by the value of a positive semi-definite quadratic form

xTDx. To balance the conflicting goals of maximizing expected return and

minimizing risk, one can consider the function

fa (x) = —XrTx + xTDx (5)

where A is a nonnegative parameter. The larger the value of A, the more

importance is attached to the expected return. The constraints of the

problem, as stated, must include the conditions

eTx =1, x>0. (6)

For simplicity, let us assume there are no other constraints. Converting the

equality constraint eTx = 1 to a pair of inequality constraints, we arrive

at the parametric convex quadratic program of minimizing fa(x) subject

to (6). This gives rise to the parametric linear complementarity problem

(q + Ad, M; A E R+ ) where

0 —r 2D	 —e	 e

q= —1, d= 0, M= eT	 0	 0 . 	 (7)

1 0 _eT 	00

Notice that, in this case, the constraint set given by (6) is nonempty and

compact. Since the objective function defined in (5) is continuous, the

minimum exists for every A E R. Accordingly, the PLCP (q+Ad, M; A E R)
has a solution for every value of A and, a fortiori, those belonging to R+.

As another closely related example, consider a quadratic program of

the form
minimize cTx + 2 xTQx

subject to	 aTx = b	 (8)

x >0.
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Let us assume that the objective function is strictly convex (Q is positive

definite and without loss of generality symmetric). Assume also that

the single linear equality constraint is both feasible and nontrivial. If a

is not a positive vector, the feasible region can be unbounded. But its

assumed nonemptiness and the assumed strict convexity of the objective

function ensure the existence of a unique optimal solution to this quadratic

program. The Karush-Kuhn-Tucker conditions for this problem are

u=c+Qc —Aa >0, x> O, xTu=0,

v = —b -I- aTx = 0, A free, (.Av = 0). (9)

Notice that for any fixed value of A, the first line of the above KKT con-

ditions amounts to a linear complementarity problem (c — Aa, Q) in which

the matrix Q is symmetric and positive definite. The LCP has a unique

solution x = x(A). For this given value of A, the solution vector x(A) may

or may not satisfy the equality constraint of (8). If it does, then the origi-

nal quadratic programming problem is solved. If it does not, the value of

A can be changed. The idea is to solve the PLCP (c — Aa, Q; A e R), at

least to the point where a value of A corresponding to the solution of (8)

is discovered.

Later in this section, we shall exhibit a parametric form of Lemke's

Scheme I for the ordinary linear complementarity problem. As may be

anticipated, the idea in this approach is to use the covering vector as the

direction vector, and the artificial variable z0 as the parameter, A.

An interesting application of the parametric linear complementarity

problem arises from a structural mechanics problem that seeks conditions

under which the solution of (1) is an isotone function of the parameter A.

We will address this question in Section 4.8 in connection with a related

issue. Further applications involving parametric linear complementarity

problems can be found in actuarial science, spatial price equilibrium theory,

and the traffic equilibrium problem. We shall return to the latter problem

later. Information on the other applications is provided in the exercises

and in the notes and references at the end of the chapter.

The parametric principal pivoting method

The symmetric principal pivoting method (Algorithm 4.3.2) presented

in Section 4.3 processes nondegenerate instances of the row sufficient LCP
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(q, M). Our aim now is to discuss a parametric variant of that procedure.

In this case, we shall assume that M is (row and column) sufficient.

Let (q + Ad, M; A E A*) be a given PLCP in which M is a sufficient

matrix and (q + Ad, M) is feasible for all A E A*. Under these conditions, 7
each of these LCPs is solvable, and when they are nondegenerate, 8 the

principal pivoting method can be used to solve them.

The interval A* may have been obtained from another interval A by

calculating A. and A* as described above. Whatever the case may be, we

assume that this bit of preprocessing has already been done. If A* = R, we

may choose A° = 0 as above and split the problem into a pair of PLCPs.

If A* has a finite least element or greatest element, it is a simple matter

to convert the problem at hand to one in which the least element of the

parameter set is zero. Accordingly, we assume that A. = 0.
Starting with A ° = 0, we may solve (q + A° d, M) _ (q, M). By the

nondegeneracy assumption, the corresponding principal pivotal transform

of q will be positive. For this reason, we start from the assumption that

q >0.

4.5.2 Algorithm. (Symmetric PPPM)

Step 0. Initialization. Input (q + Ad, M; A E A) with M being (row and

column) sufficient. Preprocess the data (as described above) or

assume that q > 0, d 54 0, and A = A* = [0, A*]. Define v = 0
and

qV =q, d"=d, My =M, wv =w, z"=z, and A' =0.

Step 1. Determine next critical value of A. Define

v
^v+l = min{min{ vz : dZ <0}, A*}

i	 di

and set

(wv(A), zv (A)) = (qV + Ad', 0) for all A e [AV, Av +l ]

7 That is, because of the row sufficiency.
8 1n this context, it seems that we want to regard a solution of the system of equations

with A -A 0 as being nondegenerate if it has at most n + 1 of its 2n variables equal to

zero. Thus, a basic solution would have at most one of its basic variables equal to zero.
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If )w+l = A*, stop. Otherwise, let

v

r = arg min{ ZZ : d2 < 0}.
Z

The new critical value of A is A"+ 1 = _qr /dT .

Step 2. Pivoting. If mrr > 0, pivot (wr, zr ). Put

v+1	 v	 v+1	 v
wr = zr^ zr —wry
wz +1 = 

i' zi +l = zz , i r.

Return to Step 1 with v replaced by v + 1.

If mr,. = 0, use z as a driving variable and determine the

basic blocking variable ws (in the usual way). Pivot (ws, zT),

(w',zs). Put

v+l	 v	 v+1	 v
ws = zr ' zs = wr

v+	 v	 v+1	 v
w 

1
r = 'z8) zr = w8

	cu z +1 = W', Z'' = 4,	 i r, s.

Return to Step 1 with v replaced by v + 1.

The justification for Algorithm 4.5.2 rests heavily on the nondegeneracy

assumption and on the row and column sufficiency properties of M. By

nondegeneracy, only the r-th component of the vector "+1) is 0; the

other components are positive. It follows that in Step 2, if mr,. > 0, the

simple principal pivot (w, zr) makes w,; nonbasic (as desired) and also

gives '' (A'1) = wv (.^"+ 1 ) If mr,. = 0, it is not possible to make w,r

nonbasic with one simple principal pivot; under the present assumption,

it can be done with a principal block pivot of order 2. Using z,' as a

driving variable, we use the minimum ratio test to determine the index of

a blocking variable, say W'. The uniqueness of this index s is a consequence

of the nondegeneracy assumption. Its existence can be argued as follows.

We need to show that there is a negative entry in the column of zr . Now,

if the column of zr were nonnegative, the row sufficiency of My would

imply that M < 0. But in Step 1, we had ,w+l < A*. This means that

q"+Ad" E K(MV) for at least some A> A"' . Since dr < 0, this cannot be
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true if M, . < 0. Because its column contains a negative entry, the driving

variable must be blocked. Now the column sufficiency implies that

v	 v
	 +m 8 1 N 0 T

v	 v JIIIImar mss —

and hence must be nonsingular (otherwise it has a zero row which is for-

bidden in such a column sufficient matrix). The two off-diagonal pivots

indicated in Step 2 accomplish the task of making w,r nonbasic, and (by

the nondegeneracy assumption) they do not alter the signs of the compo-

nents of the vector q('+ 1 ). That is, q"+1 + Av+ldv+l ,., qv + A +ld . It

is now possible to increase A to its next critical value.

4.5.3 Remark. The upshot of the algorithmic process is a finite sequence

of critical values A° , A', ... , V and a corresponding sequence of solution

vectors (wA), z"(A)) where A E [A'  A 1 ] for v = 0, 1, ..., f — 1. In the

case where M E P, the individual components of w and z reveals that they

are continuous piecewise linear functions of A (cf. 1.4.6). The breakpoints
at which the slopes may change are among the critical values A',. AP -1

Lemke's Scheme I in parametric form

Algorithm 4.4.5, the streamlined version of Lemke's Scheme I, for the

linear complementarity problem (q, M) uses the augmented problem (4.4.6)
and, in particular, the underlying system

w = q +dz°+Mz (10)

where d > 0 is the covering vector. The goal of the method is to obtain

a nonnegative solution of the underlying system (10) in which z° = 0 and

zTw = 0. In the standard version of Algorithm 4.4.5, the artificial variable

z° is immediately made basic at a positive level; it remains so until it either

decreases to zero and can be made nonbasic again, in which case a solution

of (q, M) has been found, or else termination with a secondary ray occurs.

As an alternative to doing this, it is possible to treat z° as a parameter.

In terms of the notation established at the beginning of this section, we

can let A = z° and take A to be the interval [0, z°] where, as in (4.4.4),

z° = max{—qi /d2 }.
i
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We then try to reduce the value of zo from zo to 0 while retaining non-

negativity and complementarity of the variables z and w. Accordingly, no

pivoting is done in the z0-column of the schema

	

1	 z0	 z

	w q	 d M	 w	 (11)

	1 	 zo	 z

The symbols below and to the right of the schema represent values of the

column labels and row labels, respectively. As an extra notation, let

q=q+z0d.

After v pivots have occurred, the schema can be denoted

	

1	 zo 	ZV

	w" q"	 dV	 M"	 w"	 ( 12)

	1 	 zö	 z"

where zö = z0 for all v and (w", z") is a permutation of (w, z).

The parametric version of Algorithm 4.4.5 involves a sequence of major

cycles, each of which is associated with a critical value of the parameter

z0. To describe the algorithm, we need to specify the steps taken within a

major cycle and then show how to pass from one major cycle to the next.

At the beginning of each major cycle there will be a complementary

schema (12) and a unique index r such that w; = 0 and w2 > 0 for i r.

It is useful to keep in mind that if the value of zo were slightly smaller

than zö , the basic variable wr would be negative while all the other basic

variables would (by nondegeneracy) be positive. Under such circumstances,

the natural goal would be to make w,r nonbasic at value zero. Ideally, this

would be accomplished with a simple principal pivot (wT, z,; ). This can be

done only if m4. 0. If this is the case, the sign of mrr is not important

because w; = qT is actually zero (rather than negative), and hence the

values of the basic variables do not change under such a principal pivot

operation. If mr,. = 0, however, the simple principal pivot is not possible;

the next best thing would be a suitable (block) principal pivot leading to
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a different complementary schema and another solution of the LCP. Thus,

each major cycle of the parametric scheme can be thought of as an ordinary

linear complementarity problem in its own right.

It is interesting to interpret the algorithm geometrically. While this will

be done in greater detail in Section 6.3, it is appropriate to spend some

time with this now. The nature of the LCP at the beginning of a major

cycle is that its "q vector" (say, q" = q' +zi dv) lies on the boundary of the

complementary cone spanned by the complementary basis matrix currently

being used to represent the system. If this point lies on the boundary of

K(M) as well, it will be impossible to decrease the parameter and generate

another point q E K(M). This condition would force the termination of

the algorithm. If q" lies on a proper facet, i.e., one that is common to a

pair of nondegenerate (solid) complementary cones that also lie on opposite

sides of the affine hull of this common facet, then the line segment (of q
vectors) will enter (the interior of) this neighboring complementary cone.

Thus, when z0 is made smaller than zi , the corresponding point still lies

in K(M).

The geometric description just given is illustrated in Figure 4.3. There,

we see a line segment running from the edge of the first quadrant, R+, to

the point q indicated by the heavy dot in the the third quadrant. The line

segment traverses two complementary cones before it reaches the comple-

mentary cone that contains q. When a point moving along the line segment

reaches the boundary of a complementary cone, a new representation of the

point is needed. Pivoting provides this new representation.

In a nutshell, then, the idea in solving the LCP of a major cycle is to use

a simple principal pivot if possible, and if it is not possible, then generate

an almost complementary path as in Lemke's method (or the asymmetric

version of the principal pivoting method). Once the LCP is solved, the

next step is to adjust the parameter value in an appropriate manner.

Generically, r will denote the index of the distinguished variable, s will

denote the index of the driving variable, and t will denote the index of the

blocking variable. In the first iteration of a major cycle, s = r. In other

words, the first driving variable of the major cycle is z, the complement

of the distinguished variable.

The aim of the major cycle is to make wr nonbasic. When this occurs,

the value of z0 is adjusted and a new major cycle is begun unless termina-
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1

Figure 4.3

tion is indicated. Since z' = 0 in (12), we have w' = qv = qv + zöd" > 0

for all v. Whenever made, the next choice of value for z0 will preserve this

condition. If t r, then after the pivot, the schema will be almost com-

plementary, and the next driving variable will be the complement of the

blocking variable. Thus, within a major cycle, if the first pivot is not a sim-

ple principal pivot, the algorithm will generate an almost complementary

path, just as in Algorithm 4.4.5.

4.5.4 Algorithm. (Parametric version of Lemke's Scheme I)

Step 0. Initialization. Input the augmented LCP (q, d, M) with d > 0.

If q > 0, stop: z = 0 solves (q, M). Otherwise, define zo =

maxi{—q2/d2} and r = arg maxi{—qi/d2}. Set v = 0 and define

q"=q, dv=d, M'=M, w''=w, z"=z, and zo =zo .

Step 1. Finding another complementary cone. Define wr as the distin-

guished variable and its complement z,; as the driving variable.

Step 1A. If mr,r 	0, pivot (w', zr) and go to Step 2 with

v F- v + 1. Otherwise, go to Step 1B.
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Step 1B. If the entry in the row of the distinguished variable

and the column of the driving variable is nonzero,

then a new complementary cone has been found.

Pivot

( distinguished variable, driving variable ).

and go to Step 2 with v ^— v + 1.

If the entry in the row of the distinguished variable

and the column of the driving variable is zero, per-

form the minimum ratio test using the column of the

driving variable. If the driving variable is unblocked,

stop. (The algorithm terminates with a ray.) Other-

wise, pivot

( blocking variable, driving variable ).

If the blocking variable is the complement of the dis-

tinguished variable, a new complementary cone has

been found. Go to Step 2 with v ^- v + 1 and the

complement of the last blocking variable as the driv-

ing variable.

Step 2. Traversing the new complementary cone. Find the next critical

value of zo (if possible). If qv > 0, then decrease z0 to 0 and

stop; a solution to (q, M) has been found. If d" > 0, stop; the

algorithm terminates with a z0-ray. Otherwise, d" must have

both positive and negative components. The current value of zo

is either max{—qz /d2 : di > 0} or min{—q> /d : d? <0}.
	v 	 v

If zo 1 =max{— qv : d2 > 0}, set zö min{— qv : dz <0};
	d z 	d2
	v 	 v

if zö 1 = min{ — j : d2 < 0 }, set zo =max{— q2 : dv > 0 }.	dZ 	dz 

Return to Step 1 with r as the unique index i such that wi = 0.

The parametric version of Lemke's Scheme I can be justified by noting

its equivalence with the original version. When a major cycle, say the first

one, begins with the parameter z0 at a positive critical value zo, there is

 



4.5 PARAMETRIC LCP ALGORITHMS 	 301

(by the nondegeneracy assumption) a unique index r for which the ba-

sic variable wT = 0. Hence d,, the coefficient of zo in the corresponding

equation, must be nonzero (otherwise the value of zö could be changed).

Accordingly, it is possible to use the pivot (wr, zö) to make zö = zo basic

as it would be in 4.4.5. In other words, for every schema of 4.5.4 there is

a schema of 4.4.5 in which the zo and the original system variables wi, zz

have the same values.

4.5.5 Example. Consider the LCPs (q, M) and (q, M) where

q 	4	 M	 M—

	

1 —1	 —1 —1

Notice that the q-vector is the same in both problems, and that M is gotten

by permuting columns of M. In each case, we shall use d = e as the covering

vector. The geometry of these problems is indicated in Figures 4.4(a) and

4.4(b).

For problem (q, M), the first critical value of zo is 2. The schema is

1	 z0	 zl	 Z2

w 1 —2 1	 1 —1 0

w2 	4 1 —1 —1 6

1	 2	 0	 0

The algorithm calls for the pivot (wi, z1), and the resulting schema is

1 zo	 w 1 	z2

zl 	2 —1	 1	 1 0

w2 2	 2 —1 —2 6

12	 0	 0

Notice how the line segment of q-vectors runs from q to q. The line

segment does not encounter any other facet of a complementary cone. It

is clear from the schema that z o can be reduced to 0, giving the solution

(1,52) = (2, 0).

For problem (q, M), the first critical value of z0 is 2 also. (The vectors

q and d are the same for both problems.) This problem's initial schema is
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I	 z0	 Z1	 Z2

	wl —2 1 —1	 1 0

W2 	4 1 —1 —1 6

1	 2	 0	 0

1
	

2

Figure 4.4(a)

2
	

1

Figure 4.4(b)
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The first pivot is (wi, zi); it results in

1	 zo wl	 Z2

zl —2	 1 —1	 1 0

w2	 6 0	 1 —2 6

1	 2	 0	 0

In this case, the algorithm finds that the column headed by z0 is non-

negative, meaning that the parameter can be increased indefinitely. The

procedure terminates with a z0-ray, even though the problem itself is solv-

able. Indeed, the problem is feasible and M E Q0 .

The following example illustrates a feature of Step 2 in Algorithm 4.5.4.

4.5.6 Example. Monotonic decrease of the parameter z o is not always

possible. This fact is illustrated by the augmented LCP (q, d, M) in which

2 1 —1	 —2	 —1

q= 1 , 	 d= 1 , 	 and	 M= —1	 1	 —2

—3 1 4	 —2	 2

A schematic representation of this problem is given by

1	 zQ	 zl	 Z2	 Z3

wl	 2 1 —1 —2 —1 5

W2	 1	 1 —1	 1	 —2 4	 3 < z0 < oo.

W3 —3 1	 4 —2	 2 0

1	 3	 0	 0	 0

It is easy to see that if the nonbasic variables zl, z2, and z3 are all zero,

then the basic variables Wi, W2, and w3 will be nonnegative if and only

if 3 < zo < oo. Accordingly, we set zo = 3 and record this in the last

line of the schema. At this value of the parameter, w3 = 0. Since the

corresponding diagonal entry of the matrix M is nonzero, the principal

pivot (w3, z3) is possible, and we obtain
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1	 z0	 Z1	 Z2	 W3

W 1 	1	 3	 1 —3 —2 2

w2 —2	 2	 3 —1 —1 0	 1<z0<3.

Z3	 3 —2 —2	 1	 1 1

1	 1	 0	 0	 0

This time we execute the principal pivot (W2, Z2) obtaining

1	 z9	 zl W2 W3

13	 9 -8	 3	 5
2	 -2	 2

—2	 2	 3 —1 —1

1	3	 1 -1	 12	 2	 2

1	 9 0	 0	 0

0

8	 1<zo< s.
9

15
9

wl

z2

Z3

Notice that in this schema, the value of the parameter z0 is larger than

it was in the preceding schema; it has been set at the largest number for

which the basic variables are nonnegative. This illustrates the assertion

made about nonmonotone behavior of the parameter. Since Li = 0 and

the corresponding diagonal entry is nonzero, we carry out the principal

pivot (wl, zl). This produces the schema

1	 zQ	 wl	 W2	 W3

Z1
13	 - 9	 2	 6	 5	 13
16	 16	 16	 16	 16	 16

7 	5 	6	 2	 _ 1	 7 	 0<z0< -. 13

z2 	16	 16	 16	 16	 16	 16	 9

z 	5	 15	 2	 10	 - 3	 5
3 	16	 16 - 16	 16	 16	 16

1	 0	 0	 0	 0

The LCP (q, M) is now solved since the parameter zo has been reduced to

zero.

Paradoxes in traffic equilibrium problems

In a previous subsection, we have mentioned several sources of para-

metric LCPs. In the sequel, we discuss a highly simplified instance of the

traffic equilibrium problem and sketch how the theory of the PLCP can be

used to analyze the prevalence of some traffic paradoxes.
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Consider a congested transportation network modelled as a digraph

with node set .N and are set A. Assume for simplicity, that a pair of

nodes i and j E Al is singled out as the origin-destination (OD) pair. We

are interested in moving D > 0 units of flow (the traffic demand) from i

to j via certain specified paths in the network. Let p1, P2, ... , pn be an

enumeration of these paths that connect the node i to the node j. Let

Fk denote the units of traffic flow along the path Pk (k = 1, ... , n), and

F = (Fk) E R be the vector of path flows. A vector F E R+ of path flows

is said to be feasible if it satisfies the demand condition:

n

YFk =D.

Associated with each arc a E A is a cost that measures the traffic

congestion on that arc. Typically, this cost is an asymmetric function of

the vector of flows on all the arcs in the network. A simplification of the

model is obtained by assuming that each such arc cost depends linearly

and only on the flow of the are involved; i.e.,

ca,(f) =b,,+da,fa for allaE.A.

where ca,(.) and fa are, respectively, the cost function and flow amount on

the arc a, and ba and da, are scalars with da, > 0. The relation between the

are flows and the path flows is governed by the following expression:

fa =T F1
ka

where the summation ranges over those paths Pe¢ that contain the are a. In

the additive model of the traffic equilibrium problem, it is further assumed

that the cost Ck (F) on each path pk is equal to the sum of the arc costs

which ranges over those arcs contained in the path pk. Let us introduce

the arc-path incidence matrix A = (ba ): for a E A and k = 1, ..., n,

r 1 if arc a is contained in path Pk

0 otherwise.

Then, by letting C(F) = (C(F)) be the vector of path costs, we have
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C(F) ATc(f) = OT b + ATDAF

where b = (b,) and D = diag(da,).

Central to the traffic equilibrium problem is Wardrop's principle which

defines the equilibrium flow patterns. Specifically, a feasible flow vector

F = (Fk) E RTh is said to be in equilibrium if the costs on the paths with

positive flows are all equal and are less than or equal to the costs on the

remaining paths. Mathematically, this states that the vector F E Rn is an

equilibrium flow if there exists a scalar G (the minimum cost between the

OD-pair (i, j)) such that the following conditions are satisfied:

F >0

^Fk =D
k=I

C(F) — Ge > 0

Fk (Ck (F) — C) = 0 k = 1, ... , n.

Clearly, these conditions define a mixed linear complementarity problem

with a single equality constraint (^ k Fk = D) and one free variable G.

There are several well-studied paradoxes occurring in traffic equilibrium

theory. The most famous among these is the one due to D. Braess which

demonstrates that in a congested transportation network, it is possible for

the elimination of a path in the network to decrease the cost of all the paths

with positive flows. This is somewhat counter-intuitive because one would

expect that by eliminating a path, at least one (and hence every, by the

equilibrium principle) used path in the network would suffer an increase in

cost.

A network that gives rise to Braess's paradox is depicted in Figure

4.5 and the data of the problem are given in Figure 4.6. The demand D
between the OD pair is 6 and there are 3 paths joining the origin node to the

destination node. Note that the cost on the arc e3 2 contains a nonnegative

parameter A whose value is permitted to change.

Substituting the data into the mixed LCP formulated above, we obtain

for this network,
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6

r7
	

6

	

Figure 4.5
	

Figure 4.6

50

OT b	 50
q =	 _

—D	 A

—6

11 0 10 —1

ATD© —e	 0 11 10 —1
M =

	eT	 0	 10 10 21 —1

1	 11	 0

(For this problem, it can be shown that the mixed LCP formulation is

equivalent to the standard LCP formulation in which the constraint F l +

F2 + F3 = 6 is turned into an inequality, the variable G is restricted to be

nonnegative, and a complementarity condition is imposed between G and

the resulting demand constraint. The data (q, M) given above refers to the

standard LCP formulation.)
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Solving the above LCP as a parametric problem, we obtain the (unique)

solution as a function in the parameter A: for A E [0, 23],

A+16 	 2(23 —A)	 (1286-9A)
FF1 =F2= 

13 
‚F3=
	 13	 ' G 	13

and for A > 23,

F1 =F2 =3, F3=0, G=83.

Notice that in the latter case, the third path is no longer used; yet the

minimum cost on the other two paths is equal to 83 units which is less

than that in the previous case when all three paths are used.

From the point of view of a parametric LCP, Braess's paradox and

many others are not particularly surprising. The reason for this is that the

matrix OTDO and the vector OT b in the LCP formulation can be fairly

general and do not seem to possess any special properties that would allow

one to predict with certainty the change in the equilibrium flows and the

minimum path cost.

4.6 Variable Dimension Schemes

The idea behind the methods described in this section is to attempt to

solve linear complementarity problems (q, M) by solving smaller principal

subproblems. When (q, M) is an LCP of order n, the latter are linear com-

plementarity problems associated with the (index) subsets of {1, ..., n}.
Thus, if cti C {1, ... , n}, the corresponding principal subproblem of (q, M)

is

(q, M)a = (qa, Maa)•

Now suppose za solves the principal subproblem (q, M) a . If

	q + Majza > 0,	 (1)

then by putting za = 0, the given solution of principal subproblem (q, M)a

can be completed to a solution z of the original problem (q, M). Naturally,

one hopes that this approach reduces the total computational effort. It is

not clear that this can always be realized.
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Apart from the computational efficiency matter is the question of the

existence of solutions for the principal subproblems. Fortunately, there is

a class of matrices for which the question has an affirmative answer. Recall

that, in Section 3.10, we studied completely-Q matrices. Also known as

strictly semimonotone matrices, they have the property that every principal

submatrix belongs to Q. This guarantees the existence of at least one

solution to every principal subproblem that can be formed.

In cases where the solutions to principal subproblems are not unique,

there arises the question of whether the choice of solution vector affects

the outcome of the test (1). This is a matter of w-uniqueness, which we

studied in Section 3.4. The key property is column adequacy (see 3.4.6).

Notice that if we assume this property along with strict semimonotonicity,

we have matrices belonging to Po n Q. The latter class came up in 3.9.22.

Van der Heyden's method

The variable dimension scheme of Van der Heyden is designed to work

with nondegenerate linear complementarity problems having strictly semi-

monotone matrices. An essential concept for this method is that of a lead-

ing principal subproblem (see 4.2.7), i.e., a principal subproblem (as de-

fined above) with the additional property that ct = {1, ..., k} for some

k < n. The corresponding principal subproblem (or any principal pivotal

transform thereof) is called the k-subproblem.

The class E of strictly semimonotone matrices is unaffected by principal

rearrangement of its members. Thus, if (q, M) is an LCP of order n with

M E E and P E Rnxn is a permutation matrix, then (Pq, PMPT) is an

equivalent LCP whose matrix is also strictly semimonotone. This observa-

tion enables us to preprocess the problem so as to place the nonnegative9

elements of q (if any) as the leading components of Pq. The motivation

for this step is to simplify the statement of the algorithm rather than to

reduce the number of its iterations.

Algorithm 4.6.3 below is another principal pivoting method. It consists

of a sequence of major cycles, each of which ends with a solution to a k-

subproblem and a principal pivotal transform of the original LCP. Solving

(q, M) is a matter of solving the n-subproblem. At all times, the algorithm

9When nondegeneracy is assumed (as it is here), the vector q will have no zero

components.
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works with vectors w and z satisfying the fundamental equation

w = q + Mz.	 (2)

Initially, z is the zero vector. Throughout the procedure, the components

of z are required to remain nonnegative. In general, once a k-subproblem

is defined, its basic variables are all eligible to block the current driving

variable.

The vectors generated by this algorithm are basic solutions of (2). They

are of two types as defined below.

4.6.1 Definition. A solution (w, z) of (2) is of type I if:

(a) there exists an index k E {1,. . .  , n} such that zk = 0 and Wk < 0;

(b) z3 = 0 for all j > k;

(c) if k> 1 and a = {1,. . . ‚ k — 1 }, then (wa , za ) solves (q, M) a .

4.6.2 Definition. A solution (w, z) of (2) is of type II if:

(a) there exists an index k E {1, ..., n} such that zk > 0 and wk < 0;

(b) z1 = 0 for all j > k;

(c) there exists an index L < k such that w = 0 and ze = 0;

(d) if cti = {1, ..., k — 1 }, then (wa , za ) solves (q, M)c .

A solution of type I satisfies the complementarity condition ziw2 = 0
for all i, but is not a feasible solution of (2). A solution of type II is almost

complementary; it satisfies the complementarity condition for every index

except k. Note that the index k associated with a solution of type II must

be greater than 1, since the definition calls for the existence of an index

£ < k.

4.6.3 Algorithm. (Van der Heyden)

Step 0. Initialization. Input the nondegenerate LCP (q, M) with M

strictly semimonotone. Preprocess (q, M) so that the positive

components of q (if any) come first.
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Step 1. Feasibility test; definition of the subproblem. If w > 0, stop. [A

solution has been found.] Otherwise, determine the index

k = min{i : wi <0}.

[If k> 1 and ca := {1, ..., k 1}, then (wa , za ) solves (q, M) a .]

Let the driving variable be zk and define the eligible block-

ing variables to be wk and the other basic variables of the k-

subproblem.

Step 2. Determination of the blocking variable. Let v denote the block-

ing variable. Pivot

( blocking variable, driving variable ).

Perform one of the following operations:

(a) If j < k, increase the complement of v1; go to Step 2.

(b) If j = k and vk, = wk, the k-subproblem is solved; go to

Step 1.

(c) If j = k and vk = zk, another solution of a smaller sub-

problem has been found; go to Step 3.

Step 3. Determination of a new driving variable. Define

k= max{i:zz >0}.

[The variable wk will be nonbasic at value 0.] Use —wk as the

new driving variable. [That is, decrease wk.] Go to Step 2.

Since the solutions generated by the algorithm are basic solutions of (2)

and these finite in number, it follows that the algorithm can generate only

finitely many distinct basic solutions of type I or type II. The stipulation

that the solutions be basic is essential to the truth of this assertion; there

is nothing in the preceding two definitions that implies the finiteness of the

number of such solutions. See Exercise 4.11.22.

At any stage of the algorithm, there is a specified k-subproblem (pos-

sibly of a principal rearrangement of the original LCP), and when k > 1,
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a solution of the (k — 1)-subproblem is at hand. It follows from this and

the strict semimonotonicity of M that the algorithm cannot generate un-

bounded edges (equivalently, unblocked driving variables). To see this, let

cti = {1,. . .  , k} and suppose there is an unblocked driving variable encoun-

tered in solving (q, M) a . Then there must be a nonzero vector (wa ,za )
such that

	cacti=M„;E„	 za>0,	 wk<0.

	Furthermore, ii5 z;, = 0 for all i	 < k. Since z,,	 0 as (Cu,,, za ) is nonzero, it

follows that z, violates the definition of strict semimonotonicity relative to

Maa . This contradiction shows that in Algorithm 4.6.3 driving variables

are always blocked.

The nondegeneracy assumption assures that driving variables can al-

ways be increased or decreased, and since driving variables are always

blocked, the algorithm generates a sequence of basic solutions of type I

or type II. There are only finitely many basic solutions of any kind and

a fortiori only finitely many of these two types. Thus, to prove that the

process is finite, it remains to show that no basic solution is ever visited

more than once. The argument for this is analogous to the one given in

Theorem 4.4.4. The details are omitted.

4.6.4 Example. Consider the LCP given by the following tableau.

	1 	 zl Z2 Z3 Z4

—10 2 3 3 2

—12 2 2 2 3

—9 2 3 3 1

—8 1 1 1 2

Here the 4 x 4 matrix M, being positive, is strictly copositive and hence

strictly semimonotone although not a P-matrix. Since all the components

of q are negative, there is no need to preprocess the problem. We start

with k = 1 and solve the leading 1-subproblem by pivoting (w 1 , z1 ). This

results in the schema

cal

W2

W3

W4
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1	 w1	 Z2	 Z3	 Z4

5 12 -32 - 32

—2 1 —1 —1 1

1 1 0 0 —1

—3 12 — 12 — 12

At this stage, k = 2. The driving variable is z2 is blocked by z 1 , hence

the next pivot step is (z l , z2 ). This produces the almost complementary

schema

1	 W1	 zl	 Z3	 Z4

10
3

1
3

2
_3

- 1 _2
3

- 16
3

2
3

2
3

0 5
3

1 1 0 0 -1

14
3

1
3

1
3

O 4
3

Using w1 as the driving variable, we find that w2 is the blocking variable

and the cycle ends with a solution of the 2-problem. The pivot (w2 i WI)

gives the complementary schema

1	 W2 zl	 Z3	 Z4

6 2 —1 —1 —2
8 2 —1 0 —2
9 2 —1 0 —2

—2 2 0 0 2

z1

W2

W3

W4

Z2

W2

W3

W4

Z2

W1

W3

W4

Here we see that k = 4. The driving variable is z4 and the next blocking

variable is 303. Performing the corresponding pivot, we get
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1	 W2	 Z1	 Z3 W3

15
7

1
7

4
7

1 3
7

11
7

3
7

2
— 7

5
7

18
7

3
7

_ 2
7

0 _2
7

- 5
7

5
7

_1
7

O _1
7

The driving variable for this schema is z3. Its increase is blocked by z2.

The pivot (z2, z3) gives the schema

1	 W2	 zl 	Z2	 W3

15
7

1
7

_4
7

- 1 3
7

11
7

3
7 -

2
7

O 5
7

18
7

3
7

2
7

O _2
7

5
7

5
7

1
7

0 _1
7

The new driving variable is w2, and it is blocked by w4. Performing the

pivot (W4 i w2) brings the computation to a close with the feasible comple-

mentary schema

1 W4	 zl 	Z2	 wg

2 - 1
5

3
5

1 2
5

2 3
5

- 1
5

0 4
5

3 3
5

1
5

0 - 1
5

1 7
5

1
5

O 1
5

This schema reveals that (zl, Z2, z3, z4) _ (0, 0, 2, 3) solves the problem.

Lemke's variable dimension scheme

Just as Van der Heyden's method is related to Algorithm 4.3.2 (the

symmetric principal pivoting method), Lemke's variable dimension scheme,

which we now describe, is based on Algorithm 4.5.4 (the parametric version

of his Algorithm, Scheme I).

z2

wl

Z4

w4

Z3

wl

Z4

W4

Z3

wl

Z4

W2
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For consistency, we continue to use the language and notation intro-

duced above. Thus, for a given LCP (q, M) of order n and a suitable

covering vector d e Rn, we have the system (q, d, M) defined in (4.4.6).

Using this, we can define the subproblem

(q,d,M), = (ga,d,,Maa).

When n is of the form {1, ... , k} for k < n, we call (q, d, M) a a leading

subproblem of (q, d, M). More specifically, it is also called the (leading)

k-subproblem of (q, d, M).

The algorithm discussed below deals with successively larger leading

subproblems, each of which is treated by Algorithm 4.5.4. A key feature is

its transition mechanism for passing from the k-subproblem to the (k + 1)-

subproblem. This feature is needed because in solving the k-problem, the

algorithm ignores the nonnegativity constraints that would normally be

imposed on all the (basic) variables, not just those of the k-problem. When

k < n and it becomes necessary to move on to the (k+1)-problem for which

feasibility has been lost, the covering vector can be modified in the (k+1) -st

coordinate. The following observations are pertinent to this process. First,

recall that the basic requirement of any covering vector d is that (d, q) ^ 0.

Thus, any vector d > d will also qualify as a covering vector. In particular,

if d is a covering vector for (q, M) and k < n,

d=d+Oek+I, 0>0,

can also be used as a covering vector. Of course, we won't know a priori how

large 0 will need to be in order to cover negativity that might be present in

the (k + 1)-problem. What's more, (in the tableau implementation of the

algorithm) the determination of such a value will be based on the updated

form of the data. Nevertheless, because of the special structure of the

modification to d and the fact that only the leading k-problem is being

solved, we have the identity

d" = d" + dek+1.

As stated earlier, the k-problems are treated with Algorithm 4.5.4.

The initial schema for the algorithm is given by (4.5.11) which at the v-

th iteration is given by (4.5.12). In the following schema we depict the
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situation at iteration v and a partitioning of the problem. In the upper left-

hand corner we have the leading k-problem. The leading k x k submatrix

of M is denoted Maa , and so forth.

1	 z0	 zV	 zä

	wa qa da	 Maa Maä wa	 (3)

	wa qa d' 	Mäa Mää wä
1	 zö 	-V	 -Vzä

Let us assume that Algorithm 4.5.4 has been applied to the leading k-
problem and terminates at iteration v. There are three possibilities which

we list below along with the steps to be taken in each. These steps consti-

tute the "transition algorithm."

Case 1. qä > 0, (3) is a complementary schema, and the variable zo has

decreased from a positive value zö to 0.

• If qk+l > 0, the (k + 1)-problem also terminates in Case 1.

• Otherwise, by nondegeneracy, qk+l < 0. Set

z0 = — qk+l /(dk+l + 0).

Regard this as the parameter value for a new major cycle

of the (k + 1)-problem. In this case, 0 < zo < 4.

Case 2. dä > 0, (3) is a complementary schema, the end of a major cycle

for the k-problem has been reached, and z0 has increased from

a positive value zö to oo.

• The parameter z0 can be increased to oo in the (k + 1) -
problem which also terminates in Case 2.

Case 3. (Mäa ). 3 > 0 for some s, the schema (3) is almost complemen-

tary, and z0 is at a positive value zö .

• If mk+l s > 0, the (k + 1)-problem terminates in Case 3.

• If mk+l, s < 0, the major cycle continues but in the (k+1) -
problem; the parameter value remains at zö , and the pivot

(wk+l , zs) is carried out.
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4.7 Methods for Z-Matrices

In Section 3.11, we considered the special, but important, class of Z-

matrices and discussed its intimate connection with the linear complemen-

tarity problem. Members of this class and its subclass, K, have interesting

properties that contribute to the qualitative analysis of LCPs and to their

efficient solution. Our purpose here is to develop pivoting algorithms for

problems of this class.

It is a consequence of Theorem 3.11.6 that Z C Q 0 . Thus, if M E Z

and the LCP (q, M) is feasible, then (q, M) must have a solution which is

a least element of its feasible region. Under these conditions, the problem

can have more than one solution, although only one of them can be a

least-element solution. This is illustrated by the case where

q=
1 J and M=  1 1 I. (1)

In this particular problem, the feasible region is the half-line

{zeR+:z2 =z1 -1}

and each of its members is a solution of (q, M). The least-element solution

is (zi, z2) = (1, 0).

Preprocessing

In general, solving the linear complementarity problem (q, M) can be

thought of as the task of identifying an appropriate index set a (corre-

sponding to the set of positive z-variables) such that

wa =qa+Maaza =0 
(2)

wa = qä + Ma a za > 0.

Once cti is known, the rest is a matter of solving the system (2) for z a > Ö.

The combinatorial challenge of the LCP is to find such an . When M

is a Z-matrix, however, the identification of cti is greatly simplified by the

following observation.

4.7.1 Proposition. If M E Z, the LCP (q, M) is feasible only if mzti > 0
when qj < 0, and if z is a feasible solution to this problem, then zi > 0. If

z solves (q, M), then wz = qj + ^^ mz^z^ = 0, if qj < 0.
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Proof. The feasibility part is obvious from the sign patterns of the data

in the inequality
n

wi=qi+	 mijzj
j=1

which for nonnegative values of the variables implies

> — (qi + E mijzj) > 0.
jai

If z solves (q, M) and qj < 0, then zi > 0 and hence wi = 0. ❑

The preceding proposition enables one to do some preliminary analysis

of a problem in this class. An LCP (q, M) with M E Z will be called

nontrivial if q is not nonnegative and the constraints are not prima facie
infeasible, i.e., there is no subscript i such that qi < 0 and mii < 0. If this

is found, the problem can be declared infeasible. If it is not found, the

problem can still be infeasible, but in a subtler way as for example in the

problem (q, M) with

	q 	 and M=1 	
—2	 2 I .

Second, after ruling out prima facie infeasibility, one can concentrate on

finding a set of variables that must be positive (and a set of inequalities

that must be binding) in any solution to the problem (if one exists at all).

This idea is crucial to several algorithms.

As we shall see, the next proposition also has algorithmic importance.

4.7.2 Proposition. Let M be a Z-matrix having nonsingular principal

submatrix M. and let M' = p, (M) be the principal transform of M

obtained by using M as pivot block. If M^ ' > 0, then

(a) Maa > 0 ,

(b) M,', > 0 ,

(c) Mira -< 0 ,

(d) M 	 Z.
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Proof. This is a simple consequence of the block pivot formulas (2.3.9)

and the sign patterns of the submatrices involved. ❑

This proposition fits in beautifully with principal pivoting approaches

to solving the LCPs of the Z-matrix type. If Maa is the (cumulative)

pivot block, it follows from (b) in 4.7.2 that each component of the basic

subvector za is a nondecreasing function of each nonbasic variable z for

j E a. Thus, once a variable becomes basic, it will not decrease and

become nonbasic when a nonbasic driving variable is increased. Moreover,

the columns corresponding to the nonbasic subvector wa play no role in

computing the updates needed for execution of the algorithm. Hence these

columns can be ignored. A further benefit of this proposition stems from

(d) which states that the Schur complement (M/Maa ) = Maa E Z. This

fact makes it possible to apply the same reasoning to the reduced LCP

(qa , M^a ) where q = q — MMa'q,.

Chandrasekaran's method

The following algorithm can be construed as a special simple principal

pivoting method. In light of the remarks made above, it does not attempt

to determine a blocking variable. Instead of preventing an increase in the

number of negative basic variables (which can happen), it assures strict

lexicographic increase in the current z-vector.

4.7.3 Algorithm. (Chandrasekaran)

Step 0. Initialization. Input (q, M) with Me Z rl R n. Let a = 0 and

define (q° , M°) = (q, M). Let v = 0.

Step 1. Test for termination. If qä > 0, stop. A solution is given by the

vector z such that z,, = qä and za = 0.

Step 2. Choose distinguished variable. Choose r E a such that q" < 0.

If m,,r <0, stop. The problem is infeasible.
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Step 3. Pivoting. Execute the pivot (wr, zT). Define

wv+1 = z'r	 r

zv+1 = w'r	 r

w? +1 = w?	 i r

zz+1 =z'	 i54r

Return to Step 1 with cti — a U {r} and v , v + 1.

Chandrasekaran's method is an example of a greedy algorithm as the

following result shows.

4.7.4 Theorem. For any M E Z rl RT >< and q E R, Algorithm 4.7.3

will process (q, M) in at most n iterations.

Proof. The argument rests on Propositions 4.7.1 and 4.7.2. To apply the

latter, we need to verify that the nonnegativity hypothesis holds. At each

iteration, the algorithm has, in effect, transformed the original system by

a block pivot on some principal submatrix M. It must be shown that

M >0.

Consider the first iteration. Either the procedure stops for want of

a needed positive diagonal entry in M or else there is a first pivot. At

this stage, the index set ce is a singleton, and the corresponding principal

submatrix is a positive matrix of order 1. At the next iteration, an index

r E a is chosen. The corresponding diagonal entry of the Schur complement

(M/MMa ) is a ratio of the form

det Map

det Maa

where ß = a U {r}. If this fraction is nonpositive, the procedure stops. If

it is positive, then up to a principal rearrangement

M00N 0+

and by virtue of having this sign pattern, it follows that the 2 x 2 matrix

Mßß >_ 0. The next thing that happens is that r is adjoined to a, which

means that the next iteration (if any) begins with M^ ' > 0. More generally,
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suppose k iterations have been executed so that al = k. Then, by 3.11.10,

it follows that M. E K. Suppose the diagonal entry of interest is mr

and let ß = a U {r}. From the theory of principal pivoting, we have

k 	det Mßß

m ''r det Maa

Since the denominator det MMa is positive, the sign of mT,. is determined

by that of det Mßß. If it is nonpositive, the problem is infeasible and the

algorithm stops. Suppose it is positive. Then, up to a principal rearrange-

ment,

MßßN B +

Pivoting on the element in the lower right-hand corner yields Mpß which

is easily seen to be a nonnegative matrix. Thus, at each iteration, the

cumulative pivot block has a nonnegative inverse, and the conclusions of

4.7.2 are applicable. Since the steps of the algorithm are executable and

the only changes to cti arise by adjoining new elements, the algorithm must

terminate after at most n iterations. ❑

Applicability of Lemke's method

In Theorem 3.11.6 the fact that Z c Q0 was demonstrated with an

analytical technique, whereas Chandrasekaran's method, Algorithm 4.7.3,

and Theorem 4.7.4 amount to a constructive proof of this result. Another

such constructive proof can be based on the fact that Lemke's method will

process any LCP (q, M) such that M E Z.

It might be imagined that this can be proved by showing that Z is

contained in the class L defined in 3.9.18. (See the end of 4.12.15.)

But this is not possible, however, because a Z-matrix is not necessarily

semimonotone: Z-matrices need not have nonnegative diagonal entries,

whereas all semimonotone matrices must.

To simplify the discussion, we assume the covering vector chosen for

Lemke's method is e, the vector of ones. Other positive covering vectors

can be used provided appropriate notational changes are made. We shall

also assume that the problem (q, M) to which the algorithm is applied is

nontrivial (as defined above).
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Lemke's method deals with a class of basic solutions of the system

	Iw — Mz — zoe = q.	 (3)

Initially, z0 becomes basic at a positive level. As long as zo remains basic,

there is a nonbasic pair of variables which for purposes of this discussion

will be denoted w, and zn . It should be emphasized that the actual index

corresponding to the nonbasic pair changes from one iteration to the next.

However, it eases this discussion to assume that the variables are contin-

ually relabelled so as to reserve the index n for the index of the nonbasic

pair.

We also use another generic notation in this discussion. Let a denote the

indices of the basic w-variables and /3 the indices of the basic z-variables.

Note that according to the convention regarding the common index of the

nonbasic pair, we have

ctiUß= {1,...,n-1 },	 arlß =0.

Up to principal rearrangement, we have

Inn 0 0 —Maa —Maß —Man —en

[I, —M, —e] =	 0 I,3,Q 0 —Mßn —Mßß —Mßn —e,13	 (4)

0 0 1 —Mna —MM,Q —Mnn —1

and

qca

q= q0

qn

The corresponding almost-complementary basis is the matrix

I.. Mn— 	 ea

B= 0 —MOO —eß

0 —Mnp — 1

Thus, Mnn and Mßp are Z-matrices, and all the entries of —Man , —Mßn ,

—Maß, —Mßa , —Mna and —Maß are nonnegative.
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Notice that the almost-complementary basic feasible solution to (3)

associated with B is

Wa
zß I = B — lq.

[ZU J
In canonical form, the column of the nonbasic variable zn is —B 'M .

From this it follows that

3zO/özn = (B— 1M.).	 (5)

As we shall see, the sign of this particular number plays a crucial role in

the solvability of the problem.

The following theorem gives another constructive proof via Lemke's

method—of the inclusion Z C Q0 .

4.7.5 Theorem. Suppose M E Z n R"'. If (q, M) is a nontrivial LCP,

then Lemke's method applied to (q, e, M) will process it.

Proof. We must show that if the algorithm fails to determine a solution,

then the problem (q, M) must be infeasible. In keeping with the choice of

covering vector and the notational conventions established above, we may

assume that

qn = min qi < 0.
i

Thus, after the initial pivot (w,,,, zo), we obtain an almost-complementary

basis B in which cti = {l, ... ‚n— 1 } and ß = 0. Because (q, M) is nontrivial,

mn , z > 0; and since M E Z, it follows that (with respect to the basis B)

the updated column of zn is positive. Using z, as the driving variable as

dictated by the algorithm—makes all the basic variables decrease. (Recall

that in this discussion, zo and all the other variables are on the left-hand

side of the equation. See (3).) This implies that zn, must be blocked by some

basic variable. The problem is solved when z0 can be chosen as the blocking

variable, so assume that some other basic variable blocks z,,. Performing

the appropriate pivot and relabeling the variables, we obtain new index

sets a and ß. As a result of this operation, we know that Mßß E P fl Z.

(Actually, it is just a single positive number at this stage, but the statement

is true nonetheless.) In the relabelled system, z^,, is the driving variable.
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Relative to the new basis B, we are interested in the number indicated in

(5). To this end, consider the system of equations

	I 	 — eca	 un	 —Man
0 —Mpp —e,ß	 up = —Mßn 	(6)

0 —Mnß —1	 un	 —Mnn

More concisely, this is

Bu =

Here B, being a basis, is nonsingular. Suppose (as is initially the case) that

Moo E P n Z.	 (7)

Then, using an elimination procedure, it is easy to see that

(1 — MnfMßß ea)un = Mnn — MnßMß^ Mßn . 	(8)

In terms of Schur complements, (8) says

	C Mn^	 J/M	

OO Ma
ao u= 	Mn 	 00 .

ß Mnn J
IM

 I
Our assumptions imply

1— MnßMßßep>0,

so (8) implies that un behaves the same way as Mnn —MnßMßß Mßn . Since

c^zo/azY^. = —un,

the variation of zo with respect to an increase of zn as a driving variable

depends on (M y .y /Mß) where -y = ß U {n}. Moreover, our assumptions

enable us to claim that

M77 E P n Z	 (M,, /Mp,Q) > 0.	 (9)

When (M,, /Mßß) > 0, the driving variable Zn cannot be unblocked.

Now suppose (M,, /Mßß) < 0 while zo is still basic at a positive level. We

now have

v^' .— (0, —MnßMß , 1) > 0.	 (10)
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From the assumption (M/Mpß ) < 0, direct calculation shows that

	

VTM	 < 0.	 (11)

From the equation

	I. —Maß —ea	 cacti	 qa

	0 —Mßß —eß	 Z13	 = qß

	

0 —Mnp —1	 zo	 qn

we obtain

—(1 — M"13m— eß)zo = q-n, — M,ßMßß qß'

Since zo is positive and its coefficient is negative, we have

vTq=qn — MnpMßßgß< 0 .	 (12)

The inequalities (10), (11) and (12), imply that (q, M) is infeasible.

The proof is complete but for one detail. The argument is predicated

on the assumption that the driving variable is never a w-variable. To see

that this is so, note that it is true at the outset. If u^,, < 0 at some stage,

we have a signal that (q, M) is infeasible. If u^,, > 0, however, then from

(6), we have

az2/azn = —(Mßß)(Mßn — epu)i > 0 for all i E ß.

Thus, except for zo, once a z-variable becomes basic, it remains so and can

never be a blocking variable hence its complement can never be a driving

variable. ❑

The reader may have noticed that the customary assumption about

nondegeneracy was not made here. This is because no such assumption is

required in the present circumstances. In a degenerate problem, it may be

necessary to make many w-variables nonbasic before the driving variable

can actually be increased by a positive amount. But apart from the extra

computational effort this causes, there is no danger of cycling.

A word of caution is in order, though. The implementation of the

algorithm must include the provision that zo will be chosen as the blocking

variable whenever it can be chosen. Failure to do so can lead to false

termination as illustrated in 4.4.16.
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When M E Z, there is an interesting connection between the processing

of (q, M) by Lemke's method and the solution of the linear program

minimize	 zo

subject to 1w — Mz — ezo = q	 (13)

w > 0, z >0, z0 >0

by the simplex method. Let us see why this is so. We assume that the

notations established above are still in force.

4.7.6 Lemma. Let B denote an almost-complementary basis generated

by Lemke's method in the solution of (q, M). Then (B — ')0 . < 0.

Proof. An easy calculation shows that

(B') 0 . = (0, (1 — MnßMßa ea)—'MnßMßß , —(1 — M10Mßß eß)—^)

which is nonpositive because Mßß E P n Z. ❑

4.7.7 Theorem. If M E Z n Rn x n and (q, M) is a nontrivial problem,

then the sequences of basic solutions generated by the simplex method lo

and Lemke's method are the same.

Proof. We may assume that immediately after the first pivot, Lemke's

method and the simplex method have the same almost complementary

basis at hand. In general, suppose the first v (almost complementary)

feasible bases are the same. Let zn and w,,, denote the nonbasic pair (with

notations and rearrangements as above). The simplex multipliers for any

such matrix are given by the last row of its inverse. This row is nonpositive

as shown in the lemma above. It now follows that there is only one negative

reduced cost associated with this basis, and it corresponds to the nonbasic

variable z,, which must be made basic. The mechanism for removing a

basic variable is the same in both algorithms. ❑

4.8 A Special n-Step Scheme

In the preceding section, we have described a special pivoting method

for solving the linear complementarity problem with a Z-matrix. The in-

teresting feature of this method is that it terminates in at most n iterations.

' °We assume that q, = mini qi < 0 and initialize the simplex method with

wl, ... , w-1, zo as the first set of basic variables.
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In turn, this termination property rests on the fact that once a z-variable

has become basic, it will stay basic and will never become nonbasic again.

The latter property also holds for Lemke's method applied to the LCP of

the same type (see the proof of Theorem 4.7.5). Note that in both in-

stances, the assumption of a nondegenerate LCP is not required for the

success of the methods.

In this section, we describe a special pivoting method that exploits the

idea outlined above—namely, that once a z-variable becomes basic, it stays

basic. The backbone of the method is the parametric LCP (q+Ad, M) with

a specially chosen parametric vector d> 0. The parameter A is initially set

(implicitly) at a sufficiently large positive value so that z = 0 is a solution

of the LCP (q + Ad, M). The goal is to decrease A until it reaches zero,

at which point, a solution of the original LCP (q, M) is obtained. The

decrease of A is accomplished by the parametric principal pivoting method

discussed in 4.5.2. As a matter of fact, the resulting scheme is just a

variant of this previous method. Each iteration of the scheme consists of

the same minimum ratio test (slightly simplified due to the special property

of the vector d) and an update of the necessary data (i.e., the pivot step).

The basic assumptions underlying the special method are (a) M is a

nondegenerate matrix, and (b) there exists a positive vector d > 0 such

that

MIXäda > 0	 (1)

for all ozC{1,...,n}.

An example of a matrix M satisfying these two conditions is any K-

matrix. Indeed, if M E K, then an arbitrary positive vector d will satisfy

(b) in view of the fact that all principal submatrices of a K-matrix are K-

matrices and such matrices must have a nonnegative inverse. Nevertheless,

there are matrices M 0 K that satisfy these two properties. An example

is the matrix
11

M =
21

A vector d of the required sort is (3, 4). Note that M P and M V Z.

4.8.1 Definition. A positive vector d E R' that satisfies (1) for all index

sets a is called an n-step vector for M.
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Using such a vector d, we now describe the special pivoting method for

solving the LCP (q, M) with a nondegenerate matrix M.

4.8.2 Algorithm. The n-Step Scheme

Step 0. Initialization. Input (q, d, Al) where M is a nondegenerate ma-

trix, d is an n-step vector for M, and q is arbitrary. Let a _ 0
and v = 0. Define (q° , d°) = (q, d).

Step 1. Determine pivot element. If dä < 0, terminate, a solution of

(q, M) is given by

za = — Mac, qa, za = 0.	 (2)

Otherwise, compute

v

A=max{ v :iEä, di >0}.
z

If .\ < 0, terminate; a solution z of (q, M) is given by (2).

Otherwise, let

r E argmax{ qZ : i E el, d2 > 0}.
d2

Step 2. Pivoting. Insert the index r into the set a, and replace v by

v + 1. If (the new) a = {l, ..., n}, terminate with the solution

z given in (2). Otherwise, compute (using the updated index

sets a and a)

(q, d) = (qä, da) — MäaMaa (qa, da)•	 (3)

Return to Step 1.

As we have mentioned, the above algorithm is a variant of 4.5.2 that

takes into account the assumptions (a) and (b) about the matrix M and

vector d. There are several noteworthy points in 4.8.2. One is the fact

that only simple diagonal pivots are performed; these are possible because

of the nondegeneracy assumption on the matrix M. Another point (which

we have already noted) is that the parameter A starts at the first critical

value and decreases; this is different from 4.5.2 where A is nondecreasing in
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value at each iteration, but is similar to the parametric version of Lemke's

Scheme I (see Algorithm 4.5.4). It should be emphasized that the change

in value of A has very little to do with the n-step termination of Algorithm

4.8.2; as we shall see shortly, the fact that d is an n-step vector is the

principal reason for the success of the algorithm. A final point to note is

that the ratio test in Step 1 involves only the nonbasic components i E d;

this is because the special property (b) of the vector d implies that the

basic components d' for i E a are always negative, (see (4)), hence they

are not qualified to be included in the ratio test.

Note that in the pivoting step (Step 2), we update only the vectors q

and d and completely ignore the change of the matrix M. Although the

displayed formula (3) gives only the updated (nonbasic) components qä

and dä, their computation implicitly involves the basic components qä and

dä which are given by

(Ica da) = — Maa (pica da)• (4)

Furthermore, since the index set a increases by one element at each iter-

ation, the vector pair (qv, d') can be computed by updating the previous

pair (qv — ' d"- 1 ).

4.8.3 Theorem. Let M E R" be a nondegenerate matrix and q E R^''
be arbitrary. Suppose that there exists an n-step vector d for M. Then

Algorithm 4.8.2 computes a solution of the LCP (q, M) in at most n iter-

ations.

Proof. It suffices to prove mrr > 0 at each iteration of the algorithm. Once

this is established, the argument used previously to justify Algorithm 4.5.2

and the fact that the index set a always increases by one element can then

be combined to yield the desired n-step conclusion in the present situation.

We start with the first iteration. Since d is a positive vector and M is
nondegenerate, the condition (b) implies that all diagonal entries of M are

positive. Hence, m°r > 0. Inductively, suppose that the algorithm is at

iteration v > 1 with a current index set cti. The index r E d has just been

determined in Step 1. We have dr > 0. The quantities dr and mrr can be

expressed as follows:

dr — dr — MraMcaadal mrr — mrr — MraMaaMar•
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Since M is nondegenerate, mr,, is nonzero. To show that it is positive,

write
v

I

	

Maa Mrr J	 L dry ] 	[dr]v

By assumption, dr > 0. By an easy calculation, it follows that

v
	i v 	r

	

r	 v
mrr

which implies mrr > 0 as desired. ❑

Theorem 4.8.3 implies that if M is an n x n nondegenerate matrix

for which there exists an n-step vector d, then M E Q. Obviously, every

principal submatrix of M must possess the same two properties as M.

Consequently, the following result is obvious.

4.8.4 Corollary. If M E Rn X n satisfies the assumptions of 4.8.3, then M

is a completely-Q matrix, and hence is strictly semimonotone. ❑

When M E P, the condition (1) for d to be an n-step vector can

be slightly weakened without affecting the validity of the conclusion of

Theorem 4.8.3. This weakening amounts to replacing the strict inequality

in (1) by

	MIXä d c. > 0.	 (5)

We state the resulting conclusion more precisely in the corollary below

whose proof is evident.

4.8.5 Corollary. Let M E Rn X n rl P and q E Rn be arbitrary. Suppose

that there exists a vector d> 0 such that q +Ad > 0 for some A > 0 and that

(5) holds for all a. Then, using this vector d, Algorithm 4.8.2 computes

the unique solution of the LCP (q, M) in no more than n iterations. ❑

The validity of the above corollary (and the more general 4.8.3) can be

linked to a certain monotonicity property of the solution of the parametric

LCP (4.51). In order to explain this property, we let z(A, q, b) denote the

(unique) solution of the LCP (q + )b, M) for M E P. The significant

thing about the notation z(A, q, b) is that A E R is the parameter of the

LCP, q E R" is the constant vector, and b E R is the parametric vector.
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According to Algorithm 4.5.2 (see also Remark 4.5.3), there exist a finite

number of breakpoints —oo < A' < A 2 < ... ,^k < oc such that within each

interval [A" A'+'] , there is an index set a (not necessarily unique) in terms

of which the solution function z(., q, d) is given by

z, (A, q, d) = — McYC (qce + Ada),	 z„ (A, q, d) = 0 	(6)

for all A E [A”, w+l]; a similar expression for z(A, q, d) is also valid within

the two unbounded intervals (—oo, A'] and [A', oc).

4.8.6 Proposition. Let M E Rn' X n n P and d C R+. The following

statements are equivalent.

(a) For each index set cti, (5) holds.

(b) For each vector q C RTh, the function zq (A) = z(A, q, d) is antitope in

AeR,i.e.,A	 A'	 zq (A) > zq (A').

(c) For each vector b E R', the function zb(A) = z(A, d, b) is isotone for

A> 0 (i.e., 0 < A < A'	 zb(A) < zb(A')) and antitone for A < 0.

Proof. (a) = (b). This is obvious from the expression for z(A, q, d) (see

(6 )).

(b) = (a). Suppose that for some index set cti 0, M^äda contains a

negative component, say (M^ä d,)z < 0 for i E a. Pick a vector q E R'

such that

— MaägIX > 0, and q0 — M,3, M , qc. > 0.

Then for this vector q, we have a = supp zq (0). Moreover, for A < 0

sufficiently close to zero, we have (zq (A))i < (zq (0))i, contradicting the

antitonicity of the function z q (•).

(a)	 (c). We prove only the isotonicity of zb(A) for A > 0. Take two

values A' > A" >_ 0. Without loss of generality, we may assume that A' and

A" belong to the same interval of linearity of zb (A), say [AU, A"+ 1 ], and that

the corresponding index set cti for this interval is nonempty. We have

0 < ((A' )) a = — Maä (da + A'ba) < —A'M^ä ba .

Since A' > 0, it follows that Mßä ba < 0. Hence, the isotonicity of z5 (A) for

A > 0 follows.
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(c) = (a). Suppose that for some index set a	 0, M,,-,,d, contains

a negative component, say (MIXäda )i < 0 for i E a. Since Maa is a P-

matrix, there exists a vector fa > 0 such that Maa fa > 0. Let e > 0 be

such that

(Maadca)i+efz <0.

Define

ba = —da — EMTYX fa,

and let b0 be such that

(da — MäaMaa d,) + (bam — M„„Maa ba) > 0.

Then for this vector b, we have a = supp zb(1). Moreover, it is easy to see

that —(Mb)i < 0. Consequently, for A < 1 but sufficiently close to 1,
we have (zb(A))2 > (zb(1))Z, contradicting (c). ❑

Hidden Z-matrices and n-step vectors

It turns out that if M is a P-matrix to start with, then the existence

of an n-step vector for M can be characterized in terms of the hidden Z-

property for the transpose of M. We divide the proof of this result into

two parts; the following theorem asserts the first part.

4.8.7 Theorem. Suppose that MT E Rf"fl is a hidden K-matrix. Let X
and Y be two Z-matrices satisfying

(a) MT X = Y,

(b) rTX +STY> 0 for some r,s> 0.

If d E RTh is any vector such that dT X > 0, then d is an n-step vector for

M.

Before proving this theorem, we compare its implication with the results

derived for an LCP with a hidden Z-matrix (see Section 3.11). Under the

assumptions of Theorem 4.8.7, it follows that for any vector q E
the LCP (q, M) can be solved by the n-step pivoting scheme described

in 4.8.2 with the parametric vector d being an arbitrary vector satisfying

dT X > 0. According to Theorem 3.11.18 and the subsequent discussion, a

solution of the LCP (q, MT ) can be obtained by solving the linear program
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(3.11.2) with the vector p = d. This is an extremely peculiar situation

in that a very special pivoting method solves an LCP, whereas a certain

linear program solves a related LCP that is defined by the transpose of

the matrix involved in the former problem; moreover, the objective "cost

vector" in the linear program is the same as the parametric vector in the

special pivoting scheme. Perhaps some kind of "duality" relationship can

be used to explain this mysterious phenomenon. Unfortunately, such an

explanation has yet to be given.

Proof of 4.8.7. First of all, we note that Theorem 3.11.19 implies X E K.

Hence X-1 exists and is nonnegative; thus d > 0. Let a C {1, ... n} be

arbitrary. We verify the condition:

Mßä da > 0.	 (7)

According to the expression (3.11.9), we have

M-T — (X/Xaa)(W/Xaa) -1

where W is the matrix given in (3.11.8). Consequently,

Mßä = (W/X)aa T (X/Xaa) T.

Put d = XT d. It is then a simple matter to show

(X/Xaa) T dä = dä — ((Xaa) - 1 Xaä) T da

which is positive because d is a positive vector and X E K. Moreover,

the Schur complement (W/Xaa ) is a K-matrix, hence has a nonnegative

inverse; in particular, its inverse cannot have a zero row or column. Con-

sequently, the desired inequality (7) follows. Since a is arbitrary, it follows

that d is an n-step vector. ❑

In order to prove the reverse of Theorem 4.8.7, we first derive a useful

property of an n-step vector.

4.8.8 Lemma. Suppose that d is an n-step vector for the P-matrix M E

Then, for each index set a C {1, ... , n}, and each index t ¢ a,

cdt—Mt,M-1d ,, >0.
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Proof. Let a' = a U {t}, and write

day = Ma i1,da ,

which by assumption, is a positive vector. It is easy to see that

dt — MtaMa^dc,
dt =

mtt — Mtc,MaaMat

Since M E P, the denominator is positive. Hence, it follows that the

numerator is positive also. ❑

Our goal is to show that if M is a P-matrix possessing an n-step vector,

then MT must be a hidden Z-matrix. In order to exhibit the required Z-

matrices for this purpose, we define the matrix M i obtained from MT by

first negating the i-th column and then negating the i-th row. Note that

this leaves the i-th diagonal of M unchanged. In terms of the sign-changing

matrix introduced in Section 2.3, we have

M = E2MT Eti	 (8)

where EZ is equal to the diagonal matrix with all diagonal entries equal to

1 except for the i-th diagonal entry which is equal to —1. It is easy to see

that M Z E P. Let p' denote the i-th column of M. The LCP (p2 , M t ) has

a unique solution which we denote by z2 . We claim that z2 = 0. Indeed,

if z2 were positive, then the vector ez + z i would be a nonzero solution of

the homogeneous LCP (0, M i), contradicting the P-property of M. We

summarize this discussion in the lemma below.

4.8.9 Lemma. For each i = 1, ... , n, the LCP (pi , M2 ) has a unique so-

lution z z with z2 = 0. ❑

The following result formally states the reverse of Theorem 4.8.7.

4.8.10 Theorem. Let M E R >< f1 P. If an n-step vector exists for M,,

then MT is a hidden Z-matrix.

Proof. For each i = 1, ... , n, let zz be the solution as described in Lemma

4.8.9, and define X.  = ei — z 2 . Then, the matrix X E Z. We show that
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the matrix Y := MTX E Z. By an easy manipulation and using the fact

that z^ = 0, it is not difficult to deduce that for i

Yij= — (2>'+M^z^)i<0

where the last inequality holds because z3 e SQL (p3  M3 ). Hence, the

matrix Y E Z. Let d > 0 be an n-step vector for M. It remains to be

shown that dTX > 0, or equivalently, dTX.1 > 0 for all j = 1, ... , n. Fix

an index j. Let ci = supp z3 , and let

dc = Maa da.

Then, da = Maada . Since = 0, it follows that j E a; moreover, we have

0 = (p' + Mz') a = —(Mj a ) T + (MT ) aazä.

Consequently,

dTX.j = dj — dTzj = dj — dzä

=dj — (d^)T(M c,) Tzä

=dj—Mjada >0

where the last inequality follows from Lemma 4.8.8. ❑

Combining Theorems 4.8.7 and 4.8.10, we obtain the following char-

acterization.

4.8.11 Corollary. Let Me Rn"n rl P. Then, MT is hidden Z if and only

if M has an n-step vector. ❑

The proofs of the two Theorems 4.8.7 and 4.8.10 reveal several inter-

esting facts. First, if M E P, then there must exist Z-matrices X and Y,

with X having positive diagonal entries, such that MTX = Y, regardless

of whether an n-step vector exists for M. Moreover, a vector d > 0 is an

n-step vector for M if and only if dTX > 0. This last observation implies

that if an n-step vector for M exists, then the matrix X E K and the set

of the n-step vectors is equal to int(posX —T ); in particular, the closure of

this set of vectors is equal to the simplicial cone pos X—T.
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4.9 Degeneracy Resolution

Throughout most of this chapter on pivoting methods, we have assumed

the nondegeneracy of certain linear systems and their basic solutions. Two

exceptions occurred in Section 4.2 where we saw a lexicographic scheme—

used in conjunction with Algorithm 4.2.2 and a least-index rule that was

formally part of Murty's Algorithm 4.2.6. In addition to these, we noted

that nondegeneracy assumptions are unnecessary in the Dantzig/van de

Panne-Whinston Algorithm 4.2.11 for the symmetric positive semi-definite

case, in the methods for Z-matrices presented in Section 4.7, and in the

n-step scheme of Section 4.8.
In Section 4.2 we gave a single illustration of the theoretical need for

a degeneracy resolution techniques in a pivoting method for the LCP. In

this section, we shall document this need a bit further and present some

standard cycling remedies that ensure the finiteness of the major pivoting

algorithms studied in this book.

Examples of cycling

In this subsection, we give two examples of cycling one for the sym-

metric PPM and the other for Lemke's method, Scheme I. In addition to

providing evidence that cycling can occur, these examples verify the sharp-

ness of certain lower bounds on problem size and cycle length.

4.9.1 Example. Consider the following LCP (q, M) in schematic form.

1	 Zi	Z2	 Z3	 Z4

—1 1 —0.3 —92108 173608

0 0.3 0.00001 0.5 —2

0 92108 —0.5 23840 —44932

0 — 173608 2 —44932 84688

By breaking the matrix M into four blocks of order 2, it is not difficult to

see that it is positive definite. Therefore, except for its nondegeneracy as-

sumption, the symmetric PPM is applicable to this problem. Furthermore,

it can be shown that the algorithm could execute the principal pivots

wl

W2

W3

W4
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(W4, z4), (w3 , z3), (w2 , z2), (z4, w4), (z3 , w3), (z2, w2),

which would bring one back to the original schema.

The entries of the matrix in this LCP are somewhat complicated, and

perhaps a better example to illustrate cycling in the PPM can be found.

If so, it will not be of order less than 4, for it is known that this is the

minimum order for cycling to occur in the symmetric PPM. For further

discussion of this result, see 4.12.28.

A smaller—and much tamer example illustrates cycling in Lemke's

method.

4.9.2 Example. Consider the LCP in which

0 —1	 —1	 1

q= —2 and 1	 1	 0	 .

—3 1	 11

In this instance, we choose the covering vector d = (0, 1, 1).

1	 z0	 zl	 Z2	 Z3

wl	 0 0 —1 —1 1

W2 —2	 1	 1	 1	 0

W3 —3	 1	 1	 1	 1

Lemke's method will first execute the pivots (W3 i zo) and (w2 , z3) after

which it will yield the schema

1 W3 Z1	 Z2 W2

wl 1	 1 —1 —1 —1

Z3	 1	 1	 0	 0 —1	 (1)

zo 2	 0 —1 —1	 1

At this schema, the algorithm executes the pivots (wl, z2 ), (z2 , z1 ), (zl , W2 ),

and (w2 , w 1 ) after which it returns to the schema (1). This is a cycle of

length four. There are no shorter cycles for Lemke's method.
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The next result shows that the order of the LCP in the numerical ex

ample above is as small as it can be.

4.9.3 Proposition. If Lemke's method 4.4.5 is applied to a linear com-

plementarity problem (q, M) of order 2, it will terminate in a finite number

of steps.

Proof. The statement is trivial if q > 0. There is no loss of generality in

assuming that ql < 0. Let d denote the nonnegative covering vector used

in Lemke's Scheme I. We may assume that d = (d 1 , d2) where d1 > 0 and

d2 > 0 if q2 < 0. A crucial element of the proof will turn out to be that

the pivotal transforms of d2 are all nonnegative.

The initial schema is

1	 z0	 Z1	 Z2

w1 qi di m11 m12

W2 q2 d2 m21 m22

It is also not restrictive to assume that the first pivot of the procedure is

(wi, zo ). After this pivot, the schema is

1 w1 Z1 Z2

zo qi d11 mil mit

W2 q2 d2 m21 m22

in which d2 > 0. The driving variable is now z 1 . If zo blocks zl, the

pivot (z0, zl) occurs and the algorithm terminates. It also terminates if z1

is unblocked. Thus, we may assume that w2 blocks z1. After the pivot

(W2, zl), the schema is

1 W1 W2 Z2

zo q1 di mil M12

zl q2 d2 m21 m22

Again d2 > 0. The next driving variable is z2. If it is blocked by zo,

the method will pivot (zo, z2) and terminate. It will also terminate if z2
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is unblocked. The remaining possibility is that zl blocks z2. The pivot

(zl,z2) gives

1 W1 W2 Z1

zo q3 d i mil mi2

z2 4ä d 2 m21 M22

The driving variable for this schema is wi. Since d > 0, the variable z2

cannot block w l . So either wl is blocked by zo (in which case the procedure

terminates after one last pivot) or else wl is unblocked and the algorithm

terminates with a secondary ray. In any event, the algorithm cannot cycle

and terminates in finitely many steps. ❑

Toward the prevention of cycling

The above examples reinforce the notion that—for the sake of theory

if not practice—something must be done about "the degeneracy problem."

It should be noted, however, that degeneracy per se is not a problem. As

we have seen, degeneracy can (but need not) lead to a problem, namely

the problem of cycling. Degeneracy resolution techniques are motivated by

the need to eliminate this problem.

Like the simplex method for linear programming, pivoting methods for

the LCP are intended to be (essentially) adjacent extreme point algorithms.

They produce sequences of "adjacent" bases of a certain system of linear

equations. These bases give rise to basic solutions of the equations. (In

most cases, these basic solutions are extreme points of certain polyhedral

sets). In the presence of degeneracy, there can be more than one basis

corresponding to a particular (basic) solution of the linear system, and

hence it is not necessarily the case that a change of basis leads to a different

point. When an algorithm cycles at a basic solution, it generates a sequence

of bases that repeats one of those already generated. This prevents the

algorithm from terminating in a finite number of steps.

Several devices have been proposed for resolving degeneracy in the LCP.

Two of them were used in Section 4.2, namely lexicographic ordering and

least-index rules. Other techniques are mentioned in Section 4.12. In the

remainder of this chapter, we first show how Lemke's Scheme I can be
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made finite by incorporating lexicographic ordering of vectors, then we

show that a least-index pivot selection rule will make the symmetric prin-

cipal pivoting method finite when applied to LCP's of the sufficient matrix

type.

Lexicographic degeneracy resolution

In Section 4.2, we used lexicographic ordering in connection with Algo-

rithm 4.2.2. We shall now use this technique in conjunction with Lemke's

Scheme I. To describe this version of the algorithm, we combine the tableau

form used in Section 4.4 with the lexicographic machinery of Section 4.2.
In particular, we consider the schema

1 x zo z

(2)w q Q d M

In (2), d is the usual sort of nonnegative covering vector, and Q is chosen to

be a nonsingular matrix with lexicographically positive rows. The identity

matrix would do quite nicely.

The schema (2) is a way of representing the system of equations

Iw— Mz—dzo =q+Qx. (3)

At present, we attach no meaning to the components of x, though we may

think of them as being zero. We shall, however, be interested in their

coefficients, the entries of Q and its pivotal transforms.

For the present purposes, it will be helpful to introduce the notations

Q = [q, Q] and .M = [d, M] .

Notationally, we shall regard q and d as the 0-th columns of Q and M,
respectively.

The effect we wish to achieve by using Q is to modify the adjacency

structure of the set of almost complementary feasible bases. In particular,

we want to prevent an almost complementary feasible basis from having

more than two such neighbors.

Let A denote the n x (2n + 1) matrix [I, —M, —d]. Invertible n x n
submatrices of A are called bases in A. A basis B in A is called almost
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complementary if it contains —d and not both of I. and —M. i for any

i = 1, ... , n. Relative to (3), a basis (almost complementary or otherwise)

B is feasible (in the usual sense) if B-1 q > 0. What we need is the following

notion.

4.9.4 Definition. Relative to the system (3) a basis B is lexicographically

feasible if B -1 Q >- 0, i.e., has lexicographically positive rows.

An initial almost complementary lexicographically feasible basis can be

determined as follows. Let

r = arg lexico max{ Ẑ Qi.: Qio <0}.	 (4)

This is precisely the analogue of the ratio test used in Algorithm 4.4.5 to

obtain its first almost complementary feasible basis.

4.9.5 Proposition. If r is determined as in (4), then

B = {Li, ... '.r-1, —d, I•r+l, ... , I.,]

is an almost complementary lexicographically feasible basis.

Proof. It is clear that B is an almost complementary basis; it is also

a feasible basis in the ordinary sense. To see that B is lexicographically

feasible, note that B -1 is the elementary matrix whose r-th column is

(1/dr )(dl , ..., dr—,, —1, dr+l, ..., dn,). Then, obviously,

(B — 'Q) r, = -1 Qr. >- 0;

moreover, for all i r,

(B-1 Q) i. = Q. - d2 Qr. >- 0
r

by virtue of the definition of r and the fact that, by hypothesis, Q has

lexicographically positive rows. (The latter stipulation takes care of the

case where d2 = qj = 0.) ❑

With r chosen as above, the driving variable for Lemke's method is Z.

In this case, and in general, the minimum ratio test used to determine a
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blocking variable (if any) is the lexicographic analogue of the usual one.

For instance, at the v-th iteration, if the k-th column of .M" is the column

of the driving variable and this column contains at least one negative entry,

then the lexicographic minimum ratio test is to find

t = arg lexico min{ -1 Q? : m ' < O}. (5)
m2k

4.9.6 Proposition. Lexicographic feasibility is preserved when the lexi-

cographic minimum ratio test (5) is used for the pivot selection rule in

Lemke's method.

Proof. The argument is much the same as in 4.9.5. ❑

The all-important property that the notion of lexicographic feasibility

brings to bear on the cycling problem is given in the following result.

4.9.7 Proposition. An almost complementary basis can be adjacent to

at most two lexicographically feasible almost complementary bases.

Proof. In the unique schema corresponding to an almost complementary

basis there are at most two columns that are candidates for pivoting and

hence for passing to an adjacent almost complementary basis. These are

the column of the blocking variable and the column of the driving variable.

(Only one of them would be indicated by Lemke's method. The other

would correspond to reversing the almost complementary path.) In either

of these columns, a pivot on any element other than the one determined

by the lexicographic minimum ratio test would lead to a lexicographically

infeasible basis. ❑

Least-index degeneracy resolution

In Section 4.3, we demonstrated that the principal pivoting method

will process any linear complementarity problem (q, M) in which M is

row sufficient. Here we shall show that by introducing a least-index pivot

selection rule, the nondegeneracy assumption can be dropped provided that

M is (row and column) sufficient. It will be helpful to adopt the notational

apparatus developed in Section 4.3 for the PPM.

In applying the PPM to the linear complementarity problem (q, M), we

break ties among the blocking variables according to the least-index rule
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(A) If the distinguished variable is among the tied blocking variables,

choose it as the blocking variable (and terminate the major cycle).

(B) Otherwise, choose the (basic) blocking variable with the smallest in-

dex as the exiting variable.

4.9.8 Algorithm. (Symmetric PPM with Least-Index Pivot Rule)

Step 0. Set v = 0; define (w ° , z° ) = (q° ,0). Let A be any number less

than mini qo

Step 1. If q'1 >_ 0 or if (9',z") >_ (0, 0), stop; (w", z) :_ (q", 0) is a

solution. Otherwise 11 , determine an index r such that zr = A
or (if none such exist) an index r such that w,r < 0.

Step 2. Let (,r be the largest value of zr > zr satisfying the following

conditions:

(i) zr <0ifzr <0.

(11) W^ (z1 ... , zr-1 zr i zr+1, ... , zV < 0 if wr <0.

(iii) W'(',. . . , zT-11 zr , zr+l, ... , zn) > 0 if wi > 0.

(iv) l ẑv(zi,...,zr-1,zr,zr+l,...,i vy )>Aif 1' <0.

Step 3. If (,r = +oo, stop. No feasible solution exists. Otherwise,
a basic variable, or the distinguished variable, and a condi-

tion in Step 2 are associated if the given variable appears in
the condition's "if" clause. A variable is considered a blocking
variable if making zr > (r would cause its associated Step 2
condition to be violated. If the driving variable is a blocking
variable, then let zr + 1 = 0, zr+ 1 = zr for all i zA r and let
w v+1 = Wv+1( zv+l) = Wv (zv+1) Return to Step 1 with v re-
placed by v+1. Otherwise, let s be the unique index determined
by the least-index rule from among the blocking variables.

Step 4. If mss > 0, perform the principal pivot (ws, zs ). Let

v ^1	 v v	 v	 rv v	 v	 v-^1	 v^-1 ( +l
	z s	= II ŝ (zl ... , zr 1 Sr Zr+1 , ... , zn), w	 = W	 lz	 )

11 At the beginning of a major cycle, for each index r, at most one of wr, zr can be

negative.
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If s = r, return to Step 1 with v replaced v + 1. If s	 r,

return to Step 2 with v replaced v + 1. If mss = 0, perform the

principal pivot {(w, 	 (w z")}. Put wv+l = zv ,Dv+l =
	s r 	 r s	 r	 s	 s	 Sr

z + 1 = z for all i V {r > s} > and then w"+1 = Wv+' (zv+') for
2	 2 	 Z	 Z

all i {r, s}. Return to Step 2 with v replaced by v + 1 and r
replaced by s.

The finiteness argument

In the following, we show that the symmetric PPM with the least-index

rule (stated above) will process any linear complementarity problem (q, M)
in which M is sufficient. It is interesting to observe that the mechanics of

the algorithm itself appears to require only the row sufficiency property.

The finite termination of the algorithm (with or without the least-index

rule) is assured if each major cycle is finite, for the total number of negative

variables is nonincreasing during each major cycle and decreases strictly at

the end of the major cycle. Such finiteness is realized when the problem

is nondegenerate. We show here that, even for degenerate problems, the

major cycles of the PPM are finite provided the least-index rule is enforced

in the pivot selection criterion. As will be seen below, the finiteness of the

PPM with the least-index rule hinges on the column sufficiency property.

This is why we assume the matrix is both row and column sufficient.

Suppose cycling occurs in a major cycle of the algorithm. It is not

restrictive to assume that it is one in which w l is the distinguished variable.

It follows from the discussion following Algorithm 4.3.2 (just above 4.3.3)

that since w l and zl are monotonically increasing, both w l and z l are fixed

during cycling. However, the algorithm tries to increase w l or z l in this

major cycle. Hence stalling occurs during these steps. Accordingly, if we

delete all the variables that are not involved during cycling, the PPM with

the least-index rule merely looks for the index i such that

s=min{i:m21 G0}

and then pivots on mss (if m 	 0) or else on

mil m'
if mss =0.

v	 v
msl mss
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Without loss of generality, we may assume that all the variables are in-

volved in the pivoting during cycling. Then, during cycling, the PPM with

with least-index rule performs the same pivoting sequence as the following

scheme does.

Step 0. Start with the system w" = q' + M'z', v = 0, where w° =
q° + M°z° is the initial system. (In the following, M 2 repre-

sents the column of Mr' corresponding to the nonbasic variable

zi at iteration v. Similarly, Mz represents the row of M" cor-

responding to the basic variable w2.)

Step 1. If M., > 0, stop. The driving variable zl can be increased

strictly. Otherwise, let s = min {i : m i < 0}.

Step 2. If mss > 0, perform a pivot on ms s and return to Step 1 with v

replaced by v + 1. Otherwise, perform a block pivot of order 2

on the principal submatrix

mii m'3

v vmsi mss

and return to Step 1 with v replaced by v + 1.

If we can show that M,i > 0 after a, finite number of pivots in the above

scheme, then, since the driving variable zi can be increased strictly at this

step, we obtain a contradiction to the assumption that cycling occurs in a

major cycle (in which wl is the distinguished variable) of the PPM with

the least-index rule.

Before proceeding, we present a small result on sufficient matrices. This

result provides a mechanism for generating sufficient matrices of arbitrarily

large order.

4.9.9 Lemma. Let M E RT " Th be column (row) sufficient. Then for any

real numbers a, b, c such that ab < 0 < c, the matrix
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m11 m12 ... min a

m21 m22 ... m2n 0

M=

mnl mn2 ... mnn 0

b	 0	 ...	 0	 c

is also column (row) sufficient.

Proof. It suffices to prove the assertion for column sufficient matrices.

Let x = (xl, x2 • • • xn xn+l ) T satisfy the inequalities xi( [ ) z < 0 for

i = 1, ... , n + 1. Then in particular,

xl (mllxl + ... + minxn) < — axlxn+l

and

bxlxn+l < — ex 2 +1 < 0.

Since ab < 0 it follows that — axixn+l < 0. Thus

n

X^(^mzixz) <0 i=1,... n.

Since M is column sufficient,

xi(Emiixi) =0 i = 1,...,n.
z—i

In particular, it follows that xlxn+l = 0. Hence x * (Mx) = 0. ❑

4.9.10 Lemma. In the above scheme, a pivot in row s, where s > 2, must

be followed by a pivot in some row with a larger index before another pivot

in row s can occur.

Proof. The proof is by induction. If the matrix M is of order 1 or 2, the

lemma is trivial. Suppose the lemma holds when the order of M is less

than n and now consider the case when M is of order n.
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We shall examine the situation where two pivots occur in row s and

2 < s < n — 1. If, between these two pivots, there is no pivot in some row

with a larger index, then by deleting M. and Mn ., a contradiction to the

inductive hypothesis can be derived. Therefore, it suffices to show that

there is at most one pivot in row n.

Suppose a pivot occurs in row n at iteration v1. Let (Ti) denote the

corresponding tableau at this iteration. (For simplicity, we represent (Ti)

without using superscripts.)

1 z1 ••• zn

w1 ql mll ... min

wn qn mnl ... mnn

Tableau (Ti)

By the choice of the pivot row, we have mil > 0 for all i < n — 1 and

mn1 <0 in (Ti).

Suppose the next occurrence of a pivot in row n is at iteration v2 .

When this occurs, zn must be the exiting basic variable and w 1 is either

basic (Case I) or nonbasic (Case II).

Case I. (w 1 is a basic variable at iteration v2 .) Let Q be the set of indices i

such that w z is nonbasic at iteration v 2 . Note that 1 Q. Let M denote the

principal transform of M at this iteration. Clearly, M can be obtained from

M by performing a block pivot on the principal submatrix M. Thus,

MQ1 = —M^ä Mai •	 (6)

Now

MQ1^	 and M1
	 (7)
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Being a (nonsingular) principal submatrix of a sufficient matrix, M0. 0. is a

sufficient matrix. From (6) and (7), we have

Mai*(M;^Mai) —
_

which is impossible since MQQ is column sufficient.

Case II. (w1 is a nonbasic variable at iteration v2.) Let the definition of a

be as in Case I, but note that now we have 1 E a. Since M is sufficient,

the diagonal entry no- is nonnegative. There are two cases.

Case II.1 (m ll > 0.) The pivot on mll would not change the sign configu-

ration of Mal namely

11/IQ

0

Once this pivot is performed, we have Case I (with a different index set (7).

Case II.2 (rill = 0.) Here there are two more cases.

Case II.2.1 (m il > 0.) By performing a pivot on mu in tableau (Ti),

the variable wl becomes nonbasic and the sign configuration of M.1 is

unchanged. Therefore, as in Case I, a contradiction can be derived.

Case II.2.2 (mil = 0.) Let (T2) denote the tableau at iteration v2.
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1	 wa 	zQ

za qQ Maa Mae

wa qa Mar Mai

Tableau (T2)

Now let qn+ l E R be arbitrary and enlarge (Ti) to (T1*) as follows

1	 Z1	 Z2	 ...	 Zn	 zn+1

W1
	

q1	 mll m12 ... min	 —1

W2	 q2	 m21 m22 . . . m2n	 0

Wn 	qn mnl mn2 ... mnn	 0

Wn+1 qn+1	 1	 0	 ...	 0	 1

Tableau (T1*)

By Lemma 1, the bordered matrix of tableau (Tl*) is sufficient. The block

pivot on the principal submatrix MQQ in (Tl*) produces a tableau (T2*)

having (T2) as a subtableau.

1	 Wa	 zQ	 zn+l

zQ 	qQ I MQQ 	Moe	 MQ,n+l

We

')n+1

Tableau (T2*)

Notice that (T2*) has the same basic z-variables as (T2), hence tableau

(T2*) is the corresponding enlargement of (T2).
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Pivot on Moo

(Ti)	 —>	 (T2)

Enlargement	 f	 f	 Enlargement

(T1 *)	 (T2 *)

Pivot on MQQ

By pivotal algebra, we have

mit+1,1 (M+ 1,aNlaa)1

= Mn+1,6Ma1

= m11

= 0.

Now the matrix

m11	 ml,n+l	 0 —1

mit+l,l mit+1,n+1	 1	 1

is nonsingular and can be used as a pivot block in (T1 *). Denote the

resulting tableau by (T2**). In it, wl and wn+1 are nonbasic while all the

other wi are basic.

1	 W1	 Z2	 • • • zn	 wn+1

Q1 mll m12 ' ' '	 m1n ml,n+l

q2 77121 m22 m2n 7112,n+1

qn mnl mn2 ' ' '	 mnn 1n,n+1

qn+1 Tnn+1,1 mit+1,2 mit+l,n mit+l,n+l

Tableau (T2 **)

21

102

wn

zn+1

In tableau (T1 *), we have
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mll = 1, rnzl > 0 i = 2, ..., n — 1, mnl < 0, and mit+1,l = 1.

Hence

mll = 0, mil > 0 i = 2, ... , n — 1, mn l < 0, and rnn+l,l = — 1.

Since both (T2*) and (T2**) are principal transforms of tableau (T1*),

it follows that (T2**) is a principal transform of (T2*). In fact, if we

define the index set p = (a \ {1}) U {n + 1}, then (T2**) can be obtained

by performing a block pivot on the principal submatrix i7i in (T2*).

Therefore Mp1 = —M — 'Mp1 . The indices n and n + 1 belong to p and

mnl <0, mit+1,1 = 0, inl <0, th +1 1 = — 1

while mi 1 > 0 and mil > 0 for all other i E p. Accordingly, we obtain

MP l * (MPPIMp1) 
ti

0 0

But this is impossible since M-1 is (column) sufficient. ❑

4.9.11 Lemma. In tableau (Ti), M. > 0 after a finite number of itera-

tions.

Proof. For j > 1, let µ(j) be the number of pivots that occur in row j.
In the proof of Lemma 2, we have shown that µ(n) < 1. Furthermore, it

follows from Lemma 2 that

n

µ(j) 5	 (i)+1.
z=j+1
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In other words,

(n-1) < it(n)+1<2

µ(n — 2) < 2 2

/-t(n — i) < 2'- 1 + 2 i- 2 + ... + 2 + 20 + 1 = 2 i .

Therefore, the scheme will terminate after a finite number of iterations. ❑

4.9.12 Theorem. In the case of a linear complementarity problem (q, M)

with a sufficient matrix M, every major cycle of the PPM with the least-

index rule consists of a finite number of pivots.

Proof. Suppose cycling occurs in a major cycle in which wl is the dis

-tinguished variable. Then, since wl and zl are monotonically increasing,

both wl and z l are fixed during cycling. However, it follows from Lemma

4.9.11 that M.1 > 0 after a finite number of steps. Therefore, after a finite

number of steps, we either end on a ray or we pivot outside the alleged

cycle, thereby contradicting the assumption that cycling occurs. ❑

4.9.13 Corollary. In the sufficient matrix case, the PPM with least-index

rule will process the LCP (q, M) in a finite number of steps.

Proof. Each major cycle of the algorithm reduces the number of negative

components in (w, z) by at least one. The assertion now follows from the

theorem. ❑

4.9.14 Remark. In implementing the least-index rule it is important to

obey statement (A) which says that if the distinguished variable is among

the tied blocking variables, then it is to be chosen as the blocking vari-

able. Failure to do so can lead to the false impression that the problem is

infeasible.

4.10 Computational Considerations

In this section we touch on two issues connected with computational

aspects of the linear complementarity problem. The first of these relates

 



4.10 COMPUTATIONAL CONSIDERATIONS	 353

to the implementation of pivoting methods, specifically to a practical al-

ternative to pivoting in schemas. The second is concerned with numerical

examples of linear complementarity problems on which certain pivoting

methods necessarily require a large number of pivot steps. These are but

two computational topics that could have been discussed.

Implementation

Thus far, every pivoting method covered in this chapter has been pre-

sented in schematic (tableau) form. Iterations were described in terms of

pivotal transformations that affect all the data. In some cases, particularly

those connected with certain matrix-theoretic properties, this explicit style

of treating the algorithms helps to clarify why they work. This alone does

not mean that these methods need be or even should be implemented

that way.

Actually, at any given iteration, relatively little information is required

to execute these algorithms. For most of them, deciding on termination or

the next pivot element involves only the updated version of the constant

column and that of the driving variable. If (q, M) is of order n, this decision

involves at most 2n numbers, whereas the whole tableau may necessitate

n x (n + 1) or n x (n + 2) pieces of data. The repeated updating of all

these numbers is a computational burden; it may also lead to (and suffer

from) roundoff error. In exact arithmetic, the data needed to proceed from

one iteration to the next are uniquely determined by the original data and

the current basis. We wish to describe, briefly, how to take advantage of

this fact using techniques of numerical linear algebra (as commonly found

in linear programming, for example). In doing so, we shall make reference

to equations such as

Iw—Mz=q	 (1)

and

Iw — dzo — Mz = q. (2)

There are two main ways of carrying out this alternative to tableau-

style pivoting. One of them uses the full basis which, in general, may be

composed of some columns from the left-hand side of (1) or (2), depending

on the algorithm. The other way, called the compact (or reduced) basis

approach, works with certain submatrices of —M or of —[d, M]. We shall
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discuss the compact basis approach as it applies to four algorithms and

relegate discussion of the full basis approach to the Notes and References.

Let us consider Murty's least-index method 4.2.6 once again. Recall

that it applies exclusively to P-matrices. Accordingly, let the original prob-

lem be (q° , M°) = (q, M) where M E P. At a typical iteration, say the

v-th, let cti denote the index set of the currently basic z-variables. The

corresponding index set for the basic w-variables is then given by & the

complement of a in {1,. . .  , n}. The next step of the algorithm requires up-

dating the constant column, qv and checking it for nonnegativity. This task

can be broken into two parts, each corresponding to one of the subvectors

qä and qä. The first subvector is given by the equation

q
	— (Mace) ^qa ,

but using the inverse matrix (M)' is not really essential. Instead, the

vector qä can be thought of as the unique solution of the equation

Mx —qmm.
Solving this equation is facilitated by having a suitable factorization of

the nonsingular matrix M. (This might be the LU factorization or the

QR factorization, for instance.) Now according to the principal pivoting

formulae, the other subvector, qä, satisfies the equation

v	 o	 o	 o —1 o
qa = qa Mce (Mace) qa

qä + Mäaga.
It should be noticed that the right-hand side is ultimately given in terms

of the original data qä, M° IX and the just-computed vector, qä.
Once these two subvectors are known, they can be tested for nonneg-

ativity. If both are nonnegative, the algorithm terminates. If not, it finds

the smallest index i such that qi < 0. Let this be r. If r E a, then Zr is

made nonbasic and r is transferred from a to a. If r E i, then zr is made

basic and r is transferred from ti to a. In either case, the size of a (and

hence the order of M°a ) changes by 1 from iteration v to iteration v+1. At

this stage, a factorization would be sought for the new matrix M. This

in turn, would call for the application of techniques for updating matrix

factorizations. Some references on this subject are cited in 4.12.32.
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Like the above method, the n-step scheme presented in Section 4.8 uses

only simple principal pivots, but is based on a parametric formulation that

takes advantage of a special relationship between the matrix M and the

positive direction vector d. The choices made in Algorithm 4.8.2 require

only knowledge of the updated vectors q" and d". Although the algorithm

as expressed in 4.8.2 refers to MIXä , the critical decisions depend on being

able to solve equations with M. Thus (4.8.2) could have given za as the

solution to

M0 0
aax --qa

Equation (4.8.4) could have been written in the form

Maa(ga d,') = (pia, da)'	 (3)

Using the solution of this equation, it would then be possible to write (4.8.3)

as

(4ä, d&) = (9cx, d&) + MO,a(4a , dcti)• (4)

These observations mean that matrix factorizations can play an important

role here too. There is, of course, a concomitant need for factorization

updating techniques.

This approach can be extended to cover Algorithm 4.5.2, the paramet-

ric principal pivoting method. In this procedure it is assumed that M is a

sufficient matrix. For such LCPs, the algorithm cannot always rely on sim-

ple principal pivots, but it can be carried out by using block principal pivots

of order at most 2. Herein lies an important difference. When handling

an LCP of the P-matrix type, the algorithm presents no need to compute

any updated version of the matrix M, whereas this is not the case when

the matrix is only known to be sufficient. In the latter circumstances, at

the v-th iteration of this algorithm, there is a distinguished basic variable

wr whose value is zero; the algorithm needs to determine whether mrr is

positive or zero. If the former holds, the algorithm proceeds with a simple

principal pivot, exchanging the roles of wr and z. In the latter case, a

block principal pivot of order 2 is done. According to the specification of

Algorithm 4.5.2, z is used as a driving variable; when the minimum ratio

test indicates that it is blocked, say by w', the aforementioned principal

pivot of order 2 is accomplished via (w', z,;) and (wr, z').
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At a particular iteration v > 1 of this method, there will be a set of

z-variables that are basic; again, let cti denote the index set of all such

variables. When v = 1, the matrix Mäa is clearly nonsingular; indeed, it is

just (MIX a ) -1 . In general, for v > 1, it is not difficult to show (inductively)

that the same holds for M. We ask the reader to do this in Exercise

4.11.23.
The nonsingularity of Mä IX enables one to construct the information

required for executing the algorithm under discussion here. At a typical

iteration, say the v-th, one first needs to update the constant column and

the column of the parameter so as to find the new critical value of the

parameter and the corresponding index, r. This is done as in (3) and (4).

There are two sets of formulas for obtaining M. The one to be used

depends on whether r E a or r E ci. Suppose r E ce. For the present

purpose, let er denote the r-th column of an identity matrix of order

From the general block pivoting formulas, it follows that

	0 	 v

	

MacyMar =er.	 (5)

The solution of this equation (i.e., Mär ), can then be used in

	v 	 0	 v	 /
6 

)
Mar = MäcaM	 (cr 

The corresponding equations for the case where r E ci are

	0 	 v	 0	 ( )
aa arMM — — Mar	 7

and

Mär = Mär r MäceMar•	 (8)

Thus, we see that to execute Algorithm 4.5.2, it is enough to have a fac-

torization of M°a for each iteration v.

The reduced basis approach to Lemke's Scheme I (Algorithm 4.4.5)

runs along analogous lines but is somewhat more difficult to state because

of the auxiliary column, d, and the almost complementary nature of (full)

bases. Given the LCP (q, M) and the covering vector d, let

M = [d, M] .

Because d is the column originally associated with z0, we may think of it

as the 0-th column of M. It could even be denoted R. O . As we have done
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above, let a denote the index set of the basic z-variables at iteration v.

Initially, a is empty. After the first iteration and prior to termination, the

artificial variable zo will be basic, thus 0 E a. Let ly denote the set of indices

of the the other basic z-variables. Let ß be the index set of the basic w-

variables at iteration v. There will be a unique index r such that r ¢ a U ß

and both wr and Zr are nonbasic. Let S = -y U {r}. Then the submatrix

MIX 6 corresponding to the basic z-variables and the nonbasic w-variables

must be nonsingular. This matrix plays the role of the compact basis (just

as M. did in the previously discussed algorithms). In particular, it can

be used to construct all the data needed by the algorithm. For instance,

at iteration v, the driving variable will be either wr or Zr . In the former

case, one uses systems analogous to (5) and (6), whereas in the latter, one

uses analogues of (7) and (8). The updates of q can be gotten in a manner

analogous to that in (3) and (4).

Worst case behavior

A common feature of the pivoting methods for the LCP presented in this

chapter is their finiteness—at least when they are applied to nondegenerate

problems or when fortified with degeneracy resolution techniques. When

used appropriately, these algorithms will terminate after finitely many pivot

steps, either with a solution or with a secondary ray (which in some cases

can be interpreted to mean that the instance of the problem has no feasible

solution).

Numerous computational studies of the pivoting algorithms have shown

that processing LCPs of order n with these pivoting methods typically

requires 0(n) pivot steps. Indeed, in Sections 4.7 and 4.8 we saw that there

are algorithms for some special problems of order n that never require more

than n pivots. Heartening as this information may be, it is also true that

there exist pathological problems that will cause these methods to perform

an exponential number of pivot steps. This serves as a reminder that a

finite number is not necessarily a small number.

In this subsection we summarize some results on the computational

complexity of pivoting methods for the LCP. We concentrate on just one

side of this theory, namely the worst case analysis of pivoting methods for

the LCP. In each case, the measure of interest is the number of pivot steps.
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Murty's examples

We begin our discussion of the worst case behavior of pivoting methods

for the LCP with two algorithms. The first of these is Murty's least-index

method (Algorithm 4.2.6); the second is the parametric version of Lemke's

method (Algorithm 4.5.4).
Let us consider the n x n upper triangular matrix U(n) given by

0 ifi>j,

ui^ (n) =	 1 if i =j,	 (9)

2 ifi<j.

Being a triangular matrix with a positive diagonal, U(n) E P. Hence

(q, M) has a unique solution for every q E R. For the present purpose, we

choose q = —e. To emphasize the dimension of this vector, we define

e(n) = e E R.	 (10)

Thus, we shall be concerned with the LCPs of the form (—e(n), U(n)) where

n >2.

Three observations about the LCP (—e(n), U(n)) can be made imme-

diately. The first is that its unique solution is the vector

(z1,...,zn—i,zn)= ( 0 ,..., 0 , 1 ).

This is easy to verify directly. The second observation is that

—e(n — 1) 1	 r U(n — 1) 2e(n — 1)
—e(n) =	 and U(n)_	 .

—1	 0	 1

From this representation, it is evident that the leading principal subproblem

of order n — 1 is just (—e(n — 1), U(n — 1)). This means that the leading

subproblems are in a sense "nested." We state the third observation as a

lemma.

4.10.1 Lemma. Algorithm 4.2.6 requires three pivots to solve the LCP

(—e(2), U(2)).

Proof. This is readily checked. ❑
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4.10.2 Theorem. For each integer n > 2, Algorithm 42.6 will require

2n — 1 pivots to solve the LCP (—e(n), U(n)).

Proof. The assertion is true for n = 2. Assume inductively that the

theorem holds for the problem of order n — 1. The specification of the

algorithm implies that zn remains nonbasic (at value 0) until the leading

principal subproblem of order n —1 is solved. By the inductive hypothesis,

this will require 2n-1 -1 pivot steps of Algorithm 4.2.6. Once this is done,

the schema is

1	 zl	 Z2	 • • • zn-2 Wn -1	 Z,-

1 1 2 ... 2 2 —2

1 0 1 ... 2 2 —2

1 0 0 1 2 —2

1 0 0 ... 0 1 —2

—1 0 0 ... 0 0 1

The next pivot is then (wn , zn ), and it yields the schema

1	 zl Z2 ... Zn-2 wn-1 w7

—1 1 2 ... 2 2 —2

—1 0 1 ... 2 2 —2

—1 0 0 1 2 —2

—1 0 0 ... 0 1 —2

1 0 0••• 0 0 1

Once again, the algorithm will solve the leading principal subproblem of

order n —1 which (apart from an insignificant difference in row and column

labels) has the same form as the original subproblem (—e(n — 1), U(n — 1)).

The latter required 2n -1 -1 pivot steps. Thus, Algorithm 4.2.6 will require

W1

w2

wn -2

Zn 

wn

wl

W2

Wn -2

zn_1

zn
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(2n
- 1 - 1)+1+(2n- 1 - 1)=2n -1

pivot steps to solve (—e(n), U(n)). ❑

The preceding example (—e(n), U(n)) shows that Murty's least index

algorithm can take an exponential number of pivot steps. A variant of

this problem can be used to establish the computational complexity of

another pivoting method. For this purpose, we use the parametric version

of Lemke's method on the LCP (q(n), M(n)) where, for each integer n > 2,

the matrix M(n) is just the transpose of the U(n) as defined in (9) and the

vector q(n) is defined by

n
qi(n) _ —E2	 i = 1,...,n.	 (11)

j =n+1-i

Using the observation that

n
E2i = 2n+ 1 — 2,
j=1

it is not hard to check that (z1, z2, ... zn) = (2n, 0, ... ‚0) is the unique

solution of (q(n), M(n)). See Exercise 4.11.24.

There is a natural greedy "decomposition scheme" for solving any LCP

(such as this one) in which the matrix is a triangular P-matrix, but that

is not what the example is intended to illustrate. Indeed, using the pair

q(n) and M(n), it is possible to construct a line that traverses all 2' com-

plementary cones relative to M(n). (Recall that the complementary cones

corresponding to an n x n P-matrix always partition Rn.) When the generic

point on the line

{q(n) + Ae(n) : A E Rn }	 (12)

meets the boundary of a complementary cone, the algorithm calls for a pivot

step. The data have the special property that the complementary cone to

which the point q(n) belongs is reached only after 2 — 1 principal pivots

are performed. This becomes the foundation for demonstrating the fact

that the parametric version of Lemke's method can require an exponential

number of pivot steps before terminating.
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The following example and accompanying figure should give some intu-

itive feeling for the kind of phenomenon under discussion here.

4.10.3 Example. For n = 2, the data for the LCP (q(2), M(2)) are given

by
	—4	 1 0

q(2) =	 and M(2) _
	—6	 2 1

2

1

1

Figure 4.7

Consider the parametric LCP (q(2) + Ae(2), M(2); )' E R). The comple-

mentary cones and the parametric line are shown in Figure 4.7. Notice how

the line given by {q(2) + Ae(2) : A E R} traverses all four complementary

cones relative to M. Notice also that if the slope were greater, say 3, then

the line would not traverse all four complementary cones. Insofar as the

LCP is concerned, the parametric version of Lemke's method would solve

the problem with just one pivot.

Whether by means of this figure or by actually doing the calculations,

it is elementary to show that the solution of (q(2), M(2)) by the paramet-
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ric version of Lemke's method requires precisely 3 = 2 2 — 1 pivot steps.

Furthermore, the critical values of A occur at 6, 4, and 2.

4.10.4 Theorem. For each integer n> 2, Algorithm 4.5.4 with direction

vector e(n) will require 2' — 1 pivots to solve the LCP (q(n), M(n)). The

critical values of A (at which pivots occur) are positive even integers in the

interval [0, 2n+1 — 2] of which there are 2' — 1.

Proof. The proof is by induction on n. We have already seen the case for

n = 2. Assume that the theorem is true for the problem of order n — 1.

Given (q(n), M(n)), Algorithm 4.5.4 with direction vector e(n) will begin

with the parameter A equal to a very large number--conceptually, plus

infinity. In particular,

[A>  2n+1 — 2] [ q(n) + Ae(n) >0].

Furthermore, the line {q(n) + Ae(n) : A E R+ } meets the boundary of R+

when A = 2n+ 1 — 2. Because of the lower triangularity of M(n) and the

other special properties of the data, it is easy to see that for all A > 2,

the pivoting occurs in the last n —1 rows of the corresponding schema. For

this range of values of A it is as if the method were being applied to the

smaller problem (q(n — 1), M(n — 1)). By the induction hypothesis, this

requires 2n -1 -1 pivot steps corresponding to the critical values A, namely

2n+ 1 — 2, 2n+i — 4, ... , 2n + 2. When A = 2n, there occurs the pivot

(w1, z1). This has the effect of making the transforms of ql(n) and el (n)

become positive and negative, respectively. This, in turn, means that as

A is decreased, the value of the basic variable zl will increase since less is

being subtracted from it than before. The triangularity of M(n) prevents

the subsequent principal pivots from destroying this property. Once A is

reduced below 2, the algorithm behaves as if it were solving the principal

subproblem associated with the last n — 1 rows, except that the pivots

occur in reverse order from the previous time through. Altogether, then,

the process requires (2n -1 — 1) + 1 + ( 2n -1 — 1) = 2n — 1 pivot steps, each

one occurring at a positive even integer value between 0 and 2n+ 1 — 2. ❑

It is useful to point out that M(n) is a hidden K-matrix; indeed, M(n)

belongs to the class of H-matrices with positive diagonal entries. Hence,

according to Exercise 4.11.18, M(n) possesses an n-step vector d that is
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given by di = 3i-1 , i = 1,... , n. It is trivial to see that if Algorithm

4.5.4 is applied to (q(n), M(n)) with this d as the direction vector, then

the algorithm terminates in just one pivot. Hence the exponential number

of pivots asserted in 4.10.4 is a direct consequence of the covering vector

e(n) used in the algorithm. The point of this discussion is to stress the

(already noted) fact that the covering vector in Lemke's method often has

a dramatic influence on its computational performance.

The Birge-Gana example

We shall now show that for each integer n > 2 there exists an LCP

(q(n), M(n)) of order n having the matrix M(n) E P on which Van der

Heyden's variable dimension scheme (Algorithm 4.6.3) requires 2''^ -1 pivot

steps. Exponential worst case behavior of the asymmetric version of the

principal pivoting method (Algorithm 4.3.5) can be seen as a consequence

of this result.
The data for this example are defined as follows:

M(n) = U(n),

where U(n) is given by (9). The vector q(n) is given by

n
qi (n) _ - E 2j.	 (13)

A useful fact—easily proved by induction—is that

q2(n) = -(2n+1 - 2i)	 (14)

The vector q(n) resembles q(n) specified in (11). Indeed, if i and k

are positive integers such that i + k = n + 1, then q2 (n) qk(n). More

importantly, it is useful to define the n-vector q(n) by

4i(n) = 2 	 i = 1,...,n.

Then with e(n) = e C Rn, (14) implies

q(n) = q(n) + 2n+1 e(n).	 (15)

4.10.5 Remarks. Part of the development rests on the following observa-

tions.
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(1) Algorithm 4.6.3 involves (leading) subproblems of size k. Accord-

ingly, when M E RTXT the last n — k rows and columns can be

ignored while solving the k-subproblem.

(2)When M E P (as in the present case), each k-subproblem has a

unique solution. For this reason, Steps 2(c) and 3 of Algorithm 4.6.3

will not be executed.

(3) Suppose k > 2 and M E P. In solving the k-subproblem, the algo-

rithm's first pivot will make Zk basic. Thereafter, both wk and zk

will be the basic pair until the final pivot whereupon wk will become

nonbasic. (This is a consequence of the preceding remark.) There

will also be a nonbasic pair, w2 , zi for some i < k.

(4) When solving the k-subproblem, the algorithm maintains the com-

plementarity and nonnegativity of (wl, . .., wk_1) and (zl, ...,

(5) As applied to the k-subproblem of (4(n), U(n)), Algorithms 4.6.3

and 4.3.5 perform the same steps. It can be shown (along the lines

of 4.3.6) that in the nondegenerate case, both members of the basic

pair are strictly increasing functions of the driving variable (which

is a member of the nonbasic pair). Moreover, the specification of

(q(n), U(n)) implies that in each k-subproblem, wk = qk(n) + zk so

that the members of the basic pair increase at the same rate.

A fact not known to the algorithm—but nevertheless true is that for

every integer n> 1, the unique solution of the n-problem (4(n), U(n)) can

be expressed in closed form. Indeed, we have the following more general

result.

4.10.6 Lemma. If T> —2, the LCP (4(n) — Te(n), U(n)) has the unique

solution
n_ (0, ... , 0, 2 + T).

Proof. Since U(n) E P, the problem has a unique solution, and since

wn =qn (n)—T+zn =-2n —T+2n+T=0,

it suffices to verify that the other inequalities of the problem (namely w2 > 0

for i = 1, ... , n — 1) are satisfied. Using (14) and the fact that uzn = 2 for

i <n, we complete the proof by noting

wz = qi(n) — T + u^nzn = —(2n+1 — 2 2 ) — T + 2n+1 + 2T = 2 Z + T > 0. ❑
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For the sake of motivation, and because our proof of the main result

is inductive, we treat the case of n = 2 separately; we remark, in passing,

that 3 =2 2 -1.

4.10.7 Lemma. For every T> —2, Algorithm 4.6.3 requires 3 pivot steps

to solve the LCP (q(2) — Te(2), U(2)).

Proof. This can be verified directly. The pivots are (wl, z I ), (z 1 , z2), and

(W2,Wl). ❑

4.10.8 Theorem. For every T > —2, Algorithm 4.6.3 requires 2 — 1

pivot steps to solve the LCP (q(n) — Te(n), U(n)).

Proof. The statement is true for n = 2. Assume, inductively, that it is

true for the corresponding problem of order n —1. The algorithm will solve

the leading (n — 1) -problem before it executes a pivot in the last row of the

schema. Moreover, due to the structure of U(n), the last row is unaffected

by the pivoting above it. Now for i = 1, ... , n — 1, we have

(n) — T =4z(n - 1 ) — (2n + 7 ).

Since T' = 2' + T > —2, the inductive hypothesis implies that the algo-

rithm will use precisely 2n -1 — 1 pivot steps in solving the leading (n — 1) -

subproblem, (q(n — 1) — T'e(n — 1), U(n — 1)). After this is done and the

necessary principal rearrangement is performed, the schema is easily seen

to be

1	 z(n — 2)	 wn_1	 Zn

w(n — 2) q(n — 2) + T'e(n — 2) U(n — 2) 2e(n — 2) —2e(n — 2)

zn_1	 27z -1 + T'	 0	 1	 —2

w,,	 —T'	 6	 d	 1

The next pivot executed by the algorithm is (wi, Zn ). At this stage, Zn

becomes basic at value 2n -1 + 1 + T/2. As noted in 4.10.5, both wn, and

z,,, will increase (strictly) when they are the basic pair. In this situation,

Zn must increase by another 2'^ -1 — 1 + T/2 units.

It now remains to show that the algorithm requires 2n -1 -1 more pivot

steps to compute the solution of (q(n) — Te(n), U(n)). To do this, we shall
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resort to an equivalent parametric interpretation of what the last 2n-1 pivot

steps of the algorithm are doing. In particular, (the nonbasic variable) z,,,

will first be viewed as the parameter in a parametric LCP of order n — 1.

In this approach, the parametric LCP to be solved is of the form

(q(n — 1) + v'e(n — 1), —2e(n — 1), U(n — 1)).

The parameter ) associated with the column —2e(n — 1) is actually the

variable z,,,, and it runs over the interval A = [0, 2n +'r]. By comparing

this process with the parametric version of Lemke's method on a suitable

related problem, it can be shown (see Exercise 4.11.28) that this part of

the process takes 2n -1 — 1 pivot steps.

After solving the aforementioned parametric problem, Van der Heyden's

algorithm makes one more principal pivot, namely, (wn , Zn ). In all, then,

it takes

(2n -1 -1)+ (2n-1 — 1)+1= 2-1

pivots to solve (q(n), U(n)) by Algorithm 4.6.3. ❑

To see that Algorithm 4.3.5 can require an exponential number of pivot

steps, it suffices to consider the LCP represented by the schema displayed

in the proof of 4.10.8. In that problem, only the last entry of the constant

column is negative, and, of course, the matrix belongs to P. Under such

circumstances, 4.6.3 and 4.3.5 are the same. Accordingly, Algorithm 4.3.5

requires 2n-1 pivot steps to solve this LCP. This is the idea behind the proof

of the following theorem.

4.10.9 Theorem. There exists an LCP of order n for which Algorithm

4.3.5 requires 2n — 1 pivot steps. ❑

4.11 Exercises

4.11.1 Adapt the proof of 4.1.1 to show that (4.1.1) holds when

All Al2 A13 A14

A21 A22 A23 A24
A=

A31 A32 A33 A34

A41 A42 A43 A44
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A ll Al2
B

= Ali A22

is nonsingular, C denotes the matrix obtained from A by pivoting on B,

and

C22 C23

C32 C33

4.11.2 This exercise concerns the invariance of matrix theoretic properties

under principal pivoting.

(a) Show that the property of bisymmetry is invariant under principal

pivoting.

(b) Prove or disprove that the following matrix classes are invariant un-

der principal pivoting: S, E0 , Q0 , Q, hidden Z, copositive, and

adequate.

(c) Prove or disprove that the following matrix classes are invariant under

principal pivoting: So , and H with positive diagonals. [This part

may be harder than (b).]

4.11.3 Let M be a given n x n matrix. Prove that M and all of its

principal pivotal transforms have the same number of nonzero principal

minors. Use this to show that the class Pl is invariant under principal

pivoting.

4.11.4 This exercise identifies a large subclass of P1-matrices.

(a) Let M E Po fl Z n Rn X n with n > 2. Suppose M is singular and

irreducible. Show that M E Pl and that there exists a positive

vector z such that Mz = 0.

(b) Let M E Rf X "` (with n > 2) be irreducible and singular. Suppose M

has positive diagonal entries and the comparison matrix M is singular

and belongs to Po . Deduce from part (a) and Theorem 3.3.15 that

MEP1 .

4.11.5 Let M E R2X2 be given. Establish the following three characteri-

zations.
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(a) The matrix M is column sufficient if and only if (i) M E P0 , and (ii)

no principal pivotal transform or principal rearrangement of M has

the form
ab

b^0.
00

(b) The matrix M is column sufficient if and only if every principal pivotal

transform M of M has the properties (i) mjj > 0 for i = 1, 2, and (ii)

for i = 1, 2, if mzti = 0 and mid = 0 for j i, then mji = 0.

(c) The matrix M is (row and column) sufficient if and only if every

principal pivotal transform M of M has the properties (i) m2j > 0

for i = 1, 2, and (ii) for i = 1, 2, if mü = 0, then either m2j = = 0

or mi mji <0 for j i.

4.11.6 A matrix M E Rf x n is sufficient of order k if every £ x £ principal

submatrix of M with f < k is sufficient. For n > 3, establish

(a) The matrix M is sufficient if and only if every principal pivotal trans-

form of M is sufficient of order n — 1.

(b) The matrix M is sufficient if and only if every principal pivotal trans-

form of M is sufficient of order 2.

4.11.7 Let M E Rnxn where n > 3. Prove or disprove that M E P0 if

and only if every principal pivotal transform of M is P0 of order 2.

4.11.8 This exercise shows that scaling can affect the behavior of an al-

gorithm with respect to cycling.

(a) Verify that 4.2.2 applied to the LCP (q, M) with data

—1 .1 0 .2

q= —1 M= .2 .1 0

—1 0 .2 .1

cycles in the manner described in Section 4.2.

(b) Let M = 10M where M is the matrix given in (a). Show that 4.2.2

applied to (q, M) does not cycle.

4.11.9 Prove Proposition 4.2.8.
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4.11.10 This exercise concerns a large subclass of the matrix class Z and

its connection to the pivoting methods. We say that a matrix M E RnXn

is a Stieltjes matrix if M is symmetric and belongs to K.

(a) An application of the LCP involving a Stieltjes matrix is the problem

of finding the convex hull of a set of points in the plane. Show that

the matrix M whose entries are given in (1.2.21) is a Stieltjes matrix.

(b) Another application of the LCP that yields a Stieltjes matrix occurs

in the isotone regression problem with a total order. Mathemati-

cally, this problem can be formulated as a strictly convex quadratic

program:
n

	minimize	 i i_0 di(ri — a) 2

subject to xo <x 1 < ••• <

 d, 's are positive weights and ai's are arbitrary scalars. Accord-

ing to the discussion in Section 4.2, the above quadratic program can

be converted into the LCP (q, M) where M is of order n. Show that

this matrix M has precisely the same form as that in (1.2.21).

(c) The matrix M in the above two parts is a tridiagonal Stieltjes matrix;

we denote it by M(d) where d E Rn+' is a positive vector. Suppose

a principal pivot is performed on the diagonal entry mii (1 <i < n).

Let M' E R(n —l )x(n -1 ) denote the Schur complement (M/mü), and

let q' E Rn — ' denote the transformed constant vector corresponding

to M'. Show that M' is of the form M'(d') where d' E Rn is given

by

	d 	 if0<j<i -2

d^=	 (dz11 +du i* ) —' ifj =i-1

d 1	 ifi<j<n -1.

Show that the vector q' can be obtained very simply from the given

q by updating no more than two entries.

(d) By using the results of part (c), describe a streamlined version of

Algorithm 4.7.3 for solving an LCP (q, M) with a tridiagonal Stieltjes

matrix M E Rn"n. The resulting algorithm should require no more

than O(n) comparisons and arithmetic operations.
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4.11.11 This exercise concerns a specially structured LCP that arises

from the spatial price equilibrium problem. The reader can find the de-

scription of this application in Section 5.1 under the heading "Network equi-

librium problems". The LCP under consideration is of form (ATb, ATDA)
where A is the node-arc incidence matrix of a network with node set Al
and arc set A, and D is a diagonal matrix with positive diagonal entries.

The matrix M = ATDA is called a weighted arc-arc adjacency matrix; its
rows and columns are labelled in terms of the arcs of the network, and the

diagonal entries of D correspond to given weights on the nodes in .1V.

(a) Give an explicit expression for the entries of the matrix M. Let

a C A be a subset of arcs. Show that the principal submatrix MQ, a is

nonsingular if and only if the arcs in a contain no (undirected) cycle.

(b) Suppose that a principal pivot is performed on the diagonal entry

maa, where a E A. Let M' denote the Schur complement (M/maa).
Show that M' is a weighted arc-arc adjacency matrix defined on the

network with the same node set N but with the are set A \ {a},

provided that a is not contained in any cycle of the network. Identify

the modified weights on the nodes.

(c) Generalize part (b) to the case of a principal block, pivot on the

submatrix M. where a C A and none of the arcs in a are contained

in any cycle.

(d) Suppose that the network is a tree. Show that

det M = (fl dz) x (^ dT l )

ieN	 iEN

Fix an arc a in the tree and let a be the set of arcs with a deleted.

Use the above formula for det M and the Schur determinantal formula

(2.3.14) to derive a simple expression for (M/M).

4.11.12 Let a and b be real numbers such that 0 <a < b and define

—a b

M— [ b —a]
.

(a) Show that M E Q.
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(b) Show that if

	1 	 d1
q=	 and d=

	—1	 d2

then Lemke's method applied to (q, d, M) will terminate with a ray

for any d l , d2 > 0.

4.11.13 Consider the LCP (q, M) in which

	—1	 21 0 0

	

q= —1	 and M= 28 14 0

	—1	 24 24 12

Apply Lemke's method (Scheme I) to (q, d', M) and (q, d2 , M) with the

covering vectors

d' = (21, 14,12) and d2 = (12, 14, 21),

respectively.

4.11.14 Set up the linear complementarity problem (q, M) corresponding

to the KKT conditions of the quadratic program

minimize — 4x1 — x2 — 4x1x2 subject to x 1 + x2 G 1, x 1 > 0, x 2 > 0.

Execute Lemke's algorithm (Scheme I) on a problem of the form (q, d, M),

first with the covering vector d' = (1, 1, 1) and then with the covering

vector d2 = (1, 1, 0).

4.11.15 Consider an LCP (q, M) in which —M E Z and M has non-

positive diagonal elements. Prove that when Lemke's method (Scheme I)

is applied to such a problem, it terminates with a secondary ray imme-

diately after the first pivot. Discuss the implications of this fact for the

applicability of Lemke's method to the bimatrix game problem.

4.11.16 Let M E Rn X n be row adequate and q E Rr' be a vector in the

range of M.

(a) Show that the conclusion of 4.2.1 holds.
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(b) How is this assumption on the pair (q, M) related to that in 4.2.1?

(c) Deduce from part (a) and 4.2.1 that if (q, M) satisfies either one of

the two assumptions, and if the LCP (q, M) is nondegenerate, then

Algorithm 4.5.2 always computes a solution of (q, M) using only

simple diagonal pivots.

4.11.17 Consider the parametric LCP (4.5.1) with d> 0.

(a) Show that for A zA A', SOL(q + Ad, M) n SOL(q + A'd, M) C {0}.

(b) Suppose M E Po . Show that if there exist x E SOL(q + Ad, M) and

x' E SOL(q + A'd, M) satisfying 0 x < x', then A > A'.

(c) Suppose that M is positive semi-definite. Show that if A > A', then

dT'x < dTx' for any x E SOL(q + Ad, M) and x' E SOL(q + A'd, M).

4.11.18 Let M E H n Rnxn have positive diagonal entries, and let M

denote the comparison matrix of M. Show that for any vector d E R"''

satisfying Md > 0, the vector d = 2 (M + M)d is an n-step vector for M.

4.11.19 Let M be as given in part (b) of 4.11.4 and q be arbitrary.

Show that by solving two LCPs each of order n — 1 and each possessing

an (n — 1)-step vector, it is possible to decide whether the given problem

(q, M) is solvable, and to compute a solution if it exists.

4.11.20 Let (q, M) be feasible with M E Z. Show that the solution of

(q, M) computed by Algorithm 4.7.3 is the least element of FEA(q, M).

Does the same conclusion hold for Lemke's method?

4.11.21 Consider the following property of a matrix M E Rnxn:

x E SOL(0, M)	 (M + MT)x > 0.	 (1)

(a) Show that the class of matrices M satisfying the above implication

includes the copositive matrices, the symmetric matrices and the

pseudo-regular matrices. Show that the P0-matrix

1 —4
M =

0	 0

violates the implication (1).
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(b) Let M be a matrix satisfying (1). Suppose that d> 0 is such that

SOL(d, M) = {0}. Let q E (SOL(0, M))* be given. Show that Algo-

rithm 4.4.5 applied to (q, d, M) will compute a solution of (q, M) if

the latter problem is nondegenerate.

See Exercise 7.6.6 for more properties of a matrix M satisfying the as-

sumptions of part (b).

4.11.22 Consider the definitions of type I and type II solutions given

in 4.6.1 and 4.6.2, respectively. Show that a system (4.6.2) can possess

infinitely many nonbasic solutions of these two types.

4.11.23 Let a denote the index set of the basic z-variables in Algorithm

4.5.2, the symmetric parametric principal pivoting method. Show induc-

tively that for all v > 1, the matrix Mäa is nonsingular.

4.11.24 For the vector q(n) given by (4.10.11) and the matrix M(n) de-

fined just above it, prove that (q(n), M(n)) has the unique solution

zl^z2^...zn = 2 ,0,...,0 .

4.11.25 Consider the strictly convex quadratic program:

minimize xl — 2x 1 x 2 + 2x2 — x l — 3x2

subject to —xl + 2x2 < 1

x1 + x2 <2

xi, X2>0.

(a) Convert this program to an LCP with a symmetric positive semi-

definite matrix, and apply Algorithm 4.2.11 to solve the resulting

LCP.

(b) Apply Algorithms 4.3.5 and 4.4.5 directly to the LCP that corre-

sponds to the Karush-Kuhn-Tucker conditions of the above program.

For the latter algorithm, you may use your favorite covering vector.

4.11.26 Consider the application of Lemke's method, Scheme I (with e

as the covering vector) to the LCP (q, M) that corresponds to the Karush-

Kuhn-Tucker conditions of a convex quadratic program. What is the signif-

icance vis-à-vis the quadratic program when termination of the algorithm

occurs with a secondary ray?
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4.11.27 Let (q(n), U(n)) denote the LCP referred to in 4.10.8 and con-

sider the case where n = 4. According to this result, Algorithm 4.6.3 takes

15 pivots to solve (4(4), U(4)). After 7 pivots, the corresponding schema is

1	 zl Z2 W3 Z4

18 1 2 2 —2

20 0 1 2 —2

24 0 0 1 —2

—16 0 0 0 1

(a) Starting from the schema above, complete the solution of (q(4), U(4))

by Van der Heyden's method. [This will require 8 pivots.]

(b) Using the data given in the schema above, treat z4 as a parameter and

solve the parametric LCP (q(3), —2e(3), U(3)) by Van der Heyden's

method. Record the pivot locations as the parameter Z4 reaches the

critical values at which basis changes are required.

(c) Record the pivot locations used when Murty's method 4.2.6 is used

to solve (— e(3), U(3)). Compare these with the list developed in part

(b).

4.11.28 Let 4(n), e(n), and U(n) be as defined in (4.10.13), (4.10.10),

and (4.10.9), respectively.

(a) Show that for v> —2 and d = e(n), Algorithm 4.5.4, the parametric

version of Lemke's Scheme I, takes 2  — 1 pivot steps to solve the

LCP (4(n) — Te(n), U(n)).

(b) Show that after 2n -1 -1 pivot steps, the algorithm mentioned in part

(a) produces the schema displayed in the proof of 4.10.8, except that

the latter has no z0 column.

(c) Show that the algorithm used to solve the parametric problem consid-

ered in the proof of 4.10.8 generates the same pivots as as that con-

sidered in part (a) with its parameter run backwards from 2n+ 1 -2 +T

to 2n + T.

wl

W2

Z3

W4
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4.12 Notes and References

4.12.1 The symmetric difference formula (4.1.4) is due to A.W. Tucker

(1960). The exposition given here is based on Parsons (1970). Theorem

4.1.3, the invariance of P under principal pivoting, was also shown by

Tucker (1963). The invariance theorem for positive definite and positive

semi-definite matrices (see Theorem 4.1.5) is from an unpublished paper of

Tucker and Wolfe; it is cited in Cottle (1964a). The results on the invariance

of the (row and column) sufficient matrices under principal pivoting come

from Cottle (1990). For other references on principal pivoting, see Väliaho

(1969) and Wendler (1971).

4.12.2 The class Pl was introduced by Cottle and Stone (1983). Theorem

4.1.13 was proved there by another method as well as the one given here.

Theorem 4.1.10 and Corollary 4.1.11 are believed to be new.

4.12.3 Bard-type methods are named after Yonathan Bard, not to be

confused with Jonathan F. Bard, who has also contributed to the LCP

literature. (See Bard and Falk (1982).) Much of Y. Bard's work 4.2.2 was

done in the 1960's, but was not published until 1972. For the claims made

about the performance of the method, see Bard (1972, p. 120) and Bard

(1974, p. 148).

4.12.4 The first simple principal pivoting methods are due to Zoutendijk

(1960) and Bard (1972). These methods were used for solving special

quadratic programs (nearest-point problems). We have identified 4.2.2 as

the Zoutendijk/Bard method, but it should be noted that the form of the

problem to which the steps are applied is slightly more general than that

considered by either of the persons for whom the algorithm is named. See

Zoutendijk (1960, p. 83) for remarks about the use of degeneracy-resolving

techniques. Also see page 87 of the latter publication for proposals on other

computational schemes.

4.12.5 R.L. Graves (1967) pointed out that the algorithm 4.2.2 is also

executable for any LCP (q, M) where M has positive principal minors. In

the same paper, Graves extended 4.2.2 to cover the case of LCPs induced

by convex quadratic programs. His approach involved lexicographic pivot

selection rules of the Zoutendijk type. The resulting method is not a simple
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principal pivoting method, though, as it may require block principal pivots

on matrices of order 2.

4.12.6 Cycling in Bard's algorithm has been written about by Chang

(1979), Murty (1974, 1988), and Kostreva (1979). The cycling example

given in (4.2.14) and its elaboration in 4.11.8 are due to Stickney and

Watson (1978). Algorithm 4.2.6 was originally described in Murty (1974).

Murty (1988, pp. 258-259) observed that the pivot row can also be chosen

according to a largest-index rule.

4.12.7 A study of (LCP) pivoting methods that reports computational

superiority for Murty's Algorithm 4.2.6 was conducted by Kostreva (1989);

see 5.12.17 for more discussion of this paper. Bard's findings relative to

the earlier Algorithm 4.2.2 were similar.

4.12.8 In recent years, strong motivation for efficiently treating problems

like (4.2.16) has been provided by the encouraging performance of the suc-

cessive quadratic programming (SQP) approach to solving nonlinear pro-

gramming problems. For a brief historical account of this development, see

Gill, Murray and Wright (1981, pp. 245-247).

4.12.9 Algorithm 4.2.11 is a special case of a quadratic programming

method due independently to Dantzig (1961, 1963) and to van de Panne

and Whinston (1964a, 1964b). These and other algorithms were partially

inspired by Wolfe's (1959) "simplex method for quadratic programming"

and, in turn, the "critical line algorithm" of Markowitz (1956). Algorithm

4.2.11 enters into the paper of Goldfarb and Idnani (1983), although in

the latter paper the emphasis is on a more sophisticated implementation.

4.12.10 Jüdice and Pires (1988/89) have studied heuristic block principal

pivoting methods modeled after Murty's least-index method. A similar idea

is proposed in Kostreva (1976). For further discussion on the latter work,

see 5.12.21.

4.12.11 The "general" PPM appears in Cottle (1964a), Dantzig and Cot-

tle (1967), Cottle and Dantzig (1968) and Cottle (1968a). To a great extent,

the method was initially motivated by the aim of solving the "composite

problems" that arise from symmetric dual quadratic programs as developed

 



4.12 NOTES AND REFERENCES	 377

by Cottle (1963). The extension (of the symmetric PPM) given here for

row sufficient matrices was worked out by Cottle (1990).

4.12.12 Proposition 4.3.6 is a variant of results given in Cottle (1968a)

where the monotone behavior of the basic pair is also noted. This propo-

sition is applicable to certain instances of the nonstreamlined version of

Lemke's method in which there is a complement for the the artificial vari-

able zo.

4.12.13 The primary sources for the pivoting schemes covered in Section

4.4 are Lemke and Howson (1964) on bimatrix games and Lemke (1965)

for the more general linear complementarity problem. These methods have

received much attention in the literature. Among the more notable pub-

lications in this area are Lemke (1968), Cottle and Dantzig (1968), and

Eaves (1971a). These and many other references will be cited below.

4.12.14 Algorithm 4.4.1 and its streamlined version Algorithm 4.4.5 are

what is usually meant by the term "Lemke's method." Lemke, himself,

called it "Scheme I." The method has been extended in a variety of ways.

See Cottle and Dantzig (1970), Eaves (1971a), McCammon (1970), Mylan-

der (1974), Todd (1976b), van de Panne (1974), and Werner and Wetzel

(1985). For references on the effect of the covering vector d on the per-

formance of Lemke's method see Mylander (1971, 1974), Todd (1986) and

Krueger (1985).

4.12.15 In essence, Theorem 4.4.10 was proved by Cottle and Dantzig

(1968). At that time, however, the class of strictly semi-monotone matrices

had not been named and had not gotten the notation E. Except for this

theorem, the results in Section 4.4 under the heading of "More existence

results" have not appeared exactly in the form given here. Theorem 4.4.11,

Corollary 4.4.12 and Theorem 4.4.13 are implicit in the work of Lemke

(1965) and Cottle and Dantzig (1968). Although Theorem 4.4.15 has not

appeared in the literature before, it is really just a refinement of the basic

ray termination property; see Theorem 4.4.9. One of the consequences

of 4.4.15 is that Algorithm 4.4.5 will process an LCP (q, M) with M
belonging to Eaves' class L.

4.12.16 As shown by 4.4.17, Lemke's method cannot always be counted

on to produce a global minimum in a nonconvex quadratic programming
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problem no matter what covering vector d > 0 is used. This interesting

example is due to Mylander (1974).

4.12.17 We refer the reader back to 1.7.4 for some historical notes on

the bimatrix game literature. Some other references on bimatrix games

are Bastian (1974b, 1976b), Ben-Israel and Kirby (1969), Knuth, Papadim-

itriou and Tsitsiklis (1988), Lüthi (1976), Majthay (1972), Millham (1968),

Mukhamediev (1978), Raghavan (1970), Shapley (1974), Vorob'ev (1977),

Winkels (1978) and Ye (1988a). The numerical example of an elusive equi-

librium point in a bimatrix game is due to Aggarwal (1973). See the related

papers Todd (1976c, 1977) for further discussion.

4.12.18 Markowitz (1952, 1956, 1959) pioneered the portfolio selection

problem. The elementary formulation of the problem given here leads to

a parametric convex programming problem which is then converted into

a parametric LCP. The extensive literature on portfolio selection includes

Elton and Gruber (1979, 1987), Pang (1980), Perold (1984) and Sharpe

(1963, 1970). For an application of the parametric linear complementarity

problem to structural mechanics, see Maier (1970, 1972), Cottle (1972), and

Kaneko (1975, 1977a). For a synthesis of several applications, see Pang,

Kaneko and Hallman (1979).

4.12.19 The traffic equilibrium problem is a mathematical model for the

prediction of traffic flow patterns in a congested transportation network.

The monograph by Beckman, McGuire and Winsten (1956) had a great

deal of influence on the early work in this area. The treatment of the

traffic equilibrium problem by complementarity and variational inequality

methods originated from a paper by Smith (1979), and much research has

since been done with this approach. In particular, the paper by Asmuth,

Eaves and Peterson (1979) studied the application of Lemke's algorithm

to the affine case. The cornerstone of the complementarity/variational

inequality approach to the traffic problem is the user equilibrium principle
introduced by Wardrop (1952).

Many paradoxes arise in the study of the traffic equilibrium problem.

Braess (1968) presented the first such example. The article by Steinberg

and Stone (1988) is among the most recent contributions to this subject.

Our treatment of these traffic paradoxes given at the end of Section 4.5

follows that in the latter reference.
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4.12.20 The first algorithm for the parametric linear complementarity

problem as such is due to Murty (1971b). From the standpoint of matrix

classes, the method given here as Algorithm 4.5.2 is a generalization of the

one given by Cottle (1972). The parametric form of Lemke's Scheme I was

developed by Lemke (1978); see also McCammon (1970). For other ap-

proaches involving parametric complementarity problems, see Bank, Gud-

dat, Klatte, Kummer, and Tammer (1983), Megiddo (1977), Meister (1979,

1983), Murty (1988), and van de Panne (1974, 1975).

4.12.21 Section 4.6 is based on two papers: Van der Heyden (1980) and

Lemke (1978). Van der Heyden's paper did much to stimulate new results

on the class E; see for example Cottle (1980c).

4.12.22 Algorithm 4.7.3 first appeared in Chandrasekaran (1970). The

greediness of Chandrasekaran's method was established by Saigal (1970).

The fact that Lemke's Scheme I will processs any LCP with a Z-matrix was

proved by Saigal (1971a) whose argument we use here. The results 4.7.6

and 4.7.7 connecting Lemke's method for (q, M) and the simplex method

of linear programming applied to (4.7.13) are due to Mohan (1976a). Chan-

drasekaran's algorithm for the LCP with a Z-matrix was extended by Pang

(1979a) to an LCP of the same type, but which allows upper bounds on

the (primary) variables.

The vast amount of literature on the LCP of the Z-type is evidenced by

the references cited herein and in several of the notes in Chapter 3. This

abundance of work is attributable to the numerous applications that this

special class of LCP's possess, and to the fact that the Z-property easily

lends itself to some fruitful analysis.

4.12.23 In private conversation with J.S. Pang in 1977, I. Kaneko il-

lustrated the fact that the covering vector d can have a drastic effect on

the number of pivots in Lemke's Algorithm 4.4.5, and more importantly,

noted that a clever choice of d can render this algorithm highly efficient.

Of course, the latter idea is the essence of the special pivot scheme, 4.8.2.

The presentation of this algorithm in Section 4.8 is based on the paper of

Pang and Chandrasekaran (1985).

4.12.24 The condition (4.8.5), which is a weak form of that defining an

n-step vector, first appeared in Cottle (1972) in the context of determining
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the "monotonicity" (which we call "isotonicity" here) of the function Z(\)

for A > 0, see Proposition 4.8.6. Cottle's study was the result of a question

raised by Maier (1972) (see also De Donato and Maier (1972) and Maier

(1970)) concerning certain problems in structural analysis. Cottle used

the term uniform mononotonicity property to mean that this monotonicity

property holds for all vectors b E Rn and all d c R+; he demonstrated

that M has the uniform monotonicity property if and only if M is a K-

matrix. Refinements of this characterization were obtained by Kaneko

(1977a, 1978d) and Megiddo (1977). A nonlinear version of Cottle's result

was discussed in Megiddo (1978).

4.12.25 Theorem 4.8.7 was proved in Pang and Chandrasekaran (1985).

Its converse, Theorem 4.8.10 was obtained by Morris and Lawrence (1988).

The latter study was inspired by a geometric question raised in Kelly, Murty

and Watson (1990) which asked whether the set of n-step vectors would

form the interior of a simplicial cone. Morris and Lawrence provided an

affirmative answer to this question which led to their demonstration of

Theorem 4.8.10. The ingenuity of their proof lies in its use of the matrices

MZ in (4.8.8) whose significance in LCP theory had not been emphasized

before.

4.12.26 Besides raising some interesting questions like the one mentioned

above, the paper by Kelly, Murty and Watson (1990) attempted to analyze

the set of n-step vectors from a geometric point of view. They introduced

the notion of a centrally projecting point in a simplicial cone and related

this concept to that of an n-step vector.

4.12.27 Before the proof of Theorem 4.8.7, we discussed how this result

is related to the issue of solving the LCP in terms of a linear program, and

speculated that a "duality" relationship might exist to explain the phe-

nomenon in question. As a matter of fact, this speculation is not based

entirely on this one observation; a related phenomenon occurs in the re-

sults pertaining to the row and column sufficient matrices, see Section

3.5. There, the interesting thing is, of course, the fact that row sufficiency

characterizes a certain property of the LCP, whereas column sufficiency

characterizes another property; the two properties are seemingly quite dif-

ferent. This leads us to our main question: is there some kind of a unified
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framework that can be used to explain these results? Some progress in this

direction has been made by Fukuda and Terlaky (1990), who propose what

they call "the duality theorem of linear complementarity."

4.12.28 Degeneracy resolution in the LCP has been studied by Chang

(1979). Much of the material in Section 4.9 is based on this source. Chang

obtained results on the sizes of the smallest LCP's in which cycling can oc-

cur with different pivoting methods. (Chang's findings do not quite agree

with those of Kostreva (1979) who used different ground rules.) A double

least-index rule for resolving degeneracy in linear programming was pio-

neered by Bland (1977) and later extended to quadratic programming by

Chang and Cottle (1980).

4.12.29 Our discussion of the lexicographic approach to Lemke's method

is similar to that of Eaves (1971a) who was the first to carry out such an

analysis. Eaves' treatment was somewhat more general, however.

4.12.30 As noted in Section 4.2, Murty (1974) introduced a least-index

pivot selection rule in a Bard-type method. Later Chang (1979) extended

the concept of a least-index rule to the principal pivoting method and to

Lemke's method. In each case, however, the technique was restricted to

instances in which the matrix M of the LCP was either positive semi-

definite or a P-matrix. Indeed, Chang gave an example showing that

the least-index rule for resolving degeneracy need not work in Lemke's

method applied to an LCP with a strictly copositive matrix. Algorithm

4.9.8 which extends Chang's result for the PPM to the case of (row and

column) sufficient matrices is taken from Cottle and Chang (1992). As of

this writing, a way to do the analogous thing relative to Lemke's method

has not been found, as some of the devices that Chang (1979) used to

handle the positive semi-definite and P-matrix cases do not go through for

sufficient matrices.

4.12.31 Several authors have presented ideas for the practical implemen-

tation of linear complementarity algorithms. Compact basis developments

of the sort in Section 4.10 can be found, for example, in Sargent (1978)
and Pang (1980). The full basis approach was advocated by Tomlin (1976,
1978) who dealt with Lemke's method. Tomlin's LCPL—an implementa-

tion of Lemke's method was latter used by Rutherford (1986) in his work
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on equilibrium modeling. The nonlinear complementarity problems that

arise in this subject are approximated by linear complementarity problems

and solved by Lemke's method. This approach stimulates the desire to start

Lemke's method from a "good" basis, rather than "from scratch." Ideas

for doing this are discussed by Anstreicher, Lee and Rutherford (1991), and

Kremers and Talman (1992).

4.12.32 The use of matrix factorizations in algorithms such as those pre-

sented in this chapter requires techniques for updating as well as for the

underlying factorizations themselves. The reader is referred to 2.11.8 for

more discussion and some references on these techniques.

4.12.33 The examples of exponential worst case behavior of Algorithms

4.2.6 and 4.5.4 presented in Section 4.10 are due to Murty (1978a). In a re-

lated paper, Fathi (1979) exhibits classes of LCP's with symmetric positive

definite matrices for which these two algorithms take an exponential num-

ber of steps. The example used for demonstrating the possible exponential

behavior of Algorithm 4.6.3 and implicitly of 4.3.5 comes from Birge and

Gana (1983); our proof of the Birge-Gana Theorem 4.10.8 is somewhat

different from theirs. For a broader discussion of the phenomenon involved

in these examples, see Cottle (1980b).

4.12.34 Several pivoting methods for the LCP have not been discussed in

this chapter. These include the enumerative methods of Garcia and Lemke

(1970), Turnovec (1971), Jahanashahlou and Mitra (1979), Al-Khayyal

(1987), De Moor (1988) 1989), De Moor, Vandenberghe, and Vandewalle

(1992), the cutting-plane method of Jeroslow (1978), the n-cycle method

of Watson (1974) and his hybrid method (1978), a scheme based on the

solution of parametric linear programs by Wendler (1981), and the global

optimization approaches of Pardalos and Rosen (1988) and Tuy, Thieu and

Thai (1985). Some of these algorithms address the heroic task of finding

all solutions to an LCP or an even more general problem.

 



Chapter 5

ITERATIVE METHODS

In the preceding chapter, we have discussed numerous pivoting meth-

ods for solving the linear complementarity problem. These methods are all

finite and require the recursive solution of systems of linear equations. For

problems of small to medium size (say, when n is no more than a few hun-

dred), the pivoting methods are perhaps as good as methods of any other

type. As the problem dimension increases, the efficiency of the pivoting

methods tends to decrease due to two major difficulties: round-off errors

and data storage. Round-off errors, if not handled properly, can cause se-

vere numerical problems, such as incorrect pivots, erroneous solutions, or

the breakdown of the method being used. What complicates the matter is

the fact that these errors tend to accumulate very rapidly as the number

of iterations increases. In order to (partially) control these errors, highly

sophisticated numerical schemes are needed to ensure that the pivot steps

are accurately and stably executed. Typically, such schemes are both time

and storage consuming. The latter aspect raises the second difficulty as-

sociated with the pivoting methods for solving large-scale problems. The

mere size of a problem can often cause the failure of a pivoting method.

383
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Normally, problems of very large size tend to be sparse, i.e., the data are

very likely to contain many zero elements. In a way, sparsity is an essential

attribute of the problem that compensates for its large size. In fact, it

would be difficult for any method to handle a large-scale, highly dense

problem simply because of the complexity in the storage and management

of the data. Pivoting methods are not particularly suitable for solving

sparse problems because they can easily destroy the sparsity in just a few

pivot steps. Advanced implementations of these methods can help in this

regard, but they are not as effective as some other means.

As an alternative to the pivoting methods, iterative schemes have their

advantages in solving large-scale linear complementarity problems. Typi-

cally, the iterative methods do not terminate finitely, but converge only in

the limit. They are exempt from the two drawbacks that the pivoting meth-

ods have. Indeed, the iterative methods may be considered self-correcting

and are much less sensitive to round-off errors. Furthermore, these methods

tend to have all their iterations carried out on the original data, thus are

able to maintain and exploit sparsity and any structure that the problem

data might possess.

5.1 Applications

In order to motivate the development of the iterative methods, we dis-

cuss a few applications that can readily generate large-scale linear comple-

mentarity problems.

Contact problems

The analysis of elastic bodies in contact is a much-studied problem in

mechanics. In this subsection, we shall discuss a simple case and show how

it leads to a linear complementarity problem. The problem will be of large

scale if the number n defined in the next paragraph is large.

Consider two elastic bodies (called Body 1 and Body 2) whose surfaces

are "smooth." Suppose a pairing is established between a set of n points on

the surface of Body 1 and a set of n points on the surface of Body 2. This

association is not arbitrary or random; rather it is based on the idea that

certain pairs of points on the two surfaces can come into contact with each
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/,

^^	 Body 1	 ^^

\	 i;

	— — -=^ — — — ------------- — --------- 	 — —
Body 2

Figure 5.1: Contact problem

other in response to some externally applied loading scheme. It is assumed

that the process leads to small deformations and that the two bodies obey

the laws of linear elasticity.

Assume that before loading, the distance between the i-th point on the

two bodies is d^, i = 1, ... , n. Likewise, let z denote the contact stress

(force) at the i-th point. As the bodies come into contact, elastic defor-

mations (in the vertical direction) are produced at the n pairs of points.

Let v2 and v2 denote the deformations for the i-th pair of points and the

corresponding elastic bodies. If free penetration of one body by the other

could occur, the result of the externally applied load p would be a uniform

reduction of the distances between pairs of points by an amount cti, known

as the rigid-body approach.

The problem is to determine the rigid-body approach cti and the contact

stresses, z2. These variables must satisfy the following conditions.
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• Compatibility of deformation. In fact, the bodies do not penetrate

each other, and the distance between the i-th pair of points is non-

negative. In light of how this distance is measured, the deformations

and the rigid-body approach must satisfy

vz + v? + d^ — cti > 0 i = 1,...,n.	 (1)

As will be seen shortly, the quantities vZ and v2 are given by linear

functions of the contact stresses. This makes (1) a system of linear

inequalities in the unknowns of the problem.

• Equilibrium of forces. The forces at the n candidate contact points

must balance the applied load p. Thus,

n

E zj = p.	 (2)
z—i

• Contact criterion. For each i = 1, ... , n, let wi denote the quantity

on the left-hand side of (1). The number w2 represents the clearance

between the i-th pair of points on the two elastic bodies. For each i,

when the clearance is positive (i.e., the points of the i-th pair are not

in contact), the corresponding contact stress must be zero; when the

the i-th contact stress is positive, the corresponding clearance must

be zero. Thus, for i = 1, ... , n, the contact conditions are

wi>0 = z=0,	
(3)

zi>0	 wi=0.

Treating the wi and zi as coordinates of two nonnegative n-vectors

w and z, respectively, we can write (3) as

w > 0, z > 0, and zTw = 0.

It is assumed that the vectors of elastic deformations v l = (vi , ... , vn) and

v2 = (vl,...,vn) are given by

v l = D lz and v2 = De z	 (4)
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where D' and D' are symmetric matrices of influence coefficients. The

matrix D = D' + D2 is symmetric and (for physical reasons) positive

definite. In light of (4), equation (1) can be rewritten as

w = d + Dz — ea > 0.

In preparation for rewriting equation (2), define

(= —p+eTZ.

We can now express the conditions above as

w	 d	 D —e	 z
=	 +

	—p	 eT 0	 a

w >0, z >0, zTw =0, a>0, ( =0.

This is clearly a mixed linear complementarity problem.

The problem takes a simpler, more transparent form when the rigid-

body approach is known and the equilibrium conditions are satisfied. It is

then a matter of solving the LCP (d — ne, D). Notice, however, that when

a is not known but is instead regarded as a nonnegative parameter, then

(d — ae, D) is a parametric LCP, and since D is symmetric and positive def-

inite, each individual LCP (d ne, D) has a unique solution z(a). Solving

the original contact problem can be interpreted as a search for the (least)

value of a for which ( = —p + eTz(a) = 0. In the special case where D is
also a K-matrix, the components of z(a) are nondecreasing functions of a

(see Proposition 3.11.9) and hence (is too.

Free-boundary problem for journal bearings

A journal bearing consists of a rotating shaft (the journal) separated

from a surface (the bearing) by a thin film of lubricating fluid. The longi-

tudinal axes of the journal and the bearing are parallel. Figure 5.2 depicts

a simple journal bearing of the kind discussed here. Figure 5.3 shows a

region Q, the planar unfolding of the bearing surface. Figure 5.4 represents

a cross-section perpendicular to the longitudinal axis of a journal bearing.

The problem is to find the distribution of pressure pin the lubricant. An

important underlying assumption of the model is that the lubricating film is
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so thin that there is no variation in pressure in the direction perpendicular

to the axis of the journal. In terms of Figure 5.4, this means that for each

value of 0, the pressure is constant on the line from the journal to the

bearing. Accordingly, one can view the problem as the determination of

the pressure distribution of the lubricant on the bearing surface. In polar

coordinates, the thickness (i.e., depth) of the film is denoted by the function

h(x, 0). In the case of a full cylindrical bearing (one which completely

encloses the journal as assumed here and shown in Figure 5.2), the thickness

of the lubricant depends only on the 0-coordinate and hence is denoted h(0).

With 0min = argminBE[e 2} h(0), this function satisfies the conditions

	h(0)>0	 0 E [0, 2ir],	 (5)

	d  dO8) < 0	 0 E (0, 0min),	 (6)

	d  daa) > 0	 0 E (0min, Of).	 (7)

It is assumed that when 0 = O, the pressure in the lubricant becomes so

low that it vaporizes, and that at 0 = 0 this vapor condenses into its liquid

state. The resulting interface between the liquid and gaseous phases of the

lubricant is called the free boundary.

In the finite-length journal bearing indicated in Figure 5.2, the location

of the free boundary is a function of the axial coordinate x and is denoted

O (•). It is convenient to consider a planar unfolding of the journal bearing.

See Figure 5.3. The pressure is zero (i.e., atmospheric) along and beyond

the free boundary (the location of which is unknown in advance). In the

region where p> 0, it satisfies a Reynolds equation

dh
V (h3Vp)	

_
d8 — 0.

The boundary conditions require that the pressure be zero along the four

edges of the developed bearing and that the derivative of the pressure in

the direction, n, normal to the tangent of the free boundary at (x, Of (x) )

be zero. This is expressed in the equation

p = cep/can = 0 on the free boundary.

No analytic solution to the problem is known, so we seek a numerical

solution using a five-point finite-difference approximation scheme. It turns
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Figure 5.4: Cross-section of journal bearing

out that the resulting discrete system has an equivalent formulation given

by the linear complementarity problem (q, M) described below.

After transforming from polar to rectangular coordinates, we place

a grid on the developed bearing with grid sizes Ax and Az in the x

and z directions, respectively. (See Figure 5.3.) Lattice points on the

grid representing the journal bearing will have coordinates (i, j) where

i = 0, 1, ... , m, m + 1 and j = 0,1, ... , n, n + 1. We denote the (unknown)

pressure at grid point (i, j) by pik. The boundary conditions require that

pik = 0 for i = 0 or m + 1 and j = 0 or n + 1. Expressions such as

with fractional subscripts denote values of the corresponding function (in

this case h) at points in the plane of the grid that lie midway between the
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obvious corresponding lattice points. The scheme for this is indicated in

Figure 5.5 .

As suggested in Figures 5.2-5.4, the bearing has length L and diameter

D. It can be shown from the mathematical formulation above that we get

the following data. For i = 1, ... , m, j = 1, ... , n, and k= (i — 1)n + j,

—
qz, = brr (h^,^ +1/z 	 hz,^—l1z)

Oz

3

mk, 	(L hz  (Ax)

mk,k- 1 = — h3,j 1 / 2 ^Oz)

2 , 

	
if j > 1

D z (h3+1 / 2  + h3- 1 /2,j)	 (h^, j+1l 2 + h3,^ 1/z)
mk , k = ( L)	 (0x)2	 +	 (Oz)2

z

mk,k+l = —h3, +1/z Oz	
if j <n

3
mk,k +n = (L) hi +l / 3 (Ax)

mk,l = 0 otherwise.

The mr8 , defined above, for which either s < 0 or s > mit are ignored. (See

property (i) below.) We let q = (q', ... , qm) where qi = (q,1, . . . ‚ qz , n). In

the case depicted above, h(x, 0) = h(9) for all x, so hi,^-1 1 2 and hz,^+1i2
are independent of i. In the resulting LCP (q, M), the matrix M has the

following properties:

(i) M E Rmnxmn is a symmetric block tridiagonal K-matrix with blocks

M22, ER' Xn i,i ' = 1,...,m;

(ii) There is a negative diagonal matrix A such that Mz+l,i = M^,z+i = A
for alli = 1,..., m — 1;

(iii) There is a symmetric tridiagonal matrix T such that M^,^ = T for all

i = 1,...,m.
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Figure 5.5: Five-point finite-difference approximation

Network equilibrium problems

We discuss another source of applications for large-scale linear com-

plementarity problems. These applications arise from the computation of

network equilibria. Typically, the latter computational problem can be

formulated as a variational inequality and/or nonlinear complementarity

problem which after linearization yields a sequence of linear complemen-

tarity problems. The high dimensionality of these LCPs is due to the large

size of the network. We explain a simplified application of this type.
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Consider an equilibrium model of international or interregional trade in

a single commodity. Let n be the number of regions under consideration.

In each region, there is a market characterized by classical supply and de-

mand curves. In the absence of imports or exports, the equilibrium price

and quantity produced and consumed will be determined by the intersec-

tion of these curves. If imports are introduced, consumption will exceed

production but at a lower equilibrium price.

To simplify the discussion, we assume that the regional supply and

demand functions are linear and given by the expression

pZ = ai — by 	(8)

where

pi is the equilibrium price in the i-th region,

yZ is the net import of the i-th region,

a2 is the equilibrium price in the absence of imports (and exports) and

is positive,

bi is related to the elasticity of supply and demand and is also positive.

We introduce the nonnegative flow variables xis which represent the (net)

exports from region i to region j, and transportation costs cif which rep-

resent the unit cost of shipment from i to j. The additional interregional

trade equilibrium conditions are

	p2 + c —]3 > 0 for all i, j	 (9)

	Xis (pi -I- cif — p^) = 0 for all i, j.	 (10)

The rationale behind these conditions is that if the inequality (9) fails to

hold, exporters will buy in market i at price pi, transport to market j

at unit cost cif and sell at price p thus making a profit. Exports from

i to j will increase until the elasticity effects in markets i and j raise

(and lower) these prices so that additional profit to exporters is no longer

possible. Thus, if x0 > 0, (9) must be satisfied as an equality, and we have

the complementarity condition (10). The model is completed by the flow
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conservation equations (a definition of the net imports) :

n	 n

pz=Xji—^Xij, for alli.	 (11)
j=1	 j=1

It is not difficult to convert the above equilibrium model into an LCP.

For this purpose, let A denote the node-arc incidence matrix of a complete

network with n nodes and let B = diag(bi). Using the flow equation (11)

and the price function (8), we may eliminate the import variables yz and

the price variables pi . By substituting these expressions into the remaining

equilibrium conditions (9) and (10), the model becomes the problem of

finding a flow vector x E Rn (n-1 > which solves the LCP (q, M) with

q = c + ATa, M = ATBA.

This LCP is of the order n(n — 1) which is already quite large when n

reaches, say 100.

There are many generalizations of the above model. For example, the

price-quantity relation could be given by a non-diagonal affine function

p = a — By

where B is an arbitrary positive definite matrix, or there could be more

than one commodity. In the multi-commodity model, the size of the re-

sulting LCP becomes even larger. The nonlinear version of the model is

also common in applications. At the present time, one of the most effec-

tive solution approaches for the general network equilibrium problem is the

linearization procedure briefly outlined in Section 1.2.

In summary, we have discussed in this section several application areas

which require the solution of large-scale linear complementarity problems.

The common attribute of the defining matrices in the resulting LCPs is

that they are sparse and/or specially structured. The iterative methods

presented in this chapter offer a highly effective approach for solving these

and many related problems.

5.2 A General Splitting Scheme

A large number of iterative methods for solving the LCP have their

origin in the solution of systems of linear equations. Historically, these
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methods for the LCP were developed to solve nonnegatively constrained,

strictly convex quadratic programs. They have been applied very success-

fully to solve some large LCPs arising from such applications as the ones

described in the last section. These methods also provide the basis for more

sophisticated ones that we shall introduce in some later sections.

As mentioned in Chapter 2, many iterative methods for solving systems

of linear equations can be described by means of a matrix splitting. In what

follows, we extend these methods to the context of the LCP (q, M). To

accomplish this, we split the matrix M as the sum of two matrices B and

C, i.e., let

M=B+C

where B and C are real matrices of the same order as M. Such a rep-

resentation of M is called a splitting. We shall denote this splitting by

the pair (B, C). Given the splitting (B, C) of M, the LCP (q, M) can be

transformed into a fixed-point problem; indeed, for an arbitrary vector z,
we may consider the LCP (qz, B) where

qz = q + Cz,

and the (multivalued) mapping which associates with this vector z the

solution set of the LCP (qz, B). Clearly, a vector z solves the LCP (q, M)

if and only if it is a fixed point of this LCP mapping, i.e., if z is itself a

solution of (qz, B). (When B is the identity matrix, the corresponding LCP

mapping becomes the function defined by (1.4.4).) In terms of this fixed-

point formulation, we introduce the following iterative method for solving

the LCP (q, M).

5.2.1 Algorithm. (The Basic Splitting Method)

Step 0. Initialization. Let z° be an arbitrary nonnegative vector, set

v=0.

Step 1. General iteration. Given z" > 0, solve the LCP (q", B) where

q v = q + Cz',

and let z"+ 1 be an arbitrary solution.

Step 2. Test for termination. If zv+ l satisfies a prescribed stopping rule,

terminate. Otherwise, return to Step 1 with v replaced by v+1.
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In essence, the above method is just a straightforward fixed-point iter-

ation on the aforementioned LCP mapping; in particular, it follows that

if z" = zv+l then z' solves the LCP (q, M) and the method terminates

there. More generally, it is trivial to show that if a sequence {zv} produced

by 5.2.1 converges to a vector z*, then z* must be a solution of (q, M).
In general, in order for the method 5.2.1 to be well-defined, each sub-

problem (q", B) must have at least one solution. For this reason, we shall

assume throughout the discussion that (B, C) is a Q-splitting, i.e., that B

is a Q-matrix. Note that the subproblem (q', B) is not required to have a

unique solution; if multiple solutions exist, any one can be picked as z1

Furthermore, in order for the method to be practical, each subproblem

(q", B) must be relatively easy to solve.

The choice of a suitable stopping rule is intimately related to the notion

of the residue; the latter subject will be discussed in detail in Section 5.10.

Choices of B

Different choices of the splitting (B, C) lead to different algorithms for

solving the LCP (q, M); the simplest choice of all is probably the one with

B being the identity matrix. In this case, each iterate zv+l is given by the

explicit expression

zv+l = max(0, —q + (I — M)z")

(see the fixed-point function h in (1.4.4)). A slight generalization of the

preceding choice is to pick B as an arbitrary positive diagonal matrix D.

This leads to the expression

zv+1 = max(0, z" — D-1 (q + Mz")).

In particular, if D is equal to the diagonal part of M (which is assumed

to be positive), the resulting method is commonly known as the projected

Jacobi method. The word "projected" refers to the fact that z' is the

projection of the vector uv+l = zv — D -1 (q + Mz") onto the nonnegative

orthant; indeed the vector u"+ 1 is the iterate obtained from the well-known

Jacobi iterative method applied to the system of linear equations

q+Mz=0.
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Generalizing the diagonal choice, we may take B to be a triangular

matrix with positive diagonal entries. With this choice, each subproblem

(qv, B) is trivially solvable by either a forward or a backward substitution

scheme, depending on whether B is lower or upper triangular. In particular,

if we choose B to be the lower triangular matrix

B = L + w -1D, (1)

where L and D are, respectively, the strictly lower triangular and diagonal

parts of M, and where w E (0, 2) is a prescribed relaxation parameter,

we are led to the projected successive overrelaxation (abbreviated as the

PSOR) method. In this case, the components of the iterate z 1 are given

recursively by

z 1 = max(O, zi — CJmii 1 (qi + 112ij z^ +1 + 772ij Z^ )), i = 1 , . . .  , n
j<i j>i

where we have assumed as before, that the diagonal elements of M are

positive. When w = 1, the PSOR method reduces to the projected Gauss-

Seidel method. Typically, the scalar w has an important effect on the

efficiency of the SOR method; its range (0, 2) is derived from the context

of solving systems of linear equations; an explanation will be given later

(see Corollary 5.3.6).

Another interesting choice of B is a block diagonal matrix. In this case,

each subproblem (q", B) decomposes into a finite number (which is equal

to the number of blocks in B) of individual sub-subproblems each of which

can be solved independently of the others and by any suitable algorithm,

either a pivotal method or even a different iterative scheme. This choice

of B leads to various iterative methods that are particularly effective on

parallel computers which because of their special architecture—can take

advantage of the total separation of the sub-subproblems most profitably.

To give an example of a block diagonal B, let us assume that the matrix

M11 M12 ... Ml N

M21 M22 ... M2N

MN1 MN2 ... MNN
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is partitioned into N2 submatrices Mid where each submatrix	 is of the

order Ni x N. Let B be the block diagonal matrix with the MZi as the

diagonal blocks:

M11

M22
B=	 (2)

MNN

With this choice of B, the subproblem (q', B) decomposes into N smaller

LCPs, the i-th one of which is defined by the principal submatrix MZi and

has order Ni .

Related to the block diagonal choice is a block (lower or upper) trian-

gular B matrix. In this case, each subproblem (q", B) does not necessarily

decouple into separate sub-subproblems, but can be solved by sequentially

solving a finite number of sub-subproblems each of which is of smaller size

than the original LCP (q, M). An example of such a block triangular choice

is the family of BSOR (i.e., block SOR) methods. (The PSOR method dis-

cussed previously is sometimes called a point method.) As before, let M be

partitioned into N2 submatrices MME. Let D, L and U be the correspond-

ing block diagonal, strictly block lower triangular and strictly block upper

triangular parts of M respectively. Then the block SOR splitting (B, C) is

obtained by setting

B= L+w-1D

where w E (0, 2) is a given parameter. The display below illustrates this

choice:
w– i

Mll

M21	 w- 1MM/122

B=	 (3)

MNl	 MN2 ... w -1 MNN

An important distinction between a block diagonal and a block trian-

gular matrix B is the manner in which each subproblem (q", B) is solved;

the former choice leads to the family of parallel methods—a term derived
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from the fact that the sub-subproblems can be solved in parallel, whereas

the latter choice yields the family of sequential methods. The practical

efficiency of these methods depends very much on the architecture of the

computer on which they are implemented. On a traditional sequential com-

puter, the parallel methods are typically not as effective as their sequential

counterparts. But on some of the more recently available highly parallel

computers, the effectiveness of the parallel methods becomes increasingly

evident.

Besides those mentioned above, there are many other possible choices

for B that lead to interesting iterative schemes. For example, we may

choose B to be a Z-matrix. In this case, each subproblem (qv, B) can be

solved efficiently by the specialized pivoting methods described in Section

4.7. Another choice for B would be the transpose of a hidden K-matrix for

which the n-step method described in Section 4.8 can be applied to solve

the subproblems.

5.3 Convergence Theory

In this section, we study the convergence properties of the sequence

{z"} produced by the iterative scheme introduced in 5.2.1. In general,

there are three basic approaches under which convergence results can be

established; namely,

1. the symmetry approach,

2. the contraction approach, and

3. the monotonicity approach

Each of these is based on a different argument and depends on different

assumptions on the matrix M in the LCP (q, M). The symmetry approach

produces results that are particularly pertinent to applications of the it-

erative methods to strictly convex quadratic programs; in general, these

results can be established under rather mild assumptions. The contraction

approach is useful for asymmetric LCPs, i.e., for problems where the matrix

M is asymmetric; here the classical contraction principle is the main tool

(see Section 2.5 under the heading "Nonlinear equations"). The monotonic-

ity approach is built on the least-element theory of hidden Z-matrices and
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provides conditions under which a certain (nonsingular) transformation of

the sequence {z"} will be monotonically convergent.

The symmetry approach

As the term "symmetry" suggests, this approach depends on the blanket

assumption that the matrix M in the LCP (q, M) is symmetric. Under

this symmetry assumption, the LCP (q, M) is intimately related to the

quadratic program (cf. (1.4.1))

minimize f (z) = qTz + ZzTMz	 (1)

subject to	 z > 0.

The objective function f (z) plays a central role throughout the conver-

gence proofs; it is used as a merit function for monitoring the progress of

the method. Indeed, since the objective of the quadratic program (1) is to

minimize f (z), we hope that the sequence If (z") } will be at least mono-

tonically decreasing. In order for this to hold, we introduce a key property

of the splitting (B, C) .

5.3.1 Definition. The splitting (B, C) is said to be weakly regular if B—C

is positive semi-definite, and regular if B — C is positive definite.

Using the above definition, we establish a basic lemma which is the key

to the convergence proof under the symmetry argument.

5.3.2 Lemma. Let M be a symmetric matrix, and let (B, C) be a weakly

regular Q-splitting of M. Then,

f(zv) 
f (zv+i) > 2 ( z ,. — zv+i)T(B — C)(zv — z i) > 0.	 (2)

Moreover, if (B, C) is regular, then f(zv) = f(z 1 ) if and only if z'
Zv+l

Proof. By an easy calculation, we have

f(zv) — f(zv+i) =

(z' — z ,•+ 1 ) T(q + Mzv+i) + 1(zv — zv+1)TM(zv _ zv+i) =z
(zv — zv+l)T(q + Cz" + Bzv+l) + _1 (zv — zv+l)T(B — C) (z" _ z 1)

2 (zv — zv +l)T(B — C)(zv — z"+')
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where the last inequality follows because z" > 0 and z 1 is a solution of

the LCP (q", B). This establishes the expression (2). The last assertion of

the lemma is obvious. ❑

As noted in the preceding section, if z" = z 1 then z' solves the

LCP (q, M). Thus, an implication of 5.3.2 is that if the iterative method

has not yet terminated at z", then there must be a strict decrease in the

objective value of the program (1); consequently, as the algorithm proceeds,

the sequence { f (zk ) } is strictly decreasing. Using this descent property,

we derive the following lemma which establishes a convergence property of

the sequence {z"} under the sole assumption of symmetry of M.

5.3.3 Theorem. Let (B, C) be a regular Q-splitting of the symmetric ma-

trix M. Then, every accumulation point of any sequence {ZU} produced

by 5.2.1 is a solution of the LCP (q, M).

Proof. Let be an accumulation point of a sequence {z"} produced by

5.2.1. Suppose that {z"i } is a subsequence converging to z. Then { f (z"i) }

converges to f(). Moreover, the entire sequence { f (z' )} is bounded be-

low; this is because the sequence { f (z")} is nonincreasing (by 5.3.2) and

the subsequence If (z"i) } converges. Consequently, the sequence If (z") }
converges. Since the splitting (B, C) is regular, condition (2) implies that

{z" — z"+ 1 } converges to zero; thus, {z"4 + 1 } also converges to z. By its

definition, the iterate zvi +l satisfies the conditions

q + Cz"i + Bz"+' > 0

zv^ +l > 0

( zv^+1)T(q + Cz"i + Bz"i +i) = 0.

Passing to the limit vZ — oo, we deduce that z solves the LCP (q, M). ❑

Theorem 5.3.3 establishes a fundamental property of the subsequential

limits of the sequence {ZV} produced by Algorithm 5.2.1. This result does

not assert the existence of such subsequential limits, nor does it ensure the

convergence of the entire sequence of iterates. As a matter of fact, most

of the convergence results obtained in this section are concerned with the

accumulation points of the sequence {z" }. A complete characterization of
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the convergence of the entire sequence {z"} under just the assumptions of

Theorem 5.3.3 is postponed until Chapter 7 where the result is derived

based on some sensitivity properties of the LCP (see Theorem 7.2.10).

In order for an accumulation point of the sequence {z'} to exist, it is

sufficient for the sequence {z"} to be bounded; in turn, this is satisfied if

the level set

{z>0:.f(z)<_.f(z°)}

is bounded. In general, if M is a symmetric copositive matrix, then the

latter set is bounded if the following implication holds

[0^z>0, ZTMZ = 0] = qTz>0. (3)

(Indeed, if there exists an unbounded sequence of nonnegative nonzero

vectors {x"} such that f (xv) < f (z ° ) for all v, then any accumulation

point of the normalized sequence {x"/)x')} can be shown to violate the

above implication.) In particular, the sequence {z"} must be bounded if

M is strictly copositive.

The next result is a refinement of the foregoing analysis and gives a

specialized set of sufficient conditions for a sequence produced by Algorithm

5.2.1 to be bounded.

5.3.4 Lemma. Let M be a symmetric matrix, and let (B, C) be a regular

Q-splitting of M. Suppose that

(a) the quadratic function f (z) = qTz + 2 zTMz is bounded below for

z>0;

(b) the following implication holds:

[0 z > 0, Mz > 0, ZTMZ = 0]	 qTZ > 0.	 (4)

Then any sequence {z"} generated by 5.2.1 is bounded.

Proof. By assumption (a), the sequence If (z")} is bounded below; by

Lemma 5.3.2, the same sequence is nonincreasing. Thus, If (z") } con-

verges. By (2), it follows that {z" — zv+l} converges to zero. Suppose

the sequence {z"} is unbounded. Without loss of generality, we may as-

sume that II zL ^i oo. Consider the normalized sequence {z" /iIz"ij}. This

latter sequence is bounded and thus has an accumulation point z which
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must be nonzero and nonnegative. Let {zvi+l / I I zvi+' j j } be a subsequence

converging to z. Since z 1 solves the LCP (q'i, B) for each vz, we have

	q  + C(z — zvi+i) + Mzvi+i ^ 0	 (5)

	zVi +1 > 0	 (6)

	( zvi +1)T (q + C (z 	+i) + Mz"i + 1 ) = 0.	 (7)

Dividing the two inequalities (5) and (6) by I^z'^+' 1 and the equation (7)
by ^^z j+1112, and then passing to the limit vz 	oc, we easily deduce that

E SOL(0, M).

Assumption (a) implies that the matrix M is copositive (by Proposition

3.7.14). Thus, we have

0 = (zv+l)T (q + C(zvi — zvi +l) + Mz"i +i )

(z 	 (q + C (zvi — zv^ +l 
))

Dividing the last inequality by ( z	 and passing to the limit v2 — oo,

we deduce that qT z < 0. But this contradicts the assumption (b). Conse-

quently, the sequence {z"} must be bounded. This establishes the lemma.

The implication (4) is a stronger version of (3.8.2) in 3.8 but weaker

than (3). Geometrically, (4) assumes that the vector q is in int S* where

S = SOL(0, M); this assumption is vacuously satisfied if M E Ro. The

two assumptions (a) and (b) in 5.3.4 are related to_each other but nei-

ther one implies the another. Indeed, according to 3.7.14, the fact that

the quadratic function f (z) is bounded below on R+ is equivalent to the

copositivity of the matrix M and the validity of the implication

[z> 0, ZTMZ = 0]	 q z > 0.

As pointed out in 3.7.13, the quadratic function zT(q+Mz) is not bounded

below on the nonnegative orthant for

	— 1 1	 —1 0 1
q=	 J , M=	 J

1	 0 1

thus, the same is true for the function f (z) by 3.7.14. It is easy to verify

that the above matrix M is in R0 , hence the implication (4) is satisfied by
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default. Conversely, if M is any symmetric positive semi-definite matrix

which does not belong to Ro , and q is any vector in the range space of M,

then the pair (q, M) satisfies (a) but fails (b) in 5.3.4.

By combining 5.3.3 and 5.3.4, it follows that if M is symmetric and

satisfies assumptions (a) and (b) of 5.3.4, then any sequence {z'} produced

by Algorithm 5.2.1 with a regular Q-splitting (B, C) must have at least one

accumulation point and any such point solves the LCP (q, M). Note that

according to 3.7.12 and 3.7.14, assumption (a) alone is enough to yield

the existence of a solution to the LCP (q, M); however, the convergence of

the sequence {zv} does not follow from these previous results.

If M is symmetric and strictly copositive, then the aforementioned con-

vergence must hold for all vectors q and arbitrary starting vectors z° > 0.

It turns out that the strict copositivity of M is also a necessary condition

for this convergence result to hold. Before we formally state this character-

ization of convergence, it is useful to note that if M is a strictly copositive

matrix and if (B, C) is any weakly regular splitting of M, then B must be

strictly copositive. This follows easily from the identity

B = 2 (B — C + M); (8)

in particular, (B, C) is a Q-splitting of M. The following result summarizes

the relationship between the strict copositivity of M and the convergence

of Algorithm 5.2.1.

5.3.5 Theorem. Let M be a symmetric matrix. If M is strictly coposi-

tive, then for all vectors q and all initial vectors z° > 0, any sequence {z"}

produced by 5.2.1 with a regular splitting is bounded with at least one ac-

cumulation point; moreover, any such point is a solution of the LCP (q, M).

Conversely, if M has a regular Q-splitting with this (global, subsequential)

convergence property, then M must be strictly copositive.

Proof. In view of the above remarks, it suffices to prove the converse part.

We first show that M E R0 . Assume the contrary. Let be a nonzero

solution of (0, M). Take q = — Bz and z" = vz for each v. It is then easy

to see that z 1 is a solution of the LCP (qv, B). Thus, by assumption,

this sequence {z"} is bounded which is clearly impossible. Consequently,

McR0.
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Suppose now that M is not strictly copositive. Let >_ 0 be a nonzero

vector such that zTMz < 0. Since z is nonzero, it is not a solution of (0, M).

Take q = 0 and consider a sequence {z'} produced by the algorithm 5.2.1

with z° = z as the initial vector. By 5.3.2, we have

f(z') < f(z0 ) < 0

where f (z) = 2 zTA/Iz. By assumption, the sequence {z'} is bounded and

any one of its accumulation points is a solution of (0, M). Since zero is

the only solution of the latter LCP, it follows that {z'} converges to zero.

Consequently, by 5.3.2 again, we deduce

0 = lim f(z") < f(z i ) < f(z0 ) <0
v—.00

which is a contradiction. This establishes the theorem. ❑ .

By specializing Theorem 5.3.5 to specific splittings (B, C) of M, we

may derive convergence results for various iterative schemes. The following

corollary concerns the family of (sequential) block SOR-methods (5.2.3).

5.3.6 Corollary. Let M be a symmetric matrix partitioned into subma-

trices Mid with each diagonal submatrix Mii being positive definite. Let

D, L and U be the corresponding block diagonal, strictly block lower tri-

angular, and strictly block upper triangular parts of M, respectively. Let

w be any given positive scalar. Then,

(a) for any initial vector z° > 0, the sequence {z"} produced by the

resulting block SOR-method is well-defined;

(b) the block SOR-splitting (B, C) where

B = L+w -1 D

is regular if and only if w < 2;

(c) if 0 < w < 2, then M is strictly copositive if and only if for any initial

vector z° > 0 and any q, the sequence {z'} produced by the block

SOR-method is bounded, and each of its accumulation points solves

the LCP (q, M).
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Proof. Obviously, if w > 0, then B is a P-matrix. Thus, each LCP (q', B)
has a unique solution z 1 . This proves (a). To establish the regularity of

the splitting, we note that

B—C L—U+ 2 —W D.
w

Since M is symmetric, it follows that L — U is skew-symmetric. Moreover,

the matrix D is positive definite. Consequently, B — C is positive definite

if and only if w < 2. This establishes (b). The last part follows from 5.3.5.

All the convergence results established so far are of the subsequential

type, they make no claim as to whether or not the entire sequence con-

verges. In what follows, we establish some necessary and sufficient condi-

tions for the latter kind of convergence to hold. We need a lemma which

is an easy consequence of Proposition 3.7.14.

5.3.7 Lemma. Let M be a symmetric and nondegenerate n x n matrix.

The following statements are equivalent.

(a) M is strictly copositive.

(b) M is copositive.

(c) The quadratic function f (z) = qTz+ 2 zTMz is bounded below on R+
for some q E R.

(d) The quadratic function f (z) = qTz+ Z zTMz is bounded below on R+
for all q E RTh.

Proof. In view of 3.7.14, it suffices to prove [(b) = (a)]. This is accom-

plished by induction on n. Suppose that M is not strictly copositive. Then

there exists a nonzero vector x E R+ such that xTMx = 0. By an induction

hypothesis, we may assume that x > 0. It follows from Exercise 3.12.9

that M is positive semi-definite. Since M is nondegenerate, it must be

positive definite and hence strictly copositive. This establishes the lemma.

The following theorem gives a set of necessary and sufficient conditions

for the sequence {z"} produced by Algorithm 5.2.1 to converge under the

assumption that M is symmetric and nondegenerate.
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5.3.8 Theorem. Let M be a symmetric and nondegenerate n x n matrix.

Let (B, C) be a regular Q-splitting of M. The following statements are

equivalent.

(a) For some vector q E Rn and any initial vector z° > 0, any sequence

{z"} produced by 5.2.1 is bounded and has at least one accumulation

point; moreover, any such point solves the LCP (q, M).

(b) For some vector q E Rh, the quadratic function f (z) = qTz + 2 zTMz

is bounded below for z > 0.

(c) For some vector q E R" and any initial vector z° > 0, any sequence

{z'} produced by 5.2.1 converges to a solution of the LCP (q, M).

(a') For any vector q E R"'' and any initial vector z° > 0, the conclusion

of (a) holds.

(b') For any vector q E R"', the conclusion of (b) holds.

(c') For any vector q E R' and any initial vector z° > 0, the conclusion

of (c) holds.

(d) M is strictly copositive.

(e) M is copositive.

Proof. (a)	 (b). Using the given z° > 0 as the initial iterate, generate

a sequence {z'} by 5.2.1. By (a), some subsequence converges to some

solution z of the LCP (q, M). By Lemma 5.3.2, we have

f(z° ) > f(z).

Since M is nondegenerate, the LCP (q, M) has a finite number of solutions

by Theorem 3.6.3. Consequently, for any z° > 0, f (z ° ) is bounded below

by the minimum of the quadratic function values f() generated by a finite

set of z vectors. Thus, (b) follows.

(b) = (c). Since any nondegenerate matrix belongs to the class Ro ,

we may conclude by combining 5.3.3 and 5.3.4 that any sequence {z"}
produced by 5.2.1 is bounded with at least one accumulation point, and

any such point solves the LCP (q, M). Since (q, M) has only a finite number

of solutions (because M is nondegenerate), the sequence {z"} has a finite

number of accumulation points. Thus, by Theorem 2.1.10, the sequence

{z"} must converge. This establishes (c).
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(c)	 (a). This is obvious.

Finally, the equivalence of all eight statements (a), (b), (c), (a'), (b'),

(c'), (d) and (e) follows from Lemma 5.3.7. ❑

The positive semi-definite case

Theorem 5.3.8 is in general not applicable to a positive semi-definite

LCP (q, M) unless the matrix M is positive definite. The following theorem

summarizes the convergence properties of Algorithm 5.2.1 applied to an

LCP of the positive semi-definite type.

5.3.9 Theorem. Let M be an n x n symmetric positive semi-definite ma-

trix. Let (B, C) be a regular splitting of M. Then,

(a) for any initial vector z° > 0, the sequence {zv} generated by 5.2.1 is

uniquely defined;

(b) if there exists a vector z such that q + Mz > 0, then the sequence

{z"} is bounded, and each of its accumulation points is a solution of

the LCP (q, M);

(c) if the LCP (q, M) has a solution, then the sequence {Mz"} converges

to some vector Mz and z solves the LCP (q, M).

Notice that the convergence of the sequence {Mz"} is equivalent to

that of the sequence {w"} = {q + Mz'}. Thus, part (c) of the theorem

asserts the convergence of the associated w-sequence; it does not assert even

the boundedness of the sequence {z"}, let alone its convergence. Clearly,

the converse of part (c) is trivially valid in the sense that if the sequence

{Mz"} converges to some Mz with z solving the LCP (q, M), then the

latter problem must have a solution. The significance of this part of the

theorem lies in the fact that under only the assumption of the solvability

of the LCP (q, M), it is possible to demonstrate the convergence of the

w-sequence associated with the z-sequence produced by Algorithm 5.2.1.

In Section 5.4, this result will be used to establish the convergence of the

entire sequence of iterates {z"}.

The assumption in part (b) is a Slater-type condition which appears

fairly often in nonlinear programming; the vector z satisfying q + Mz > 0
is not required to be nonnegative. In general, if M is a symmetric positive
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semi-definite matrix and if there exists a vector z satisfying q + Mz > 0,

then the LCP (q, M) must have a solution. There are several ways to see

this; one way is to show that the implication (3.8.2) in 3.8.6 holds, thus,

that theorem is applicable. Hence, the assumption in (b) is stronger than

the one in (c), therefore, so is the respective conclusion.

The proofs of parts (a) and (b) of 5.3.9 are fairly straightforward. For

(a), it suffices to note that if M is a positive semi-definite matrix and if

(B, C) is a regular splitting of M, then B must be positive definite by the

representation (8). For (b), it suffices to note that if M is symmetric and

positive semi-definite and if there is a vector z such that q + Mz > 0,

then the implication (3) must hold. The proof of part (c) relies on the

following lemma which identifies a special property of a symmetric positive

semi-definite matrix.

5.3.10 Lemma. Let M be an n x n symmetric positive semi-definite ma-

trix, and cti be a nonempty subset of {1, ... , n}. Then,

(a) the sequence {Maya} is bounded if and only if {My} is so;

(b) the sequence {Maya} converges to the vector Ma ya if and only if

{Moray } converges to Maaya.

Proof. In either case, we need to prove only the "if" part.

Suppose that the sequence {My} is bounded but {M. IX yIX} is un-

bounded. We may assume without loss of generality that { M. a y } —> 00.

The normalized sequence {Maya/ M. aya } is bounded; moreover, every

one of its accumulation points must be nonzero, and by Theorem 2.6.24,

of the form M a ya for some vector ya . Consider any one accumulation

point M a ya , and assume (without loss of generality) that it is the limit of

the entire sequence {Maya/ So, we have

Ma eda _
M'J" = 1 moo ^^M• ti 2̂ ä^^ 0

where the last equality follows because the numerator is bounded and the

denominator approaches oo. Since a symmetric positive semi-definite ma-

trix is column adequate (see Section 3.4), Exercise 3.12.12 implies that

= 0 which is a contradiction. This establishes part (a).

To prove part (b), suppose that {M ay} converges to M,,,,ya . Part

(a) then implies that the sequence {M., y'} is bounded. By Theorem
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2.6.24, any accumulation point of {Maya} must be of the form Maya
for some vector fia . It follows that Mya = M,aya. Consequently, if

M. ay, is another accumulation point of the sequence {Maya}, we must

have Maat', = Maaya. The symmetry and positive semi-definiteness of M

then imply that M. IX ya = Maya , which in turn implies that the sequence

{Maya} has only one accumulation point. Hence, {M. aya} converges, and

part (b) is established. ❑

Proof of 5.3.9(c). Since M is symmetric positive semi-definite and the

LCP (q, M) has a solution, it follows that the quadratic function

f (z) = qTZ + 2 ZTMZ

is bounded below for z > 0 (by the equivalence between the LCP (q, M)

and the quadratic program (1)). By the same argument used in Lemma

5.3.4, we may deduce that the sequence {zv+l — z''} converges to zero. We

show that the sequence {Mz"} is bounded. Assume the contrary. Then,

a subsequence {)Mz v E K} — oc. This implies that {z' : v E K}

is unbounded. There exist a nonempty index set a C { 1, ... , n} and a

subsequence {z" : v E K'} with K' C K so that {z : v E K'} —* on

if j E a and {z v E K'} is bounded if j a. Thus, for all i-' E K'

sufficiently large, we have

0 = (q Cz^ ' + Bz v ),.

which implies

Maaza = ((q + C (zv 1 — zv))a Ma 0z).	 (9)

This last equation shows that the sequence {Maazä : v E K'} is bounded,

thus so is {M.zä : v E K'} by 5.3.10. Since

Mz" = M. az + M.a zä,

it follows that {Mz" : v E K'} is bounded. This contradicts the fact that

{)Mz") : v E K} —> oc, and establishes the boundedness of the sequence

{Mz"}.

Let y be any accumulation point of {Mzv}, and let {Mzv : v E K}

be a subsequence converging to y. There exist a (possibly empty) index
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set a C {1, ..., n} and a subsequence {Mzv : v E K'} with K' C K

such that {z :vEK'}-+ocifj Ea and {z :vEK'}isbounded

if j V a. As before, equation (9) holds for all v E K' sufficiently large.

Thus, the sequence {MMa zä : v E K'} is bounded, and by Lemma 5.3.10,
so is {M.a zä : v E K'}. Without loss of generality, we may assume that

{M.a zä : v E K'} converges to some vector which must be of the form

M.a za for some za > 0. Since the sequence {zä : v E K'} is bounded,

we may further assume that it converges to some vector > 0. It then

follows y = M. We verify that z solves the LCP (q, M). We have already

noted that z is nonnegative. Passing to the limit v -f oc in the equation

(9), we obtain

(q + Mz),, =0

by the fact that zv -1 - z" -> 0. Moreover, for each v E K', we have

0 < (q + Cz"- ' + Bzv ) 0

= (q + C(z"- ' - z") + Mz") a

and

0 = (z^) T(q + C(z'^ — ' — zu ) + Mzv )o.

Passing to the limit v — oc, v E K', and noting

zä , id, Mzv ->Mz,

we conclude that

(q + Mz) 0 > 0, (za ) T(q + Mz) 0 = 0.

Consequently, z E SOL(q, M).
Summarizing, we have proved that if y is any accumulation point of

the sequence {Mz"}, then there exists a solution z of the LCP (q, M) such

that y = Mz. By Theorem 3.1.7(d), there is only one such value for Mz.
Consequently, the sequence {Mz"} converges to Mz where z solves the

LCP (q, M). This establishes the theorem. ❑

Application to quadratic programs

The convergence results established under the symmetry assumption

are most pertinent to the application of the iterative method 5.2.1 to solve
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a strictly convex quadratic program. To illustrate such an application, con-

sider the quadratic program (1.2.1) where the matrix Q is symmetric pos-

itive definite. The Karush-Kuhn-Tucker conditions define the LCP (q, M)

with the vector q and matrix M given by (1.2.3). Since the matrix M there

is not symmetric, we need to transform the LCP (1.2.2) into one which has

a symmetric matrix. To accomplish this, we perform a block pivot on the

matrix Q in the system (1.2.2), obtaining the equivalent system

x=—Q -1 c+Q — 'u+Q — 'ATy> 0,	 x>0, TU=0

v=—b—AQ -1c+AQ -1 u+AQ — 'ATy>0, y>0, yTv=0

which defines the alternate LCP (q, M) with

Q —l c	 I Iq
=—[

 b+AQ lc ^ M= 
A Q -1 [IAT ]

The above matrix M differs from the one in (1.2.3) in two major respects

(although both of them are positive semi-definite). First, the former matrix

is symmetric whereas the latter is not. Second, the latter matrix contains a

principal submatrix (the lower right block) which is zero; on the other hand,

if the matrix A contains no zero rows, then the matrix M in (11) has all its

diagonal entries positive. Due to the presence of a zero principal submatrix

in the matrix M of (1.2.3), the PSOR method fails to be applicable for

solving the LCP (1.2.2).

In order to apply Algorithm 5.2.1 to solve the alternate LCP (10),

let (B, C) be an arbitrary regular splitting of M in (11). Then, for any

initial (u°, y°), the uniquely defined sequence {(u", y")} generated by the

algorithm induces a corresponding sequence { (r", v") } defined by

xv = —Q-1 c + Q —l uv + Q-1ATyv

v" = —b — AQ —l c + AQ—lu" + AQ-1 ATyv

Note that vector x" refers to the original variables of the program (1.2.1)

and vv the slack vector. Borrowing terminology from quadratic program-

ming theory, we call {(c", v")} the primal sequence, and {(u", y")} the dual

sequence. The following result summarizes the convergence properties of

these two sequences.

(10)

(11)
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5.3.11 Corollary. In the above setting, the following three statements

hold:

(a) if the quadratic program (1.2.1) is feasible, then the sequence {xv}
converges to the unique optimal solution of (1.2.1) and {v"} converges

to an optimal slack vector;

(b) if (1.2.1) has a strictly feasible vector, i.e., if there exists a vector

x> 0 such that Ax > b, then the dual sequence {(uv, yV )} is bounded,

and any of its accumulation points solves the LCP (q, M) with q and

M given by (11);

(c) conversely, if for any vectors b and c and any initial nonnegative

iterate (u° , y° ), the sequence {(UV, yV)} is bounded and any one of its

accumulation points solves (10), then there must exist a vector x > 0
satisfying Ax > 0.

Proof. The first two parts follow from Theorem 5.3.9 and the fact that

the optimal solution to the quadratic program (1.2.1) is unique. To prove

part (c), we apply the converse part in Theorem 5.3.5. Indeed according to

that result, we may conclude that if the assumption in part (c) holds, then

the matrix M given in (11) must be strictly copositive. By the symmetry

and positive definiteness of the matrix Q, it is easy to establish that such

a matrix M is strictly copositive if and only if

[u>0, v>0,  u + ATv = 0] (u, v) = (0, 0).

By Ville's theorem of the alternative, 2.7.11, the latter implication is equiv-

alent to the existence of a vector x> 0 such that Ax > 0. This completes

the proof. ❑

One may generalize the above discussion to include equality constraints

in the QP (1.2.1) and/or to the situation where not all the variables are re-

stricted to be nonnegative. Unfortunately, this entire process of derivation

of a symmetric LCP depends crucially on the invertibility of the matrix Q
and breaks down if the objective function is merely convex but not strictly

convex (as in the case of a linear program). For such problems, special care

needs to be taken; one approach is described in Section 5.6 where a convex

quadratic program is converted into a sequence of strictly convex ones by

a strong convexification procedure.
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Related to the requirement of strict convexity, the approach described

above has another potential weakness in solving large sparse, non-separable

quadratic programs. For these problems, the matrix Q is non-diagonal and

the presence of Q -1 in the matrix M in (11) especially if Q -1 is computed

explicitly could easily destroy the sparsity and/or other nice properties of

the data. In light of this consideration, the alternate LCP (10) is typically

useful only for solving separable problems; for non-separable problems, the

idea of diagonalization offers a way of transforming the problems into a

sequence of separable ones to which the above symmetrization scheme can

be applied (see the subsection of Section 5.5 on a symmetric variational

inequality approach).

The foregoing discussion points out an important issue concerning the

implementation of an iterative scheme applied to solve the symmetric LCP

(10). This is the fact that one should avoid forming the matrix M in

(11) explicitly even in the case of a diagonal Q; the reason is that any

potentially nice property of the matrix A could easily be destroyed in the

explicit computation of M. Fortunately, in an iterative scheme such as

the PSOR method, it is not difficult to implement the method with M

represented in the product form as given in (11), see Exercise 5.11.4.

The contraction approach

Unlike the symmetry approach, the contraction approach relies on no

objective function but makes use of a contraction argument to establish the

convergence of a sequence produced by Algorithm 5.2.1. In turn, there are

two types of contraction: norm contraction and vector contraction, each

requiring a different property on the splitting (B, C) and thereby applicable

to different realizations of the basic algorithm. Throughout the contraction

approach, the matrix B in the splitting (B, C) is always a P-matrix; thus

each iterate zv+i is uniquely defined.

The basic convergence results derived under the contraction approach

are of a universal nature in the sense that they apply to all vectors q with

the same matrix M. Consequently, they constitute the analog of Theorem

5.3.5 established under the symmetry approach. These results require (im-

plicitly or explicitly) that the matrix M be in class P. As a consequence of

this P-property, the LCP (q, M) must have a unique solution to which all

sequences of iterates {z"} converge for arbitrary starting z ° . Generaliza-
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tions of the convergence results presented below that deal with a specific

LCP with a fixed vector q (and under relaxation of the P-property of M)
can be obtained by refining the proof technique; see Theorem 5.6.1 and

Exercise 5.11.8.

The following is the basic convergence result under the norm contraction

argument.

5.3.12 Theorem. Suppose that B is a positive definite matrix. Let B be

any nonsingular matrix such that BTB = 2 (B + BT ). Suppose also

p(B,C)	 1)TCB -1112 < 1.	 (12)

Then, the matrix M = B+C is positive definite. Moreover, for an arbitrary

vector q and any starting vector z° > 0, the uniquely defined sequence of

iterates {z"} produced by Algorithm 5.2.1 satisfies

B (zv+' - zV)I1z <- p(B, C)11 B(Z" - Z'))2,	 (13)

and converges to the unique solution of the LCP (q, M).

Proof. We observe that the matrix M is positive definite if and only if the

matrix 1 (B + BT) + C is so. Since B is nonsingular and

2 (B + BT ) + C = BT(I + (B-1 ) TCB -1 )B,

it follows that M is positive definite if and only if I + (B—i ) TCB —i is so.

It is not difficult to verify that the latter matrix must be positive definite if

the quantity p(B, C) is less than one as we have assumed. This establishes

the positive definiteness of M.
To establish the contraction (13), we note that for each v,

w,.+i = q + Cz" + Bzv+' > 0, z i > 0 ,
 (wU+l)TZV+l = 0.

Thus, we have

0 > (zv+i _ zv)T(wu+l — wv)

= (zv+1 
- z v ) TC(zv

 - z'^-') + ( zv+1 - zv)TB(zv+l _ z '^)

Rearranging the terms and noting the identity xTBx = (Bx , we derive

^B(zv+1 
_ z")11z < _(B(zv

+i _ zv))T((B-1)TCB-1)(B(zv — zv
—i))

^jB(zv+1 - zv)MM2 jj(B -1 ) TCB-1 112 11B(zv - zv -1)112

 



416	 5 ITERATIVE METHODS

where the last inequality follows from the Cauchy-Schwartz inequality.

Cancelling one factor I B (z"+ 1 — z") 112, we obtain the desired inequality

(13). It follows from this inequality and the contraction principle that the

sequence {z'} converges; it is then a simple matter to verify that the limit

vector solves the LCP (q, M). The uniqueness of the solution follows by

the positive definiteness of the matrix M. This completes the proof. ❑

Part of the assertion in Theorem 5.3.12 is that if the quantity p(B, C)

is less than unity, then the matrix M must be positive definite. As a matter

of fact, a partial converse of this statement holds in the sense that if M

is positive definite, then for any symmetric positive definite matrix G, one

can always choose B to be a suitable positive multiple of G and ensure

that the quantity p(B, C) is less than one. This converse is the second

conclusion in the following result.

5.3.13 Proposition. Let M and B be positive definite with M = B + C

and B is symmetric. Let B be any matrix such that BTB = B. Then,

(a) p(B, C) < 1 if and only if 2M — MTB -1 M is positive definite;

(b) if G is any symmetric positive definite matrix and if B = ) C with

IIMI12
2µy

where µ and -y denote, respectively, the smallest eigenvalue of the

matrices 2 (M + MT ) and G, then p(, C) < 1.

Proof. The quantity p(B, C) < 1 if and only if for any nonzero vector x,

(B -1 )TCB -1 x112 < xTx.

Let y = B -1 x. Then,

xTx = YT(BTB)y = YTBY

and by the symmetry of B,

(B — ' ) TCB—i x 112 = YTCT (BTB) —I CJ

= YT(MT — B)B — ' (M — B)y

= yTMTB -1 My — 2yTMy + yTBy.

The desired equivalence in (a) now follows easily.
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To prove part (b), we first point out that the scalars y and -y are positive

by the positive definiteness of M and G respectively. By a straightforward

manipulation, it is not difficult to verify that with the given choice of )

and B, the matrix 2M — MTB-1 M is indeed positive definite. Thus, the

desired conclusion follows from part (a). ❑

A simple choice of G in 5.3.13 is the identity matrix. With such a

choice, the above results establish the convergence of the following trivial

iteration:
zv+l = max(O, z" — (q + Mz")/X). (14)

Specifically, for A > M /(2µ), this sequence {z"} converges to the unique

solution of the LCP (q, M) if M is positive definite. More generally, 5.3.12

and 5.3.13 together provide the convergence for a broad class of sym-

metrization methods for solving a positive definite LCP by a sequence of

symmetric linear complementarity subproblems. The potential advantage

of such a symmetrization scheme is that each of the symmetric subprob-

lems can in turn be solved by an iterative method (like an SOR scheme)

whose convergence can be established under the (less restrictive) symmetry

approach

The vector contraction argument requires a set of properties on the

splitting (B, C) which are somewhat different from those in the norm con-

traction approach. Under the vector contraction approach, the sequence

{z'} is shown to contract in the vector sense; such contraction is a stronger

property than the norm contraction used previously and implies the latter.

The following lemma identifies a characterizing property of a K-matrix

relevant to the vector contraction argument.

5.3.14 Lemma. Let M be a K-matrix and N a nonnegative matrix. Then

p(M -1 N) < 1 if and only if M — N is a K-matrix.

Proof. Consider first the case where N is a positive matrix. Since M is a
K-matrix, M-1 is a nonnegative matrix by 3.11.10(c). Thus, M-1 N is a
positive matrix. By Theorem 2.2.21, there exists a vector x > 0 such that

M — 'Nx = p(M — 'N)x > 0. Then, Nx = p(M — 'N)Mx and thus,

(M — N)x = (p(M — 'N) — ' — 1)Nx.
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Suppose p(M -1N) < 1. Then, (M — N)x > 0. Since M — N is obvi-

ously a Z-matrix, it follows from 3.11.10(d) that M — N is a K-matrix.

Conversely, if M — N is in the class K, then (M — N) — ' exists and is

nonnegative. So, we have

0 < x = (p(M — 'N) — ' — 1)(M — N) — 'Nx

which implies that p(M -1 N) < 1. Consequently, the lemma is proved for

a positive matrix N.

In general, suppose N is a nonnegative matrix. If p(M -1 N) < 1, then

the same is true with N replaced by N + sE where a > 0 is a sufficiently

small scalar and E is the matrix of all ones. Thus, the above proof shows

that the matrix M — (N + sE) is a K-matrix. Since

M—N>M—(N+sE),

it follows that M — N is also a K-matrix. Conversely, if M — N is
in class K, then so is M — (N + sE) for all e > 0 sufficiently small.

Consequently, p(M -1 (N + sE)) < 1 by the previous argument. Since

p(M— 'N) < p(M -1 (N + sE)), the desired conclusion p(M — 'N) < 1 fol-

lows readily. ❑

The following is the main convergence result using the vector contrac-

tion argument.

5.3.15 Theorem. Suppose that B is an H-matrix with positive diagonals.

Let B denote the comparison matrix of B. Suppose

B -1 1cl 11 <1	 (15)

for some monotone norm	 . Then, the matrix M = B + C is itself an

H-matrix with positive diagonals. Moreover, for an arbitrary vector q and

any starting vector z ° > 0, the uniquely defined sequence of iterates {z^'}

produced by Algorithm 5.2.1 satisfies

Bl zv+i — z" < CHz' — z"',	 (16)

and it converges to the unique solution of the LCP (q, M).

Proof. The norm condition (15) implies that p(B-1 ^C^) < 1. Thus,, it

follows from Lemma 5.3.14 that the matrix B — CI is in class K. This
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implies in particular that all the diagonal entries of M must be positive.

Moreover, it is easy to see that M > B — CI where M is the comparison

matrix of M. Consequently, M is also in class K, and M is an H-matrix

with positive diagonals.

To establish the expression (16), we first remark that each iterate zv+l

is uniquely defined because any H-matrix with positive diagonals must be

in class P (see Section 3.3). We verify (16) component by component.

Consider an arbitrary index i and assume that

v+l	 v = ( v+l	 v)z	 — z i	 z 	— 	i.

Under this assumption, the inequality (16) clearly holds if z'1 = 0 because

the i-th component of the left-hand vector in (16) is then nonpositive and

the right-hand component is always nonnegative. Suppose  z1 > 0. Then,

we have

(q + Cz' + Bz v+ ' )i = 0.

On the other hand, we also have

(q + Czi -1 + Bz v )z > 0.

Subtracting the last two expressions and rearranging terms, we deduce

(B(zv+' — z")) i < —(C(zv — z1))

whichwhich implies
(Blzv+' -zvl)2 < (1GHlzv- zv -1 1)i	 (17)

because h22 > 0 and lzv+l — z"l i = (z ' — z") z . In a similar fashion,

we may establish the same inequality (17) if Izv+l — zv12 = (zv — zv+') Z

Consequently, the inequality (16) must hold. Since B has a nonnegative

inverse by the H-property of the matrix B, it follows that

zv+ 1 - zvl G B -1 1C1lzv - zv 1 1

Since the norm II • II is monotone, we obtain

Ilzv+1 - zuII <_ II B 1 ICI II Ilzv - zv-^

 



420	 5 ITERATIVE METHODS

which establishes the contraction property of the sequence {z"} and also

the theorem. ❑

Part of the assertion of Theorem 5.3.15 is that the matrix M must itself

be an H-matrix with positive diagonals if the splitting (B, C) satisfies the

assumed properties. The following result shows that conversely, if M is a

given H-matrix with positive diagonals, then the PSOR splitting given by

(5.2.1), with the relaxation parameter w suitably restricted, must satisfy

the norm condition (15) and thus the convergence conclusion in 5.3.15

holds for the corresponding SOR method.

5.3.16 Corollary. Let M be an H-matrix with positive diagonals. Let

M = D + L + U be the decomposition of M into its diagonal, strictly lower

and strictly upper triangular parts respectively. Let B = L + w -1 D where

w > 0. Then, there exists an w E (1, 2] such that for all w E (0, c^), the

convergence conclusion in 5.3.15 holds for the PSOR splitting (B, C) .

Proof. By the H-property of M, there exists a positive vector d such that

Md > 0 where M is the comparison matrix of M. Define the vector norm

zlld = maxd^' z2
2

which is clearly monotone. Let

m22di
w=2min	

m d.^,^	 i^ J

It is then easy to verify that w E (1, 2]. Let w E (0, w) be given. Clearly, the

matrix B has all diagonal entries positive. We show that B is an H-matrix.

It suffices to verify that

	(D — wILI)d > 0.	 (18)

If w < 1, (18) holds because (D —wIL^)d > Md > 0. On the other hand, if

w E (1, Co), then by the choice of w, we have

(D—wILI)d> ((1+w)D—w(D+ILI+ IUI))d

>(w-1)Dd>0.

We now verify that the condition (15) holds for the induced matrix norm
^^ • ^id. Let z be any vector such that iziid = 1. It suffices to show that
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y1I d < 1 where

y= (D —wIL^) -1 (^l — w^D+wIUI)z.

We show by induction on i that d2 1 I y2I < 1 for all i. Let zj = d ' I zz I and

^j = d^ yz^. Then, fj < 1 for each i. Since

(D — w^LDy = (^1 — w^D + w^UDz,	 (19)

we have

<(1 — wI 1TL11d1z1 +W E mljl djzj)/(mll dl)

j^ 1

< (I1 — wlm11d1 +w^ ^mljjdj)/(mlldj).
j^1

Ifw<1,then

<((1 — w)mildl +wY Imljjdj)/(mlldl) < 1
j1

because (Md)1 > 0. On the other hand, if w e (1, w), then

yl < ((w -1)mlldl +wEImljIdj) /(milde) <1
j1

by the choice of w. Now, suppose that maxl<<_1 yz < 1. Then from (19),

we obtain

yk <- (I1 WImkkdkzk +w^ ImkjIdjzj + W 	 ImkjI djyj)/ (n2kk dk)
j>k	 j<k

<(1 — W I mkkdk +W Y. I mkj I dj)/(mkkdk)

jk

By the same argument as for the case k = 1, we deduce that yk < 1

completing the induction and the proof. ❑

Besides the basic differences between a typical contraction result and

a symmetry result, Corollary 5.3.16 differs from 5.3.6 in two additional

respects. First, 5.3.6 deals with the family of block SOR methods, whereas

5.3.16 applies only to the point methods. Second, the range of permissible
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w values is (0, 2) in the former result, whereas that in the latter result is

(0, ti') with w generally less than 2.

The opening discussion in this subsection pointed out the general lim-

itations of the contraction approach, and these are verified by the various

results that follow. In summary, the analysis suggests that as far as the

solution by iterative methods is concerned, the symmetric LCP tends to be

somewhat easier to handle than the asymmetric LCP in the sense that the

convergence of the methods can be derived under less restrictive assump-

tions when the problem is defined by a symmetric matrix. Such restriction

is an important motivation for introducing the class of symmetrization

methods in which an asymmetric LCP is solved by a sequence of symmet-

ric subproblems. It remains an unresolved issue as to whether more general

convergence results can be derived by the contraction arguments.

The monotonicity approach

In the monotone approach for convergence, a certain transformation of

the sequence {z"} is shown to possess a monotonicity property. The tool

to derive the main result is the least-element theory presented in Section

3.11.

5.3.17 Theorem. Let (B, C) be a splitting of M. Suppose that there

exists a K-matrix X such that the matrix BX = Y is in class Z and that

CX < 0. Suppose also that the LCP (q, M) is feasible; let z° e FEA(q, M)

be given. Then,

(a) both M = B + C and B are hidden Z-matrices;

(b) for each v, the LCP (qv, B) has a solution z"+ 1 which is feasible to

(q, M) and satisfies

0 < X— ' zv+ i < X—l z";	 (20)

(c) the sequence {z"} in (b) converges to a solution of the LCP (q, M).

One distinction between Theorem 5.3.17 and the results obtained from

the symmetry and the contraction approaches lies in the sequence of iter-

ates involved. In the symmetry approach, the convergence holds for any

sequence generated by Algorithm 5.2.1; in the contraction approach, the
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property of the splitting (B, C) implies the uniqueness of the sequence pro-

duced; in 5.3.17, the conclusion applies to a particular sequence as specified

in part (b) of the above theorem. According to the theorem, each vector in

this sequence is feasible to the given LCP (q, M), provided that the starting

vector is so chosen. While this feasibility property is not required in the

previous approaches, it is essential in the proof that follows.

Proof of 5.3.17. That B is a hidden Z-matrix is clear. Note that MX =

Y + CX; since CX < 0, the matrix Y + CX belongs to Z. So, M is a

hidden Z- matrix. This proves part (a).

To prove part (b), suppose that zv E FEA(q, M). Then, it is easy

to see that z" is also feasible for the LCP (qv, B). By the necessity part

of Theorem 3.11.18 and its proof, it follows that the LCP (q", B) has a

least-element solution zv+ l satisfying

X —i z 1 < X—l z

for any vector z which is feasible to (q', B). In particular, we deduce

X —l zv. Since X E K, it follows that X-1 is nonnegative;

thus, so is X—l z 1 Since CX is nonpositive, it follows that Czv+' =

CX(X—l z"+ 1 ) > CX(X —l z") = Czv, and so z"+ 1 is also feasible for the

LCI? (q, M). Part (b) now follows by a simple inductive argument. The

monotonicity property (20) implies that the sequence {X — ' zv} converges;

thus, so does {z'}. As we have seen in several instances before, the limit

of the sequence {z"} must solve the LCP (q, M). ❑

According to the above proof and the least-element theory of Section

3.11, the vector zv+l in part (b) of 5.3.17 can be obtained by solving the

linear program

minimize pTz

subject to q' + Bz > 0

z>0

for any vector p satisfying pTX > 0. This provides a way of constructing

the sequence {z" }. If B is itself a Z-matrix, then an alternative way to

compute z"+ 1 is by means of the special methods described in Section 4.7.
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Theorem 5.3.17 admits a slight simplification when both M and B are

Z-matrices and M < B. In this case, the matrix X may be chosen as the

identity and the condition CX < 0 obviously holds because C = M—B < 0.
The further specialization of B as a block diagonal matrix is of interest

because this choice leads to a parallel iterative method for solving the LCP

(q, M). In particular, if M is partitioned into submatrices with each

diagonal block Mii being square, then one choice for B is the block diagonal

matrix whose diagonal blocks are those of M, see (5.2.2). By specializing

5.3.17 to this setting, we derive the following consequence.

5.3.18 Corollary. Let M be a Z-matrix partitioned into submatrices Mid

such that each diagonal submatrix 11722 is square. Let B be the block

diagonal matrix consisting of the diagonal blocks Mii. Suppose that the

LCP (q, M) is feasible. Then, provided that the initial vector z° is chosen

feasible to (q, M), the sequence of vectors {z"}, with each z'+l being the

least-element solution of the LCP (q", B), is well defined and converges

monotonically to some solution of the LCP (q, M). ❑

5.4 Convergence of Iterates: Symmetric LCP

Employing three different approaches for convergence, we have dis-

cussed the limiting properties of a sequence {z"} produced by the basic

splitting method 5.2.1. Under the contraction and monotone approaches,

the convergence of the whole sequence {z' } is established; under the sym-

metry approach, only the subsequential convergence property of {z"} has

been analyzed. In the sequel, we extend the results for the symmetric pos-

itive semi-definite problem and establish the convergence of the iterates in

this case.

The positive semi-definite case

We consider the iterative method 5.2.1 for solving the LCP (q, M)

where the matrix M is assumed to be symmetric positive semi-definite and

(q, M) is assumed solvable. Our goal here is to show that any sequence

{z"} produced by 5.2.1 with a regular splitting (B, C) of M converges to

a solution of (q, M) under the assumed properties of (q, M). The proof of

this conclusion relies on the convergence of {w"} = {q + Mz"} established
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in Theorem 5.3.9 and on the convergence of an auxiliary sequence as well

as on the rate of convergence of the latter sequence.

Since by assumption, M is symmetric positive semi-definite, we may

write

M =AAT

for some matrix A e Rnxn With this factorization of M, we define the

auxiliary sequence {y"} where

yv = ATz' .

The proof of the convergence of the sequence {z"} consists of two stages;

the first stage is to establish the convergence of the sequence {y"} to a

vector, say y, and the second stage is to derive an inequality of the type:

for sufficiently large v,

ally' — 91 2 < ij 11zv +l — 
zv)) 2 <_ ll yv — fill' — 11yv+l — 911 2 	( 1 )

where a and r are certain positive constants and where 	 denotes the

12-norm of vectors. In turn, the convergence of {y"} and the right-hand

inequality in (1) are not difficult to establish. The most involved part of the

whole argument is the derivation of the left-hand inequality in (1). We first

summarize the convergence properties of the sequence {y"} in the result

below. In this and the subsequent results, the setting is as just described,

and the statement of the assumptions is not repeated.

5.4.1 Proposition. In the above setting, the two statements below hold.

(a) The sequence {y"} converges to a vector y of the form ATZ where z
solves the LCP (q, M).

(b) There exists a v l such that for every v > v1 , the limit y is equal to

ATZ* for some z* E Rn (which depends on v) such that zZ = 0 for

every i satisfying z 1 = 0.

Proof. By Theorem 5.3.9, the sequence {Mz"} converges to some vector

Mz where z solves (q, M). Hence, the sequence {AAT(z" — z)} — 0. By
an argument analogous to the proof of Lemma 5.3.10, we may deduce

{AT(zv — z)} —* 0. Hence, part (a) follows.
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The proof of (b) is by contradiction. Suppose the assertion is false.

Then there exists an infinite index set i such that for every index v E n,

y = Az*	 zJw) ^ 0	 (2)

where

J(v) = {i : z 1 = 0}.

Since the set of possible J(v) is finite, there exists an infinite subset ic' C t

such that

J(v) = J* for all v E Ic'.

Since {z"+' — z'} —> 0, y is the limit of {ATzv+l : v E tc'}. By Theorem

2.6.24 again, it follows that y is equal to ATz for some vector z E RTh

satisfying zJ* = 0. But this contradicts the implication (2). Consequently,

part (b) is proved. ❑

The next result formally asserts the validity of the right-hand inequality

in (1) for large v.

5.4.2 Lemma. There exists a constant i > 0 such that for all v large

enough,

njjzv+^	 zv11 2 < 11yv — Y11 2 — jjYv+^ — Y112.

Proof. Since w' = q + Mz" converges to w = q + Mz, it follows that for

all v sufficiently large,
(z")Tw = 0.	 (3)

Let

f (z) = qTz + 2 zTMz.

We have

z (Ilyv — gl^ 2 — Ilyv+^	 911 2 )
= -, (ZV	

l

- z)TM(zv - z) - -L (Zv+l - z)TM(zV+l - z)

= z((zv)TMzv - ( z.v+l)TM zv+l) + (zv+l l- zv ) TMZ

= f(zu) — f(zV+l )) + (zV+l — zv)T(qv+ Mz)

> 1 (zv - zv+l )T(B - C)(zv - zv+1)
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where the last inequality follows by (3) and Lemma 5.3.2. Now, it suffices

to take rq to be the smallest eigenvalue of the symmetric part of the matrix

B — C which is positive definite by the regular property of the splitting

(B, C) . ❑

Next, we turn our attention to the other inequality in the expression

(1). We first establish an immediate consequence of part (b) in 5.4.1 which

asserts a certain proximity property of the the limit vector y in relation to

the iterate y"+ 1 for all v sufficiently large. In order to state this property,

let 1(v) denote the complement of the index set J(v) in {l, ..., n}, i.e.,

I(v) = {i : z2+1 > 0 }.

Define the affine subspace

Sv ={yE IC: (q+Ay)1 =0 foralliel(v)}.

The following is the asserted proximity property of y.

5.4.3 Proposition. There exists v2 such that for all v > v2 i y is the

projection of yv+ l onto the affine subspace S„ under the 12 -norm.

Proof. Since wv+l — w as v —f oo, it follows that there exists v' such

that for all v > v',

i E I(v) #> wi = (q + Ay) z = 0,

(cf. equation (3)). Hence, y E Sv for all v > v'. Let v2 = max(vl , v') where

v1 is as given by 5.4.1. Then, for each v> v2, let z* be the corresponding

vector obtained in part (b) of this last proposition. We have

9 = yv+i + (y — yv
+i) = yV+l +	 (z* — zv+i)2(Az)T

iEI(v)

This is enough to establish the desired projection property of y. ❑

Having established the special projection property of the limit y, we

proceed to derive an upper bound of the error — This derivation

is based on the next result which will later be generalized in Chapter 7.
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5.4.4 Proposition. Let H E Rm"n and b E Rm be given, and let

V={xER'':Hx+b=O}.

Then, there exists a constant L> 0 such that for any vector y E Rn

y—y*II <LMb+Hy

where y* denotes the orthogonal projection of y onto V.

Proof. Exercise 5.11.6 contains a sketch of the proof for this result. ❑

We apply the last proposition to the affine subspaces S. Since there is

only a finite number of possible index sets 1(v), we deduce the existence of

a constant L' > 0 such that for all v sufficiently large,

9—yV+l) 
<L'11(q+ Ay ' )z^ )11.

For an index i E 1(v), we have

0 = (q + Cz" + Bz v+
')i = (q + C(z" — zv + i ) + Ay').

Hence,Hence,

(q + Ayv+')I( ) 11 <_ BMG)) Mz" — zv+^

By combining the last two inequalities, we have proven the following result.

5.4.5 Corollary. There exists a constant a' > 0 such that for all v suffi-

ciently large,

119 — Y` 11 <_ a , 11z l — Z'11-
In particular, the left-hand inequality in (1) holds. ❑

With the above results, we may now formally state and prove the desired

convergence of the entire sequence of iterates {z"} produced by the splitting

method 5.2.1 for solving a feasible LCP (q, M) with a regular splitting

(B, C) of the symmetric positive semi-definite matrix M.

5.4.6 Theorem. Let M E RnXn be symmetric positive semi-definite, and

let (q, M) be solvable. Let (B, C) be a regular splitting of M, and {z'} be

a sequence produced by 5.2.1 with an arbitrary starting vector z ° E R.

Then, {z'} converges to a solution of (q, M).

 



5.5 SPLITTING METHODS WITH LINE SEARCH 	 429

Proof. The inequality (1) implies

	y V+l - 9II < Pll yv - 9II	 (4)

where p = (1 + a) — 12 . Hence, for all v large enough,

Ily" -9II <Pvlly°-9II

Since p < 1, the infinite series ^°O  Ily" — yII converges. For each index i,

we have

v+l	 0	 c+l	 t

t—o

The series	 (zz+l — zz) is absolutely convergent because

v	 1 v
EIzZ+ i

-z`I<^) 2^Ily` -V

by Lemma 5.4.2. Hence, the sequence {z"} converges. By Theorem 5.3.3,

the limit of {zv} belongs to SOL(q, M). ❑

In the preceding analysis, the inequality (1) has played a major role.

When the matrix M is not positive semi-definite, this derivation breaks

down because the auxiliary sequence {y"} no longer can be defined. Yet,

it is still possible to derive a related inequality in terms of the sequence

If (z") }. We postpone this extension until Chapter 7 where the extended

analysis will be given as a consequence of some sensitivity properties of the

LCP.

The inequality (4) shows that the auxiliary sequence {yv} converges to

9 at a geometric rate. From this, a similar rate result can be obtained for

the primary sequence {z" }. A more general form of this latter assertion is

established in Corollary 7.2.12.

5.5 Splitting Methods With Line Search

The basic splitting algorithm 5.2.1 admits diverse realizations to which

the convergence results established in the previous two sections are appli-

cable. Despite such wide applicability, when these results are specialized to

certain iterative methods, they tend to require some strong conditions on
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either the splitting (B, C) or the matrix M; as a result, rather restrictive

conclusions are obtained. We illustrate this point with the projected Ja-

cobi method which has the matrix B equal to the diagonal part (assumed

positive) of M. In order for the symmetry results to be applicable to this

method, the Jacobi splitting is required to be regular, in other words, the

matrix 2B — M is required to be positive definite. This, of course, means

that the matrix M must satisfy some additional properties besides being

symmetric and having positive diagonal entries. Similarly, some special P-

(or Z-) property on M is needed for the contraction (or the monotone) re-

sults to be applicable. Ideally, it would be desirable for this simple method

(or its modification) to converge under some weaker assumptions on M.

The above illustration points to a general limitation of the convergence

results of the last section; this is the fact that they are not applicable to the

LCP (q, M) where the matrix M is an asymmetric positive semi-definite

matrix or a P-matrix. In this and the next section, we describe various

ways to overcome the aforementioned restrictions of the basic splitting

algorithm and its convergence theory.

The symmetric case

One way to enlarge the domain of applicability of the splitting algorithm

5.2.1 is to place the LCP (q, M) in the context of an optimization problem.

With this in place, the next step is to consider the subproblem of solving

the LCP (q", B) as a direction-finding routine. This is then followed by

a one-dimensional linesearch on a certain objective function. In order for

this conceptual approach to be practically successful, it is essential that

a solution of (qv, B) yields a search direction along which a suitable merit

function can be decreased. In the terminology of 2.5.10, we hope to identify

a real-valued function for which a solution of the latter LCP would be a

descent direction at the iterate z". The question, of course, is: what is

such a function? One candidate is

f (z) = qTz + 2 zTMz,

which appears as the objective in the quadratic program (5.3.1). In order

for this function to play the role of a merit function for the splitting method,

we need to rely on the close connection between the LCP (q, M) and the

quadratic program (5.3.1). For this reason, the approach described in this
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subsection is applicable only to the symmetric LCP, and the matrix M is
so assumed.

Let zv+l/2 denote an arbitrary solution of the subproblem (qv, B). We

define the search direction as d" = z"+ 1 / 2 — z". The lemma below identifies

a property on the splitting (B, C) to ensure the satisfaction of the descent

condition (d") T(q + Mz') < 0. (Note: V f (z) = q + Mz.)

5.5.1 Lemma. Let M be a symmetric matrix and B be a positive semi-

definite matrix. Let zv+ 1 / 2 be a solution of the LCP (qv, B). Then the

vector d" = zv+l/2 — z" satisfies

(d") T(q + Mz") < —(dv) TBd < 0.	 (1)

If B is either symmetric or positive definite, and if (d") T(q + Mz") = 0,

then ZU solves the LCP (q, M).

Proof. Since zv+l/2 solves (q", B), we have

0 > (d") T(q + Cz" + Bz 112 ) = (d") T(q + Mz" + BdV )	 (2)

from which the desired inequality (1) follows easily.

Suppose that B is positive definite. If (d") T(q + Mzv) = 0, then (1)
and the positive definiteness of B imply d' = 0 which yields zv+l/z = zv

It follows that z" C SOL(q, M). If B is symmetric positive semi-definite

and (dv) T(q+Mz") = 0, then (1) implies Bd" = 0. Thus, Bz' = Bz'/ 2

and (2) yields

0 = (d") T(q + Czv + Bz +' /2).

Consequently, 0 = (zv) T(q + Cz" + Bz"). Since zv+'/2 E SOL(q', B) and

Bz" = Bzv+ l / 2 , it follows that z' C FEA(q, M). Consequently, z" solves

(q, M). ❑

The positive (semi-) definiteness of B required in the above lemma is

different from the regularity of the splitting (B, C) in the previous symme-

try approach (cf. 5.3.2). If M is positive semi-definite, then regularity of

the splitting (B, C) implies that B must be positive definite; clearly, the

converse need not be true.

With Lemma 5.5.1 on hand, we introduce the following algorithm.
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5.5.2 Algorithm. (A Splitting Method With Line Search)

Step 0. Initialization. Let (B, C) be a splitting of the matrix M and z°
be an arbitrary nonnegative vector. Set v = 0.

Step 1. General iteration: compute direction. Given z" >_ 0, solve the

the LCP (q", B) and let z"+ 1 ' 2 be an arbitrary solution. Let
dv = zv+i /2 — z" .

Step 2. General iteration: compute stepsize. Define the stepsize 'r, as

follows: if (dv) TMdv < 0, set Tv = 1; otherwise, let Tv be a

nonnegative number satisfying

f (zv + Tv d" ) = min{ f (zv + Td" ) : z" + Td" > 0, r> 0}.

Step 3. Test for termination. Set z 1 = zv+Tv d' and test z 1 for ter-

mination. If termination fails, return to Step 1 with v replaced

by v+1.

The distinction between the above algorithm and 5.2.1 lies of course

in the determination of the stepsize T,,. In the previous case, Tv was set

equal to unity for each v. (Clearly, a unit stepsize means that one simply

takes a solution of the LCP (qv, B) to be the next iterate.) That such a

unit steplength could be taken was due to the regularity of the splitting

(B, C); indeed, according to 5.3.2, this property of the splitting ensures a

suffcient decrease of the quadratic function f (z) (in the sense that (5.3.2)

holds). In the absence of the regularity assumption, such decrease is no

longer guaranteed without an extra linesearch.

In order to better understand the choice of the stepsize 'iv in 5.5.2,

suppose that the direction d' satisfies (d") T(q + Mzv) < 0. (This descent

condition is valid under the assumptions of Lemma 5.5.1.) We may write

f (zv) — f (z" + yvd") = --rv (dv ) T(q + Mz") — 2 (dv ) TMd".

If (dv) TMd' is nonpositive, then with a unit stepsize 7„ = 1, we can ensure

f(zv ) — f(zv+l) ? — (dv ) T(q + Mz");	 (3)
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moreover, the next iterate z l is equal to z"+l/ 2 which is nonnegative. On

the other hand, if (d") TMd" is positive, then the one-dimensional function

g(T) = f(zv + Td"), T E R

is strictly convex in T and its global minimum is attained at the value

= 
(dv)T(q + Mzv)	(4)

TL 	 (dv)TMdv

which is clearly positive. If zL + T„d" is nonnegative, then we must have

TU = Tv ; moreover, it is easy to verify that the inequality (3) must hold

as an equation in this case. On the other hand, if zv + r„d' contains at

least one negative component, then the stepsize Tv as defined in 5.5.2 must

satisfy the relation

1 <TV G'TV ,

In particular, Tv is bounded away from zero by the constant one. Moreover,

it is not difficult to verify that (3) also holds in this case. (See Exercise

5.11.9 for a summary of these properties which the reader is asked to

prove.) We remark that if M is positive definite and if the direction d' is

nonzero, then (d") TMdv must be positive.

The inequality (3) is similar to the corresponding inequality (5.3.2) for

Algorithm 5.2.1. Not only do these inequalities guarantee that the se-

quence of objective values { f (z )} is nonincreasing (strictly decreasing in

case the algorithm has not yet terminated), they ensure a certain posi-

tive amount of decrease between two consecutive functional values f (zv )

and f (z"+ 1 ) Such decrease is essential for the overall convergence of the

respective algorithms.

The following is the main convergence result for Algorithm 5.5.2.

5.5.3 Theorem. Let M be a symmetric matrix and B be positive definite.

Then the sequence {zv} produced by 5.5.2 is uniquely defined; moreover,

every accumulation point of {z"} solves the LCP (q, M). If in addition,

the two assumptions (a) and (b) of Lemma 5.3.4 hold, then the sequence

{z"} is bounded.

Proof. It suffices to prove the convergence and boundedness properties

of the sequence {z" }. Without loss of generality, we may assume that the
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descent condition (dv) T(q + Mzv) < 0 is satisfied for each v. Let be

an accumulation point of {zv}, and let {z" : v E ic} be a subsequence

converging to z. Since the sequence If (zv)} is nonincreasing, by the same

argument as in the proof of 5.3.3, we may deduce that the sequence If (zv)}

converges. This implies that f (zv) - f (z"+ 1 ) -* 0. Thus, by condition (3),

it follows that

lim T,(dv) T(q + Mzv) = 0.
voo

Suppose that lim inf{T„ : v E tc} is positive. Then,

lim (d") T(q + Mzv) = 0
vEtc, v-+oc

and expression (1) implies {dv : v E ic}	 0 by the positive definiteness of

B. From this, it is easy to deduce that z solves the LCP (q, M).

On the other hand, suppose that lim inf{Tv : v E ic} = 0. Then, there

must exist an infinite subset ic' C ic such that for each v E ic', Tv = Tv where

T„ is given by (4) and lim E ^  T„ = 0. We claim that the sequence

{d" :1-' E ic'} is bounded. Assume the contrary. Let d be a limit point

of the normalized sequence {dv/d v E ic'} which must exist and be

nonzero. Then, the inequality (1) and the positive definiteness of B imply

d = 0 which is a contradiction. Consequently, the boundedness of the

sequence {dv : v E s;'} follows. Without loss of generality, we may assume

that {dv : v E ic'} converges to a vector d. Since

(dv) T(q + Mz")
0	 lim T - - lim

v-,^ - VcK', v-^oo	 (d")TMdv

it follows that

(q + Mz) Td = 0.

Passing to the limit {v - cc, v e ic'} in the inequality (1), and using the

last equation and the positive definiteness of B, we deduce that d = 0. As

before, this implies z E SOL(q, M).

To establish the last assertion of the theorem, suppose that assumptions

(a) and (b) of 5.3.4 hold. Then, the sequence { f (z")} is nonincreasing and

bounded below, it therefore converges. Suppose that some subsequence

{ z" : v E pc} oo. As we have shown before, we can deduce that for

some infinite subset ic' C ic, {dv : v E ic'} -> 0. Now, by the same proof as
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that of Lemma 5.3.4, we can derive a contradiction to the two assumptions

(a) and (b). This completes the proof of the theorem. ❑

Theorem 5.5.3 complements the results of Section 5.3 under the sym-

metry approach for convergence and is applicable to splitting algorithms in

which the splitting (B, C) is not necessarily regular. Some realizations of

5.5.2 include the projected Jacobi method and more generally, all parallel

iterative methods generated by a block diagonal matrix B with positive

definite diagonal blocks.

It is interesting to compare Theorem 5.5.3 and Proposition 5.3.13.

According to the latter result, given any symmetric positive definite matrix

G, it is always possible to scale G and use the scaled matrix to define

an iterative scheme for solving the LCP (q, M). This procedure requires

the matrix M to be positive definite and differs from 5.5.2 in two major

respects. First, the positive definiteness of M is a precondition for the

scaling approach to be successful, whereas this property of M is not needed

for the convergence theory of 5.5.2. Second, due to the regularity property

of the splitting, the scaling procedure requires no linesearch; on the other

hand, the latter step is crucial for Algorithm 5.5.2.

A symmetric variational inequality approach

Algorithm 5.5.2 and its convergence theory can be extended to more

general quadratic programs. In particular, applying the splitting idea to

(1.4.2) leads to the family of iterative methods described below. Since the

equivalence between the LCP (q, M) and the quadratic program (1.4.2)

hinges on the row-sufficiency property of M (see Section 3.5) but does not

require the symmetry of M, the approach described below is applicable to

an asymmetric LCP of the row sufficient type.

Throughout this subsection, let f (z) denote the objective function of

the quadratic program (1.4.2), i.e.,

f (z) = zT(q + Mz).

The gradient vector of f is given by

0f(z) =q+(M +MT)z.

 



436	 5 ITERATIVE METHODS

Let N denote the matrix M + MT which is clearly symmetric. Also, we let

S = FEA(q, M).

According to Theorem 3.5.4, if M is a row sufficient matrix, the LCP

(q, M) is equivalent to the Karush-Kuhn-Tucker conditions of the quadratic

program (1.4.2) in the sense made precise in that theorem. In turn, these

Karush-Kuhn-Tucker conditions define another LCP which according to the

discussion in Section 1.2 is equivalent to the affine variational inequality

problem VI(S, Vf).  Thus by transitivity, the LCP (q, M) becomes equiv-

alent to the latter variational problem. We summarize the relationship

between these two problems in the following lemma which provides the key

to the entire approach described in this subsection.

5.5.4 Lemma. Let M be a row sufficient matrix. Then a vector z solves

the LCP (q, M) if and only if z solves the problem VI(S, V f).  ❑

Using the above lemma, we introduce a splitting algorithm for solving

the LCP (q, M). The algorithm makes use of an arbitrary splitting (B, C)

of the (symmetric) matrix N in which B is symmetric positive definite.

Note that with such a matrix B, any variational problem VI(S, g) where g

is the affine mapping

g(z) = r + Bz

is equivalent to the strictly convex quadratic program

minimize rTz + 2 zTBz
(5)

subject to	 z E S.

5.5.5 Algorithm. (A VI-Based Splitting Algorithm)

Step 0. Initialization. Let (B, C) be a splitting of the matrix N with B

being symmetric positive definite. Let z° E S be arbitrary. Set

I)=0.

Step 1. General iteration: compute direction. Given z" E S, solve the

quadratic program (5) with

r = q + Czv

and let 	 denote its unique solution. Set d' = z"+1^2 — zv
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Step 2. General iteration: compute stepsize. Define the stepsize T. as

follows: if (dv) TMd" is nonpositive, set 'r, = 1; otherwise , let T

be a nonnegative number such that

f (zv + ‚id") = min{ f (zv + Tdv ) : zv + ‚id" E S, 'i > 0 }.

Step 3. Test for termination. Set zv+l = z' + T„d" and test z"+ 1 for

termination. If z"+ 1 fails the termination test, return to Step 1

with v^—v +1.

The main advantage of the above iterative scheme is its applicability to

the LCP (q, M) with an arbitrary row sufficient matrix M. Note that the

algorithm assumes the feasibility of (q, M). Thus, by 3.5.5, the existence

of a solution to this LCP is not an issue here; instead, it is the convergence

of the sequence {z"} that is the main concern.

As in the previous splitting algorithms, there are many candidates for

the splitting (B, C); of particular importance is the choice of a positive di-

agonal matrix for B. If B is such a matrix, then each quadratic subprogram

(5) has a strictly convex, separable objective function, and the conversion

scheme discussed in Section 5.3 offers an effective approach for solving the

subproblem (5) by a variety of iterative methods. This overall process is

known as diagonalization; its underlying idea is to transform (or diago-

nalize) a non-separable problem into a sequence of separable subproblems

which presumably can be solved more effectively by some efficient methods.

The projected Jacobi method is a simple application of this diagonalization

idea.

When each subproblem (5) is in turn solved by an iterative scheme,

Algorithm 5.5.5 becomes, overall, a hybrid method which involves two

levels of iterations: an inner level and an outer level. The inner iterations

refer to the solution of a particular subproblem (5), and the outer iterations

pertain to the updates of the subproblems to be solved by the inner scheme.

As a solution method for the LCP (q, M), this combined strategy seems

a bit cumbersome and artificial; nevertheless, in the absence of additional

properties of the matrix M, it provides a promising avenue for solving an

LCP of the row sufficient type by a provably convergent iterative method

of the kind discussed in this chapter.

The key to the convergence of the sequence {z"} produced by 5.5.5

is the following lemma which ensures that the direction d' defined in the
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algorithm satisfies the descent condition (dv) T V f (z") < 0. The proof of

the lemma is exactly the same as that for 5.5.1 and is left to the reader.

5.5.6 Lemma. The direction d' generated by 5.5.5 satisfies

(d') T(q + Nz") < —(d') TBd' < 0.

Moreover, if (d")T(q + Nz") = 0, then z' solves the problem VI(S, V f ). ❑

The stepsize analysis for Algorithm 5.5.2 easily carries over to the

present context. In particular, one can derive a descent property simi-

lar to the inequality (3). Furthermore, by means of a proof analogous to

that of 5.5.3, one can establish the following main convergence result for

5.5.5.

5.5.7 Theorem. Let M be a row sufficient matrix and B be symmet-

ric positive definite. Suppose that the LCP (q, M) is feasible. Then, the

sequence {zv} produced by 5.5.5 is uniquely defined; moreover, every ac-

cumulation point of {zv} solves the LCP (q, M). If, in addition, the level

set

{z E S : f(z) < f(z°)} (6)

is bounded, then so is the sequence {z"}.

According to Proposition 3.9.23, if M E Ro , then the level set (6)

must be bounded. In particular, this holds if M is a P-matrix. Since the

LCP (q, M) has a unique solution when M E P, it follows from 5.5.7

that the sequence {z"} produced by 5.5.5 is bounded and has a unique

accumulation point which must be the solution of (q, M). Consequently,

we have proved

5.5.8 Corollary. Let M E P and B be a symmetric positive definite

matrix. Then, the uniquely defined sequence {z'} generated by Algorithm

5.5.5 converges to the unique solution of the LCP (q, M). ❑

It is rather evident that the diagonalization idea and, more generally,

Algorithm 5.5.5 are not just restricted to the LCP (q, M), but can be ap-

plied to a general quadratic program. The matrix N and the set S are

related in the context of the LCP (q, M); by taking N to be an arbitrary
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symmetric matrix and S an arbitrary polyhedral set, the variational in-

equality problem VI(S, Vf) becomes the stationary point problem of the

general quadratic program

minimize f (z) = qTz + 2 zTNz

subject to	 z E S.

Algorithm 5.5.5 applies without any change. In this case, one can show-

parallel to 5.5.7 that if the above quadratic program is feasible, then

every accumulation point of the sequence produced by 5.5.5 is a stationary

point of the program, and under the additional assumption of bounded level

sets, that such a sequence must be bounded. Of course, if N is positive

semi-definite, then every stationary point of the quadratic program is a

global minimum.

5.6 Regularization Algorithms

Since a positive semi-definite matrix is row sufficient, Algorithm 5.5.5

is applicable to the LCP (q, M) where M is positive semi-definite. For an

LCP of this type, alternative iterative methods can be derived by a process

which we term regularization. The essential idea involved in this process

is to transform the given LCP into a sequence of linear complementarity

subproblems defined by positive definite matrices. Presumably, such trans-

formation is desirable for two reasons. First, each subproblem is in turn

amenable to solution by a broad family of iterative methods. More im-

portantly, as we shall see in Section 5.10 and Chapter 7, an LCP of the

positive definite type is globally more "stable" than one of the positive

semi-definite type. Incidentally, Algorithm 5.5.5 may also be thought of

as providing a way of "regularizing" the LCP (q, M), but in a more general

sense. There, the connection between the LCP (q, M) and the quadratic

program (1.4.2) is exploited, and 5.5.5 is actually a regularization algo-

rithm applied to (1.4.2). The resulting algorithm yields subproblems each

of which is a strictly convex quadratic program instead of a positive definite

LCP.

A broad class of regularization algorithms for solving the LCP (q, M)

can be derived from the basic splitting algorithm 5.2.1. To motivate this

derivation, we ask the question of how to generate from M a positive def-
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finite matrix B. An obvious answer to this question is to simply add an

arbitrary positive definite matrix to M. Since M is positive semi-definite

and the added matrix B — M is positive definite, the resulting matrix B

being the sum of M and B — M is indeed positive definite. When B — M is

a positive multiple of the identity matrix, the resulting algorithm becomes

the so-called proximal point algorithm in the theory of monotone operators.

Generalizing this choice for B — M, we require in the sequel that B — M

be symmetric as well as positive definite.

The following is the main convergence result for the above class of reg-

ularization algorithms.

5.6.1 Theorem. Let M be a positive semi-definite matrix. Let (B, C)

be a splitting of M such that B — M is symmetric positive definite. Let

q E K(M) and z° > 0 be arbitrary. Then, the uniquely defined sequence

of vectors {z'} produced by 5.2.1 converges to some solution of the LCP

(q, M).

Proof. The uniqueness of each iterate z 1 follows from the positive def-

initeness of B. Since the matrix B — M is symmetric posititive definite,

it defines the elliptic norm IB—M. In order to simplify the notation

somewhat, we shall omit the subscript B — M from this norm.

We first show that {z"} is bounded. Let be a solution of the LCP

(q, M). Since z 1 solves (qv, B), we derive the inequality

0> (zv+i — z) T(C(zv — z) + B(z ' — z))

Substituting B = (B — M) + M, rearranging terms and using the positive

semi-definiteness of M, we obtain from the above inequality,

— z )TC (z „ — z) ^ (zv+i — z) T(B — M)(zv+' — z)	 (1)

Note that —C = B — M. Therefore, by the symmetry and positive defi-

niteness of B — M and the Cauchy-Schwartz inequality, it follows that

zv+1
_z11<^1zv— z

which implies that {z"} is bounded; moreover, the limit

c= lim 11z" — z (	 (2)
v->00
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exists and is finite. Next, we show that

tim I)zv — zv+l11 = 0.	 (3)
v— 00

We have

zv+1 _zvI12= )zv+1 —z11 2 - 2(z ' —z)T(B—M)(zv —z`)+ 
lz"—z112

which in view of (1), implies

zv+1 — zv11
2 < Ilzv — zll 2 — Ilzv+^ — z11 2

The limit (3) follows readily from (2). By the definition of each iterate

zv+' and the limit (3), it is easy to show that every accumulation point of

the sequence {z"} solves the LCP (q, M).

To establish the convergence of {z" }, let u l and u2 be any two limit

points of {zu}. Then, with z replaced by u i (for i = 1, 2), it follows that

the limits

c2= lim Il z' — uz
voo

exist for i = 1, 2. Clearly,

lzv — u 1 11 2 = lzv — u2 11 2 + )u' — u2 11 2 + 2(u2 — ul)T(B — M)(z v — u2 )

Thus, limey„(u2 — u l ) T(B — M)(zv — u2 ) exists and in fact is equal to

zero because u2 is a limit point of {z” }. Consequently, we deduce,

ci= c2 +(u 1 —u2 ) 2

Reversing the role of u l and u2 , we also have

c2 = ci + Ilul — u2112

Thus, u l = u2 . This completes the proof. ❑

The proof of Theorem 5.6.1 is a kind of a nonexpansive argument; it

can be used to analyze splitting methods satisfying some related proper-

ties. The essential idea may be summarized as follows. Suppose {z"} is

a sequence generated by the splitting method of 5.2.1 whose convergence

is desired. One first demonstrates that the limit (2) exists for an arbi-

trary solution z of the LCP (q, M); next, one shows that the sequence of
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differences of consecutive iterates, namely {z' z"}, converges to zero.

Finally, from these two conclusions, one establishes the convergence of the

entire sequence {zv} by the same argument as given above. Typically, the

first task relies on some special property of the splitting (B, C) . The con-

vergence of {zv+l — z"} to zero is intimately related to the assertion that

every accumulation point of {z"} if it exists solves the problem (q, M);

see Exercise 7.6.3. By following this line of reasoning, one may generalize

Theorem 5.3.12 to an LCP with a special kind of positive semi-definite

matrix. This generalization is outlined in Exerecise 5.11.8.

The regularization idea can be generalized to the LCP (q, M) with

M E Po . Indeed, if M is a P0-matrix, then for each a> 0, M + EI E P by

3.4.2. Thus, the LCP (q, M + aI) has a unique solution z(a) which can be

obtained, in turn, by the iterative scheme 5.5.5. By taking a sequence of

positive scalars {e„} — 0, we generate a sequence {z"} with z" z(a) for

each v. The following theorem establishes two convergence properties of

these iterates. Exercise 5.11.10 provides a third property under a different

assumption.

5.6.2 Theorem. Let M be a P0-matrix. Let {e„} be a decreasing se-

quence of positive scalars with e„ — 0. For each v, let zv be the unique

solution of the LCP (q, M + e„I).

(a) If M E Ro , then the sequence {zv} is bounded; moreover, every

accumulation point of {zv} solves the LCP (q, M);

(b) If M is positive semi-definite and the LCP (q, M) is solvable, then

the sequence {z"} converges to the least 1 2-norm solution of (q, M).

We clarify the conclusions of the theorem before proving it. According

to 3.9.22, any matrix M E Po n Ro must be a Q-matrix. Thus, under

the assumption of part (a) in 5.6.2, it follows that (q, M) is solvable. The

main emphasis of this part of the theorem is the convergence of the sequence

{zv} and not the solvability of (q, M). It is also interesting to compare this

convergence result which applies to an LCP with an arbitrary P0-matrix

and 5.5.7 which applies to an LCP with a row sufficient matrix (the latter

is a special kind of P0-matrix). The two iterative schemes in question are

quite different in nature, although both may be regarded as derived from

the same regularization idea.
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The solution set of the LCP (q, M) with M being positive semi-definite

is a convex polyhedron by 3.1.7(c). Thus, the least 12-norm solution of

(q, M)—which is the vector in SOL(q, M) that is closest to the origin in

the l2-norm---exists and is unique. The conclusion of part (b) in 5.6.2

asserts that this special solution is the limit of the sequence {z"} produced

by the regularization algorithm when M is a positive semi-definite matrix.

This part of the theorem can be compared to 5.6.1 which also deals with

a positive semi-definite LCP. Theorem 5.6.1 applies to a broader class of

iterative methods in that there is basically no restriction on the matrix

B as long as B — M is symmetric positive definite. On the other hand,

Theorem 5.6.2 concerns a different iterative scheme which involves a spe-

cial regularization mechanism, namely, that of adding to M a sequence of

decreasingly small positive multiples of the identity matrix.

Proof of 5.6.2. To start, we point out that if the sequence {z"} is bounded,

then it is a simple matter to verify that every accumulation point of {z"}
solves the LCP (q, M).

Suppose that M E P0 f1 Ro and that the sequence {zv} is unbounded.

Without loss of generality, we may assume that { } — oo. The nor-

malized sequence {z"/ z"  } has at least one accumulation point, say z.
We may assume, without loss of generality, that z is the limit of the entire

sequence {zv /MMz"11 }. Clearly, z is nonnegative and nonzero. We have, for

each v,

q +Mzv+e„z">0

z" >0

(zu ) T(q + Mz v + b v zv ) = 0.

Dividing the first inequality by and the equation by 2, and passing

to the limit v —p oo, we easily deduce z E SOL(O, M). But this is a con-

tradiction because M E R0 . Consequently, the sequence {z"} is bounded.

By the remark made at the beginning of the proof, it follows that every

accumulation point of {z"} E SOL(q, M).
Suppose now that M is positive semi-definite and the LCP (q, M) has

a solution, say z. In this part of the proof, • denotes the  12-norm of

vectors. We show that the sequence {z"} is bounded. (Note that this does
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not follow from part (a).) Write

w" = q + Mzv + Euz v, and w = q + Mz.

Then, we have

0>
 (

zu —z)T(w" — w)

= (z" — z)TM( z" — z) + ev(z" — )TZ"

> Eu(z" —  )TZ"

where the last inequality follows from the positive semi-definiteness of M.
Consequently, we deduce

Ilzu( 2 < zTZu < Ilzll Ilzv

which implies that 1 zu 11 < 11 z 11, and the boundedness of the sequence {z"}

is thus established. Again, by the remark made at the beginning of the

proof, it follows that every accumulation point of {z"} E SOL(q, M). If x
and y are any two such accumulation points, it follows from the derivation

above (with z = x) that IIyII < x11. Reversing the role of x and y, we may

conclude that (x( = Ilyll and this common value must be less than or equal

to Ilzll for any solution z of (q, M). Since there is a unique solution with

the least 12 -norm, it follows that this least 1 2-norm solution must be the

limit of the sequence {z"}. This completes the proof of the theorem. ❑

5.6.3 Remark. It is easy to see that part (a) of 5.6.2 remains valid if the

assumption M E Ro is replaced by that of the boundedness of the set

{z E R+ : zT(q + Mz) <0}.

The regularization idea for the LCP discussed above can be extended

to a convex quadratic program (1.2.1). There are two ways to implement

this extension: one is to apply it directly to the program (1.2.1), and the

other to the equivalent LCP formulation (1.2.2). In the former approach,

one regularizes the problem (1.2.1) by creating a sequence of strictly con-

vex quadratic programs; a prominent algorithm resulting from this is the

proximal point algorithm which requires solving subproblems of the form
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minimize cTx + 1 (xTQx + 6 (x — x v ) T(x — xv ))

subject to	 Ax > b	 (4)

x >0

where {a.} is an arbitrary sequence of positive scalars. This algorithm is

particularly useful in the design of parallel methods for solving the impor-

tant subclass of linear programs (which have Q = 0). There are variations

to the subproblem (4) but the essential idea remains the same.

5.7 Generalized Splitting Methods

The basic splitting algorithm given in 5.2.1 can be generalized in a num-

ber of ways. We have discussed some of these in Section 5.5 in conjunction

with a linesearch procedure. In this section, we discuss a few more gener-

alizations, but do not analyze their convergence in detail. The extended

analysis is not difficult to carry out under appropriate assumptions.

An inexact splitting method

In many realizations of the splitting algorithm 5.2.1, the subproblems

are themselves LCPs that are not entirely trivial to solve. Sometimes, it

might even be profitable to solve these subproblems by an iterative proce-

dure. In practice, such a procedure produces only an approximate solution.

Rigorously speaking, the convergence results established thus far fail to be

valid when the subproblems are solved inexactly; this is because these re-

sults all require that each zv+l be an exact solution of the subproblem

(q + Cz", B). This consideration leads us to the study of the inexact split-

ting methods. Instead of discussing these inexact methods in their full

generality, we focus on a two-stage splitting method which contains the

essential idea of a typical inexact splitting method.

As the name suggests, a two-stage splitting method solves the LCP

(q, M) by a two-stage process. In order to explain this in more detail,

let (B, C) be a splitting of the matrix M. The outer stage of the method

refers to the (iterative) solution of the subproblem (q +Cz", B) at a specific

(outer) iteration v; whenever the iteration count v is replaced by v + 1, we

say that a new outer stage is entered. Each inner stage corresponds to the
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actual iterations for solving a given (q + Cz', B); these inner iterations are

defined by a splitting of the matrix B given by

B=E+F.

Thus, an inner stage of the method generates a sequence {y" , t} where

each iterate y" , `+ 1 is an exact solution of the LCP (q + Cz" + Ey" t, F).

For practical purposes, we terminate the inner iterations when an iterate

yv,t+ l satisfies a prescribed termination rule; when this happens, the iterate
y",t+1 is deemed satisfactory and taken to be the next outer iterate, i.e.,
zv+l = yv+1; a new outer stage is then entered.

Consequently, each iterate zv+ l is an inexact solution of the problem

(q+Cz, B), the inaccuracy of z 1 as a solution of the latter LCP depends

on the criterion we use to terminate the inner iterations. One such rule is

the following:

yV t+1 — y" °
` 112 r„l (II YV"+1 — Z2 ^IE(2) (1)

where ry is a prescribed scalar. This rule is practically implementable in

the sense that the resulting (inexact) method can actually be carried out

in practice. Notice that if yt+1 = y',`, then (1) is clearly satisfied; in this

case, y" , °+ 1 becomes an exact solution of (q + Cz', B).

We summarize the above discussion and present a full description of the

two-stage splitting method for solving the LCP (q, M). We assume that

the two splittings

M=B+C, B=E+F

are given. Also given are prescribed rules for terminating the inner and

outer iterations.

5.7.1 Algorithm. (The Two-Stage Splitting Method)

Step 0. Initialization. Let z° and y° ' 0 be arbitrary nonnegative vectors,

set v = 0.

Step 1. Inner iterations. Given z" and y" ,O , generate a sequence {yv,t+l }

by letting each y+ 1 E SOL(q + Cz' + Eyv't, F). Let y+' be

the vector obtained when the prescribed termination rule for

the inner iterations is satisfied. Set zv+l = yv, +l
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Step 2. Outer iteration and termination test. If z l satisfies a pre-

scribed termination rule for the outer iterations, terminate; oth-

erwise, set yv+l,o = zv+l and return to Step 1 with v replaced

by v + 1.

5.7.2 Remark. In the above algorithm, each inner iteration is started

with the initial iterate y' ,0 = zv. Other choices are also possible; this one

is for the sake of convenience.

Under appropriate choices of the inner termination rule, it is possible

to generalize the convergence results established in the previous sections to

the present context of 5.7.1. For instance, with the rule (1), one can show

that essentially all the results obtained under the symmetry approach for

convergence will continue to hold provided that the sequence of positive

scalars {r„} satisfies the property

00

E r„ < 00.

v=0

This condition therefore provides the needed assumption on the amount

of inaccuracy that the inner iterations can sustain in order to preserve the

convergence of the overall iterative process in the case of the symmetric

LCP.

Variable splittings and underrelaxation

Another generalization of the basic splitting method given in 5.2.1 is

obtained with the use of a sequence of variable splittings. Specifically, let

{(B,, Cv )} be a sequence of splittings of the matrix M. At iteration v,

the splitting (By , C„) is used to define the subproblem (q + Cv z", B,.).

By imposing a uniformity assumption on the sequence {(B,,, Cv)}, the

convergence results established under the symmetry and the contraction

approaches all remain valid. In order to illustrate such a uniformity as-

sumption, consider the symmetry approach for convergence in the case of

solving the symmetric LCP. In this case, the needed assumption is that

there exists a constant a > 0 such that for all v and all vectors x E R,

XT(B„ — C,)x > axTx;
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in other words, we require the smallest eigenvalue of the symmetric part

of B, — Cv be bounded below by the positive scalar a for all v, i.e., the

sequence {Bv — Cv} is uniformly positive definite.

We may further generalize the variable splitting scheme with the use of

an underrelaxation parameter T E [0, 1). More specifically, if y' denotes a

solution of the subproblem (q + C,, z", B,,), the next iterate z 1 is defined

to be
zv+1 = Tzv + ( I - T)yv .	 (2)

A complete convergence theory can be developed for this generalization

which is parallel to that in the preceding sections.

It is easy to see that the iterate z" + 1 defined in (2) is a solution of the

complementarity system below:

(1 — T)q + ( C„ — TM)z + B„z 1 > 0

zv+1 i Tzv

(zv+l — Tzv)T((1 — T)q + ( Cv — TM)zv + Bvz 1 ) = 0,

which we recognize as an instance of the implicit complementarity problem

discussed in Section 1.5.

5.8 A Damped-Newton Method

In most of the iterative methods discussed in the previous sections, the

notion of a matrix splitting has played a major role. In this section, we

discuss the application of the classical damped-Newton method for solving

systems of equations to the LCP. This approach relies on the equivalent

formulation of the LCP (q, M) as a system of piecewise linear equations. As

explained in Section 1.4, there are several such formulations. Our discussion

below centers on the system

H(z) := min(z, q + Mz) = 0.	 (1)

The reader can easily apply the same ideas to other related systems (see

Exercise 5.11.12).

5.8.1 Remark. The above function H(z) is the same as the function

Hq ,M(z) introduced in Definition 1.4.3. Throughout this section, we shall
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say that a vector z is nondegenerate to mean that z is a nondegenerate

vector with respect to the function Hq ,M as defined in Definition 1.4.3;

the reference to the function Hq ,M is omitted from this terminology.

Closely related to the zero-finding problem (1) is the unconstrained

norm-minimization problem

minimize 0(z) = ZH(z)TH(z).

Obviously, the following three statements are equivalent: (i) z solves (q, M),

(ii) H(z) = 0 and (iii) z is a global minimum point of the function 0 and

9(z) = 0. The central idea of the damped-Newton method for solving

(q, M) is to find a vector z satisfying the last condition (iii). Of course,

what makes the minimization of 0 a non-trivial problem is its non-F(rechet)

differentiability. For this reason, it is useful to summarize some important

differentiability properties of the functions H and 0. For an arbitrary vector

z, define the index sets

a(z) = {i : z> (q + Mz)z}

,3(z) = {i : z^ = (q + Mz)^}	 (2)

ry(z) = {i : z < (q + Mz)z}.

Note that the vector z is not required to be a solution of (q, M); these index

sets generalize those defined in 3.9.15 when z E SOL(q, M). Moreover, the

notion of a nondegenerate vector z defined in 1.4.3 corresponds to the case

where ,ß(z) is empty. Elements in /3(z) are called degenerate indices, and

,ß(z) is called the degenerate (index) set. As the following result shows, the

set /3(z) plays a fundamental role in the differentiability of the functions H

and 9.

5.8.2 Proposition. Let q E R"' and M E Rn' X n be given, and z E Rn be

arbitrary. Then,

(a) the functions H and 0 are everywhere directionally differentiable;

their directional derivatives are given by

(Md)	 if i E c(z)

(H'(z, d))i =	 min(d^, (Md)z) if i E /3(z)

di	 if i Ely(z)
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0'(z, d) = E(q + Mz) i (Md) i + y zi min(di , (Md)i) +	 zidi ;
iEa(z)	 iEß(z)	 iEry(z)

(b) the function H is F-differentiable at z if and only if for each degen-

erate index i, the i-th row of M is equal to the i-th unit vector;

(c) the function 0 is F-differentiable at z if for each degenerate index i,
either the i-th row of M is equal to the i-th unit vector, or

zi = (q + Mz)i = 0. 	 (3)

Moreover, if z solves the LCP (q, M), then 0 must be F-differentiable at z

with V0(z) = 0, and the following limit holds

0(u) —0(v)

(t,v) n(z,z)	 II U — V	
0.	 (4)

Proof. The formulae for the directional derivatives in part (a) can be

verified by a straightforward calculation. To prove part (b), suppose that

for each degenerate index i, the i-th row of M is equal to the i-th unit

vector. It then follows easily that the directional derivative H'(z, d) is

linear in the argument d. Moreover, one can verify that the limit condition

lim 
H(z + d) — H(z) — H'(z, d) 0

	kill- 0 	^IdIl
holds. This establishes the F-differentiability of H at the point z. Con-

versely, if H is F-differentiable at z, then the directional derivative H'(z, d)
must be a linear function in d. By linearity, it is easy to show that for each

index i E ß(z), the desired assertion about the i-th row of M must hold.

This proves part (b). The proof of part (c) is similar and is left to the

reader. For the final assertion, it suffices to show that if z solves (q, M),

then the limit property (4) holds. The proof of this expression is easy by

noting that we may write

	0(u) — 0(v)	 (H(u) — H(v)) T(H(u) + H(v))

	— v)	 2(u — v^^

and observing that the function H is Lipschitzian and both H(u) and H(v)
approach 0 because H(z) = 0. ❑

Several implications follow from Proposition 5.8.2. First, both func-

tions H and 0 are F-differentiable at a nondegenerate vector because the
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assumptions in parts (b) and (c) are then satisfied vacuously. Second, it is

possible for the norm function 0 to be F-differentiable at a vector z without

H being differentiable there. Third, the function 0 must be F-differentiable

at a solution point of the LCP (q, M); moreover, the F-derivative there is

strong, (i.e., the limit (4) holds).

We have mentioned how the LCP (q, M) is related to the minimization

of the norm function 0. In this context, we may ask the question of when a

stationary point of 0 is a solution of (q, M). To provide an answer to this

question, we introduce the following concept.

5.8.3 Definition. A vector z e Rn is said to be regular (with respect to

the function Hq ,M) if

(a) the principal submatrix Maa is nonsingular

(b) the Schur complement

M130 MßaM; MaQ

is a Q-matrix.

Here, a and ß denote the index sets c(z) and 3(z) respectively, see (2).

The vector z is said to be strongly regular (with respect to the same min

function) if conditions (a) and (b') hold:

(b') the Schur complement

M,QQ — M13o, Maa Ma/3

is a P-matrix.

Note that if M E P, then all vectors are strongly regular. Also, if z

is a nondegenerate vector, then the strong regularity property of z is the

same as the regularity property, and both reduce to the nonsingularity of

the principal submatrix Maa . The following result relates the regularity

property to the norm function 0.

5.8.4 Proposition. Suppose that z is a stationary point of the norm func-

tion 0, i.e., suppose that

8'(z, d) > 0,	 for all d e RTh .

If z is regular, then z solves the LCP (q, M).
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Proof. By regularity, it follows that for each vector r E RTh , the system

(Md)2 = r2 for i E a(z)

min(d^, (Md)z) = r z for i E ,ß(z)	 (5)

di = ri for i E -y(z)

has a solution d; indeed, by substituting the variables di = ri for i E 'y(z)

and d' = dz — ri for i E 3(z), the system (5) becomes the mixed LCP

Magda + M,,3dß = rä

Mpada+M,fßdß>r'ß

dß>0

(dp) T(M,Qa d c, + Mßpd3 — r'ß ) = 0

where ci and ß denote the index sets c (z) and ß(z) respectively, and where

for 6=aU/,

r = rb — Mb,y r.y — Mbßrß,

the existence of a solution to the above mixed LCP follows from 3.12.5.

Now, suppose that z SOL(q, M). Then, min(zti7 (q + Mz) z ) ^ 0

for some index i. Let r = — min(zi , (q + Mz) z )ei and d be a solution to

the corresponding system (5). It then follows from the expression for the

directional derivative 0'(z, d) given in part (a) of 5.8.2 that

O'(z, d) = —(min(zi , (q + Mz) i )) 2 <0

which contradicts the assumption that z is a stationary point of 0. ❑

Description and convergence of the method

We now explain the damped-Newton method for solving the problem

(q, M). Suppose that a nondegenerate vector z' is given. According to
5.8.2, the function H is F-differentiable at z". Let a and ly denote the

index sets ci(zv) and -y(z") respectively (note that ß(z") is empty). Write

w" = q + Mzv and set up the Newton equation in order to solve for the

direction d",

H(z") + 17H(z")d' = 0.	 (6)
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In terms of the index sets a and ry, the latter equation simplifies to

v M1 v
wa	 Maa 	 da

+	 =0
zy	 0	 I	 d

which yields

d" — zv 	(7)ry	 ry

dä = —zä — Maa qa 	(8)

provided that Maa is nonsingular. Since

V8(zv ) Tdv = H(z v ) TVH(zv )dv = —H(z v ) TH(zv ),

the vector dv is therefore a descent direction for the norm function 0 at the

point z" if H(zv)	 0, i.e., if z" does not solve (q, M).

Since z" is nondegenerate, there exists a scalar S E (0, 1) such that for

all T E [0, bv ), the vector

zv(T) = zv + Tdv

is nondegenerate and

a(zv (T)) = a(zv), and 'Y(zv(T)) =

 see how S. is determined, it is convenient to define the pair of vectors

u and v:

ua = —M , qa, ury = 0 	(9)

and

v = q + Mu. (10)

Notice that va = 0; thus the vectors u and v are complementary. More-

over, u solves (q, M) if and only if ua and v ry are nonnegative. In general,

the pair (u, v) is determined by the index set a which in turn is derived

from the iterate z". As the algorithm proceeds, different (u, v) pairs will

be generated. However, since there are only finitely many index subsets of

{1, ..., n}, there can be a finite number of such (u, v) pairs (which presum-

ably correspond to an infinite sequence of iterates {zv}).
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In terms of the vector u, we may write

z(T) = (1 — T)zv + Tu;	 (11)

moreover, by letting wv(T) = q + Mz"(T), we have

wv(T) = (1 — T)w + Tv.	 (12)

Suppose that u V SOL(q, M). Define the two ratios

v	 v

	pi = min{ z2 — w2 	: i E n, ui < 0}
zi — wz — ui

v	 v

p2 = min{ 
zi

	wZ  — z2 	: i E ry, v2 < 0}.
w 

It is then easy to see that the scalar 5„ is given by

Sv = min(pl, p2).

Since u is assumed not to be a solution of (q, M), the so defined b„ lies

in the interval (0, 1). Moreover, it is not difficult to verify that for any

T E [0, 8„], the inequality holds

8(zß) — 8(z"(T)) > r0(z)

Since 9(z") is positive, it follows that for an arbitrary a E (0, 1/2), we have

9(z') — 9(z'()) > 2QTO(z) 	 (13)

for any T E (0, Sv]. By continuity, there exists a scalar b„ > Sv such that

for any T E (bv , 5„], the inequality (13) continues to hold. Note that z"(b„)
is no longer a nondegenerate vector. However, for some Sv > 8,,, z"(T) will

be nondegenerate for all T E (8,,, Sv]. Consequently, by taking the smaller

of by and 8, we conclude that there is an interval beyond 8v such that the

inequality (13) holds and the vector z"(T) is nondegenerate for all T within

this interval.

Summarizing the above analysis, we state the following algorithm 5.8.5

for solving the LCP (q, M). The algorithm starts with an arbitrary nonde-

generate vector z° and generates a sequence of nondegenerate iterates {zv}

which must be well-defined provided that M is a nondegenerate matrix.

In general, the starting (nondegenerate) iterate z ° is not always readily
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available, but often it is not difficult to obtain; for example, if the vector

q contains no zero component, then the zero vector is nondegenerate and

hence can be used to start the algorithm.

5.8.5 Algorithm. (The Damped-Newton Algorithm)

Step 0. Initialization. Let a E (0, 1/2) and p E (0, 1) be given scalars,

and z° be a nondegenerate vector. Set v = 0.

Step 1. Compute direction. Given the nondegenerate vector z", let a =

a(z") and -y = 'y(z"). Compute the vectors u and v by (9) and

(10) respectively.

Step 2. Test for termination: I. Terminate if both u and v are nonneg-

ative. The vector u solves (q, M). Otherwise, continue.

Step 3. Compute stepsize. Compute the scalar Si,. Let m, be the small-

est nonnegative integer such that with

Tv= 8v+(1-8 )p"

the vector
zv+1 = ( 1 - TT )z V + Tv u

is nondegenerate and the inequality (13) holds with T = Tv .

Step 4. Test for termination: II. Test z 1 for termination. Return to

Step 1 with v F— v + 1 if zv+' fails the prescribed termination

rule.

According to the preceding discussion, the integer my can be determined

in a finite number of trials by starting with m = 0 and successively testing

the values m = 1, 2, .... The scalar p is the backtracking factor. What

Step 3 does is that it first tests if the inequality (13) holds with T equal to

unity (i.e., with Z'  u); if this fails, then the stepsize is scaled back by

the factor p and the next vector (corresponding to m = 1) is tested. Such

a test continues until the desired integer m„ is obtained. There are two

reasons for computing the stepsize Tv in this manner (in particular, why

we want 'r„ > 6,): one reason is that the vector z"(lr) cannot be a solution

of (q, M) for T E [0, 6,], so there is no need to search in this interval; the
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second reason is that by enforcing 'r„ > 6,,, we are assured of a change in

the index sets cti and ry, thereby avoiding the possibility of jamming (or

stalling) at the same pair of index sets.

When Algorithm 5.8.5 terminates in a finite number of iterations, then

either an exact solution (given by u) or an approximate solution z 1 of

the LCP (q, M) is obtained. In the following analysis, we assume that the

algorithm generates an infinite sequence of iterates {zv }. By the infinite

nature of the sequence, we must have 8(zv) > 0 for each v. We study the

convergence property of the sequence {z'}.

By the inequality (13), we have

8(zv) _O(zv+i) > 2arr 8(zv) > 0.	 (14)

As we have pointed out, the nondegeneracy of the matrix M provides a

sufficient condition for the sequence {z"} to be well defined; the same

nondegeneracy property of M also ensures that this sequence {zv} must

be bounded. The proof of this statement is an immediate consequence

of the inequality (14) and the following lemma which provides a sufficient

condition for the norm function 0 to have bounded level sets.

5.8.6 Lemma. Let M be a nondegenerate matrix. Then the norm func-

tion 8(z) has bounded level sets, i.e., for all scalars c, the set

L(c) = {z E R: 11 min(z, q-+- Mz)11 2 c c}

is bounded.

Proof. The proof is by contradiction. Suppose that {z"} is an unbounded

sequence in the set L(c). For each v, there is a subset ci (depending on v),

such that after a suitable permutation of the components if necessary, we

may write

]14.	 aä	 za	 qa
min(zv, q + Mzv ) _	 +( 15)

0	 I	 zä	 0

Since there are only finitely many subsets a, there must exist a certain a

and a subsequence {zv : v E t} such that (15) holds for all v E it. The

nondegeneracy of M implies that {z" : v E a} must be bounded. This

contradiction establishes the lemma. ❑
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In general, despite the fact that each iterate z" produced by 5.8.5 is

a nondegenerate vector, we can not establish that a limit point of { ZV}

must be nondegenerate. As a matter of fact, a consequence of the main

convergence result below is that if z is a nondegenerate accumulation point

of {z" }, then z must be a solution of the LCP (q, M). The more difficult

argument concerns those accumulation points (if there are any) which are

not nondegenerate vectors.

The theorem below is the main convergence result for the damped-

Newton algorithm. It establishes several necessary and sufficient conditions

for an arbitrary accumulation point of an infinite sequence {z"} produced

by the method to be a solution of the LCP (q, M). Note that the result

does not assert that every limit point of {z"} must solve (q, M).

5.8.7 Theorem. Suppose that z is an accumulation point of an infinite

sequence {z"} produced by 5.8.5. The following statements are equivalent:

(a) z solves the LCP (q, M)

(b) for each i E ß(z),

zi = (q + Mz)i = 0,

(c) for each i E ß(z),

zz = (q + Mz) > 0,

(d) the norm function 0 has a strong F-derivative at z.

In particular, (a) holds if z is a nondegenerate vector.

Proof. Clearly, (a) = (b) = (c); moreover, by 5.8.2, (a)	 (d). Hence

it suffices to establish [(c)	 (a)] and [(d) = (a)]. We prove the former

implication first. Suppose that (c) holds. Let {z" : v E '} be a subsequence

converging to z. Write w = q + M.

The sequence {B(zv)} is nonincreasing and nonnegative, so it converges;

hence 9(z 1 '
) — 9(z"+ 1 ) —p 0. The inequality (14) implies

llm T„9(zv) = 0.
v—>00

If lim inf,,	 ,0E, Tv > 0, then 9(z) = 0 and z solves (q, M). Suppose that

lim inf Tv = 0.
vac, V Esc
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By restricting attention to a sub-subsequence if necessary, we may assume

that

lim Tv = 0, which implies	 lim my = oo.
v—co,vE	 v_co,vErc

We claim for every v E rr sufficiently large such that my > n +1, an integer

kv E {1, • • •, n, n + 1} exists such that with T„ = 6v + (1 6,)p'v —kv, the

vector xv = zv(T„) is nondegenerate and

6(z") — O(x v ) < 2aT0(z').	 (16)

The existence of the integer k„ is due to two facts: (i) there are at most

n values of T E [0, 1] for which zv(T) is degenerate this in turns is a

consequence of the fact that for i = 1, • • • , n, zi (T) is a linear function of

T e [0, 1]; and (ii) m„ is the smallest nonnegative integer for which the first

inequality in (14) holds with such a Tv . It is easy to see that

hm Tv = O.
v—.00,vEi

Hence, the sequence { r" : v E ‚'c} also converges to z. Then, for all v E rr
sufficiently large, we have

a(z) C a(zv) n a(xv ), and ry(z) C -y(zv ) fl ry(xl )

In view of these set inclusions, we may write .

0 (zß ) —0(f'ß ) = 2(T1 + T2 + T3)

where

T1= 	 ((w)2—(yi)2)
iEa()

T2=	 (min(zz , w' ) 2 — min(xz , yz ) 2 )

ieß(r)

T3=	 ((zi ) 2 — (xi ) 2 )
iE7(r)

and where yv = w"(T„). Consider an index i E n(z). Then i E cti(z") for

all v E ic sufficiently large. Hence, by (12) and the fact that vi = 0, we

obtain

(wz ) 2 (y )2 = (wi ) 2 — ( 1— Tv) 2 (w2 ) 2 = 2Tv(wz) 2 ( 1 — 2Tv)	 (17)
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Consequently, we deduce

T1
lim —=2 w2.

v—>oo, vEtc T /
v	iEa(z")

By a similar argument, we derive

lim T3—=2	 z?.
—> vE c T /

v 	iE-Y

Consider the term T2. By assumption, we may write

T2=T2 ++T20

where

	T2,+ =	 iEQ+(z) (
min (zi wi )2 — min(xz yz )2)

T2,0 = ^iEßo(z) (min(zz wi ) 2 — min(xz , y ) 2 )

with

ß+ (z) _ {i E ß(z) : zi > 0}, ßo(z) _ {i E ß(z) : zi = 0}.

Notice that there is no negative component in (zi : i E ß(z)) by assumption

(c). Consider an index i E ß+ (z). It follows that for all v E i large

enough, we have all four quantities  z, w, xi and yZ positive. The index

i must belong to either a(z") or ry(z'). Suppose that i E a(zv). Then,

min(z? , w?) = W'. It follows that for v E i large enough,

(min(zi , wi ))2 — (min(xz , yi )) 2 > (w2 ) 2 — (f) 2

because xi and yZ are positive. Hence, by (17), we obtain

( 	v 2	 /	 v v 2	 /	 v	 v	 1 /(mmlzi , wi )) — (min(xi , ^i )) ! 2Tv (min(zi , wi ))
2
 ( 1 — ZTv)

By a similar argument, we may derive this same inequality if i E 'y(zv

Consequently, it follows that

	lim 	>22	 (min(2Ui, zi)) 2 .
v—oc,vE^c Tv

iEß+()

Finally, by using an argument similar to the proof of the expression (4),

we may derive

T2,0 	z	lira	 = 0 = 2	 (min(iui, zi)) .
v—oo, vEK Tv

iEßo (z)
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Now, summarizing the above derivation, we conclude that

8 zv
) - 0(xv )

lira	 > 29(z).
v

Therefore, dividing the inequality (16) by T,;, and passing to the limit

v-4 oc, vEic, weobtain

29(z) < 2ou8(z)

which implies 0(z) = 0 because 2a < 1. This establishes the implication

[(c)	 (a)].
It remains to verify the implication (d) = (a). Suppose that 0 has a

strong F-derivative at z. Then the following limit holds

lim 
B(xv) — O(zv) — VB(zv) T(xv — zv)

 =0.
v—>oc,ven	 11 x v — z v II

By the definition of x', we have

x v —z' = v

where d" is defined in (7) and (8). Clearly, {dv : v E ic} is bounded. Hence

lim 
8(x") — 9(z') — VB(zv)T(x" — z") =0.

v—.00,vE,	 T1v

In view of the equation (6), it is easy to see

V8(z1 ) T(x v — z') = —2v O(z')

Consequently, we deduce

vBz — Bxv

lim	 = 29(z)
v—oo,vEfc	 Tv

which in view of (16) yields 9(z) = 0 as before. This completes the proof

of the theorem. ❑

5.8.8 Remark. In parts (b) and (c) of Theorem 5.8.7, if i E ß(z), then

zi and (q + Mz) are already equal by the definition of the set ß(z); what

is required in these parts is that the common values of zi and (q + Mz) i

not be negative.
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The major operation in each iteration of the damped-Newton algorithm

5.8.5 is the computation of the pair of vectors (u, v) in (9) and (10) which

in turn requires the solution of the system of linear equations

q, + Maauca = 0 •

In this respect, the algorithm resembles a (block) pivoting method because

solving such linear equations is essentially a pivot step. Besides its infinite

nature, a special feature of 5.8.5 which distinguishes this algorithm from all

the pivoting methods in Chapter 4 is the presence of a linesearch procedure

on the merit function 0(z); of course, this latter step is the key to the

determination of the index set cti which, in turn, dictates what the next

"pivot" is, i.e., which system of equations to solve.

5.9 Interior-Point Methods

In Section 5.6, we have described an iterative method for solving the

LCP (q, M) when M is a P0-matrix. This method is based on the regular-

ization idea and requires solving a sequence of subproblems which them-

selves are LCPs. In this section, we discuss two alternate methods for

solving an LCP of same type which rely on the existence of a strictly fea-

sible point of the problem (recall that this is a vector z > 0 satisfying

q + Mz > 0). Starting at such a point, both methods generate a sequence

of interior points in FEA(q, M); it is for this reason that the methods are

called interior-point methods.

The interior-point methods for the linear complementarity problem have

their roots in solving linear programs and possess some interesting compu-

tational complexity properties when specialized to a positive semi-definite

LCP. In the following subsections, we describe the methods in their "infi-

nite" version and discuss some of their convergence properties; complexity

results are omitted but can be found in the references cited in 5.12.22.

Throughout this section, the matrix M is assumed to be in the class

P0 . We further assume that the LCP (q, M) has a strictly feasible vector.

A merit function approach

The first interior-point method to be discussed is one of the descent

type. It starts at a given interior point of FEA(q, M), computes a de-
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scent direction along which a certain merit function will be decreased, and

obtains the next iterate that remains a strictly feasible point. In order

to introduce this method, fix a scalar c > n and consider the real-valued

function 0 : R++ x R++ — R defined by

n

(z, w) _ log(zTw) —	 log(ziw2).	 (1)
Z-1

This is the merit function for this class of interior-point methods; it is well

defined whenever z and w are positive vectors. The following result lists

some useful properties of the function O(z, w).

5.9.1 Lemma. Let z and w be two positive n-vectors and ( > n. Then

ßß(z, w) > (( — n) log(zTw),	 (2)

(Vzo(z, w))i = w2 T
(  w

(V (z, w))i = zZ TC z w
(V (z, w)) TV

-k-- ) ,

for all i,	 (3)
zi wz

_±_)‚ for all i,	 (4)
zi w2

„Q^(z, w) > 0.	 (5)

Proof. It is fairly straightforward to verify the first three expressions.

We now prove (5). Suppose that (V (z, w)) TV (z, w) = 0. Since each

product (Vz q(z, w))^(V (z, w))i is nonnegative, it follows that for all i,

— 
1

zTwziwi

This implies

czTw = nzTw

which is a contradiction because ( > n. ❑

The next result is an immediate consequence of the expressions (3), (4)

and (5) in the above lemma, and provides an important justification for

the descent step of the interior-point method to be described.

5.9.2 Corollary. If M E P0 , then for z, w > 0,

V (z, w) + MT V (z, w) ^ 0.
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Proof. Suppose the contrary. By (3) and (4), it follows that for all i,

(V (z, w))i(MTV (z, w))i = -(V (z, w))i(V (z, w))i < 0.	 (6)

The expression (5) implies that V(z, w) 0. Since M (and hence MT)

is in the class P0 , it follows that there must exist an index i for which

(v z„0(z, w)) 0 and (V 7„o(z, w))^(MT V (z, w))i > 0. In view of (6),

we deduce that for such an i,

(Vw0(z, w))i(Vzq5 (z, w))i = 0

which implies that (V (z, w)) = 0 by (3) and (4). This leads to a

contradiction. ❑

We now describe the merit reduction interior-point method for solving

the LCP (q, M) when M E P0 . In the algorithm, the scalar 3 E (0, 1) con-

trols the stepsize in each descent iteration and ensures the strict feasibility

of the iterates obtained; p E (0, 1) is the usual backtracking factor required

in the linesearch step; and a E (0, 2) determines the amount of sufficient

decrease in the linesearch.

5.9.3 Algorithm. (The Merit Reduction Interior-Point Method)

Step 0. Initialization. Let /3, p e (0, 1) and Q E (0, 2) be given. Let z°
be a strictly feasible point of (q, M) and let w ° = q + Mz° . Set

v=0.

Step 1. Compute direction and stepsize. Given the pair (z", w") > 0,
let

V GY'L = V (zv, w'), V'0' = V" (zv, w'),

and

Z" = diag(z"), W' = diag(w")

Solve the following minimization problem to obtain the search

direction (dz, dw)

minimize	 (Vzq„)Tdz + (V)Td^„

subject to	 dw = Mdz

I^(Zv)
-

ldz112 + 11(Wv) - idWI12 <_ a2.
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Set O v = (V q ) Tdz + (0,„Ov ) Tdw. Let m„ be the smallest

nonnegative integer m such that

q(zv + pmdz, w'  + p
m dw) — çl(z v , w v ) < apm L,•

Step 2. Termination test. Set

(zv+l wv+l) = (zv, WV)
 + pm  (dv, d)z w

If (zv+l wv+ l ) satisfies a prescribed termination rule, stop; oth-

erwise, return to Step 1 with v replaced by v + 1.

The search direction (dz, dw) can be computed from an explicit expres-

sion. Indeed, let

pv=vzov+MTVwov^

My = (Zv)-2 + MT(Wv)-2M,

the vector pv is nonzero by 5.9.2, and the matrix My is clearly symmetric

and positive definite; hence, the scalar

(pv)T(Mv) 1pv

ß

is positive. It is easy to show that

1dz = _I (Mv)-1pv dw -Md.

Since

(Vzcv) Tdz + (Vwcv) Tdv = -wß2 <0 	 (7)

it follows that (dz, dw) indeed provides a descent direction for the function

cl (z, w) at the iterate (zv, WV). Moreover, it is obvious that for any scalar

'r E [0, 1), the vector pair

(zv(T) w v
(v)) = (zv , w v) +T(dz, dw)

remains positive; in particular, so is the pair (zv+i wv+ l ) defined in the

algorithm.
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In view of (7), the sequence {z"} satisfies the inequality

0(zv
+l 

>
wv+1) 

— OW , wv) < —aßzpm-	 <0	 (8)v

which implies that the sequence {^(z',w")} is decreasing. Thus, by (2),

the sequence

{(zv)Twv}

is bounded. Since zv and w' are both positive, it follows that for each

i, the componentwise sequence {zz wz } is also bounded. The result below

shows that if M E R0 , then the sequence {z'} must be bounded.

5.9.4 Proposition. Let M E Po f1 Ro . Then the sequence {z"} generated

by 5.9.3 is bounded.

Proof. Suppose the contrary. Let {z" : v E K} be a subsequence such

that {Mzv^^ : v e r} —f oo. The normalized sequence {z" /Mz"^^ : v e r}
has at least one accumulation point, say z. Clearly, z is nonzero and

nonnegative; moreover, the vector w = Mz, being the limit of the sequence

{wv/MMz"11 : v E ic}, must be nonnegative.

As pointed out before, for each i, the sequence {z2 wi } is bounded; thus

for some constant c2, we have

ziwi < cz

for all v. Dividing both sides in the last inequality by  z') 2 and passing

to the limit {v E r,, v — oo}, we deduce

ziwi < 0,	 for all i.

Since z and w are nonnegative vectors, equalities must hold for all i. This

shows that z is a nonzero solution of the homogeneous LCP (0, M) which

contradicts the assumption that M E R0 . Therefore, the lemma is estab-

lished. ❑

5.9.5 Remark. The assumption M E Ro in Proposition 5.9.4 is rather

restrictive if one considers the LCP (q, M) for an individual vector q. There

are several ways to relax this condition. For example, if the matrix M is

copositive (in addition to being in the class Po), then it is enough to assume
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that the implication (5.3.4) holds. Alternatively, the conclusion of 5.9.4

remains valid if M E Po and if the level set

LT = {z E FEA(q, M) : zT(q + Mz) <}

is bounded for every T > 0. By the proof of 3.9.23, it is not hard to show

that M E Ro if and only if the set L7 is bounded for every vector q and

every scalar lr > 0.

5.9.6 Remark. We recall from Theorem 3.9.22 that if M E Po f Ro , then

M E Q C S. In this case, the LCP (q, M) has a strictly feasible vector z
for each vector q. Consequently, the assumption of the existence of such a

vector z becomes redundant under the hypothesis of Proposition 5.9.4.

Having established sufficient conditions for the sequence  {ZV} to be

bounded, we now turn to its convergence. The following is the main result

of this kind.

5.9.7 Theorem. Let M be a P0-matrix. Suppose that the LCP (q, M) has

a strictly feasible solution. Then every accumulation point of the sequence

{z"} produced by 5.9.3 solves (q, M).

Proof. Let be the limit of a subsequence {z' : v E ic} and let w = q+Mz.

Clearly, the pair (z, w) is nonnegative. Since q(z, w) < co, it follows that

either zTw = 0 or (z, w) > 0. Without loss of generality, we may assume

that the latter holds. Let p and ]l[ denote the limits of the sequences

{p" : v E ic} and {MV : v E ic} respectively. The matrix M remains

positive definite; moreover, the sequence of scalars {A, : v E t} converges

to

pTM—iP

which is positive, and the sequence of directions {(dz, d.w) : v E nj con-

verges to (dz , dw ) where

dz = —M —lp/^, dz„ = Mdz .

Since the sequence {(z'' wv+l) — q(z", wv)} converges to zero, the

inequality (8) implies

lim pm = 0
v_oo,VEic
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or equivalently,

lim my = cc.
nu-co,vEi

Hence, both sequences

{(zv+l wv+') : v E } and {(z' +TV dz,wv + rd) : v E /^}

where Tv = pm'^ -1 , converge to (z, w). By the definition m, we have

O(zv + 	 w v +Tvdw) — O(zv, wv) >
Tv

On the other hand, (8) implies

(z'1 ,
 w )+1) —	 w,hlzv	 v)

/ 4 l 	J < —aß2 iw.
pm v

Passing to the limit {v — oc, v E ic} and noting that is F-differentiable

at (z, w), we deduce

(Vzo(z, w)) Tdz + (v, ))T = —a 2 .

Similarly, passing to the same limit in (7), we obtain

(Vz0(z,w)) TJz + (Vwo(z,w))TJJ = _^ß2

which is a contradiction. This establishes the theorem. ❑

It goes without saying that the applicability of the interior-point method

depends crucially on the existence of a strictly feasible vector of the LCP

(q, M). In general, such a vector is not always available. However, the

augmented LCP (3.7.10) introduced in Section 3.7 must possess one which

is trivial to obtain. Recall that this augmented LCP (q', M') is defined by

q' =I a J , M'= L M 0 I;

if a > 0, then any pair (z, y) > 0 with z sufficiently small and y suffi-

ciently large is strictly feasible to (q', M'). Moreover, if M E P0 , then so

is W. Consequently, one can apply 5.9.3 to this augmented LCP. Note

that M' is not an R0-matrix; nevertheless, one can show that the sequence

{(z", y")} produced must be bounded (see Exercise 5.11.14). According
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to Theorem 5.9.7, every limit point (z, y) of {(z'', yV )} must be a solution

of the augmented LCP (q', M'). The remaining question is how we can re-

cover a solution of the original LCP (q, M) if it exists. When M is column

sufficient, one can invoke Theorem 3.7.17 to complete this task.

A continuation approach

Another interior-point method for solving the problem (q, M) is derived

from applying the idea of numerical continuation to a certain system of

(nonlinear) equations that is a one-parameter perturbation of the LCP

system. In order to explain this technique, we recall the notion of the

Hadamard product of two vectors introduced in 4.1.6.

In terms of the Hadamard product, Algorithm 5.9.3 can be described

as generating a sequence of positive vector pairs (WV, z") each of which

satisfies the system

w—Mz=q (9)

wiz=c (10)

for some positive vector c E R. The goal of this algorithm is to drive the

sequence {c'}, where cV = w" * z", to zero. The system (9) motivates the

definition of the mapping 4):R+ —+ RTh x R+ given by

W — Mz
(11)

W*z

This mapping plays a central role in the continuation interior-point method

for solving the LCP (q, M) corresponding to arbitrary vectors q. In order to

prepare for the description of this method, we first derive several properties

of d).

Clearly, (D is continuously differentiable on its domain and its Jacobian

matrix is easily computed to be

r I —M1
o =-D(w, z)	 IL 	1

Z W

where W = diag(w) and Z = diag(z). The following result provides a

simple characterization for the nonsingularity of this Jacobian matrix for

(w,z)>0.
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5.9.8 Lemma. A necessary and sufficient condition for the Jacobian ma-

trix V' (w, z) to be nonsingular for all (w, z) > 0 is that M E P0 .

Proof. Let (w, z) > 0 be given. It is easy to show that a pair of vectors u

and v satisfies
U

V (w, z)	 =0
V

if and only if for all i,

vz=—z2(Mv)i.
Wi

This observation, together with the sign reversing property of a P0-matrix

(see part (b) in Theorem 3.4.2), readily yields the desired conclusion of

the lemma. ❑

An immediate consequence of Lemma 5.9.8 is that if M is a P0-matrix,

then the mapping 0 is a local homeomorphism from R into RTh x R+ + (by

Theorem 2.1.22). Moreover, since R is an open set in R 2"z, Corollary

2.1.23 implies that the set (R++) C R7z x R++ is open in Ren. Thus, we

have established the following result.

5.9.9 Corollary. Let M e P0 n R' x n. Then (b(R++) C Rn x R++ is an

open subset of Ren . ❑

The next result shows that if M E P0 , then 1 is an injective mapping

on R++

5.9.10 Lemma. Suppose that M E Po l R' x n. Then 1 : R+ —^ R' x R+

is an injection when restricted to R++. This restriction can be removed if

MEP. ❑

The proof of this lemma follows easily from the inequality

(a — b)(c — d) < ac — bdJ	 (12)

which must hold for any nonnegative scalars a, b, c and d. The reader is

asked to supply the omitted proof of this inequality and the lemma in

Exercise 5.11.16.

With the above preliminary results in place, we are now ready to es-

tablish a global surjectivity property of the mapping 4).
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5.9.11 Theorem. Let M E Rn"n n Po fl Ro . Then '(R+) = Rn x R+.
Thus, 4) is a global homeomorphism from R+ onto R' x R+ if M E P.

Proof. It suffices to establish the inclusion

RnxR+C4)(R+)

Suppose that this does not hold. Let (q, c) E (Rn x R) \ I(R+ ). We

claim that there exists a vector (q, c) E Ren for which

(q, c) E (R"` x R+) \ ^(R+ ), and (‚e) E c1 (R+)	 (13)

where cl A denotes the closure of a set A in R2r`. This claim is easily seen

to be true if 4)(R++) = RTh x R++ ; in this case, the pair (q, c) itself would

do the job. On the other hand, if R++) is a proper subset of Rn x R++,
then since t(R) is open by Corollary 5.9.9, it follows that there exists

(, c) E Rn x R++ \ c(R) and (q, c) E cl 4)(R++). Clearly, this pair (q, c)
must satisfy the conditions in (13).

With the existence of (q, c) established, let {(q', ck )} be a sequence in

,b(R+) converging to (q, c). For each k, let (w', zk ) E R+ satisfy

w k — Mzk = qk

wk * z^ = ck .

If the sequence {(w', z k )} is bounded, then any one of its subsequential

limits can be used to produce a contradiction to the condition that the

limit (q, c) V 4(R+ ). Hence, the sequence {(w k , zk )} must be unbounded.

In this case, a subsequential limit of the sequence {z k /JJ (wk , z k ) JJ } can easily

be shown to be a nonzero solution of the homogeneous LCP (0, M). But

this contradicts the R0-property of M. This contradiction establishes the

surjectivity of 4). If M E P, then Lemma 5.9.10 implies that 4) is injective

on its domain R. Hence, the last conclusion of the theorem follows. ❑

5.9.12 Remark. The proof of Theorem 5.9.11 provides an alternative

demonstration of the matrix class inclusion P0 f1 Ro C Q (cf. 3.9.22).

When one considers the solution of an LCP (q, M) corresponding to a

given vector q, the global surjectivity of the mapping 4) is an excessively

strong property; in this instance, one is merely interested in the solvability
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of the system (9), (10) with nonnegative w and z, for arbitrary nonnegative

vectors c (and for q fixed). As a result of this consideration, one would like

to be able to weaken the assumption in Theorem 5.9.11 in order to better

accomodate the case of an individual vector q. The following result is the

analog of 5.9.11 along this line. (See also Remark 5.9.5.)

5.9.13 Theorem. Let M E Rn'In n P0 and q E R. Suppose that (q, M)

has a strictly feasible solution, and that the level set

LT = { z E FEA(q, M) : zT(q + Mz) <}

is bounded for every T > 0. Then for every c E R+, the system (9), (10)
has a solution (w, z) > 0. Moreover, the solution is unique if  c> 0.

Proof. Let c E R+ be given, and (w ° , z° ) > 0 be such that w° — Mz ° = q.
Set c° = w ° * z° . Then (q, c° ) E 4)(R++). Consider the system

w —Mz =q	 (14)

w * z = tc + (1 — t)c° 	(15)

for t E [0, 1]. This system has a positive solution for t = 0; our goal is to

show that it has a nonnegative solution for t = 1. Define

t* = sup{t E [0, 1] : (q, t'c + (1 — t')c° ) E (R+) for all t' E [0, t) }.

Since 4)(R++) is an open set and contains (q, c° ), it follows that there must

exist a S > 0 such that (q, t'c+(1 —t')c° ) E 4)(R++) for all t' E [0, S). Hence,

t* is well defined and positive. We claim that (q, t*c+(1 — t*)c° ) C 1P(R+ ).
Indeed, if {tk} is a sequence of scalars in the interval [0, t*) converging to t*,

then for each k, there exists (w k , z') E R+ satisfying the system (14) and

(15) for t = tk. Clearly, the sequence {z k } C LT for some T > 0 sufficiently

large. By the boundedness assumption of the set LT , it follows that the

sequence {(w', zk )} has a limit point which must be a solution of the system

(14), (15) for t = t*. Again, using the fact that the image 4)(R++) is an

open set, we can establish that t* = 1, completing the proof that the

system (9), (10) has a nonnegative solution. The uniqueness assertion of

the solution for c> 0 follows from Lemma 5.9.10. ❑

5.9.14 Remark. When Theorem 5.9.13 is specialized to the case where

c = 0, it yields a sufficient condition for the existence of a solution of
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the LCP (q, M) for M E P0 . Moreover, the boundedness assumption of

the level sets LT implies that SOL(q, M)(= L°) is a compact set. This

specialized existence result can be compared to Theorem 3.8.6 which also

provides a sufficient condition for the nonemptiness of SOL(q, M), but

for the case of a copositive LCP. It would be interesting to explore the

commonality of these two results and derive a unification. (One difference

between them is the boundedness of SOL(q, M) which must hold in 5.9.13

but is not ensured in 3.8.6.)

5.9.15 Remark. The proof of Theorem 5.9.13 is based on the classical

homotopy principle and the related continuation property of mappings.

These are well known concepts in the theory of solving systems of nonlin-

ear equations. The key idea involved is that in order to demonstrate the

existence of a solution to a certain system of equations—in this case, (9),

(10)—we deform the system to one which possesses a known solution—in

this case, (14), (15) with c = 0. The latter solution is then taken as the

starting vector for a curve that is comprised of solutions of the deformed

systems. The main assertion of the continuation property is that this curve

eventually ends at a solution of the original system. The computational

process of tracing this solution curve is known as numerical continuation.

Consider now an LCP (q, M) which satisfies the assumptions in The-

orem 5.9.13. Let (w° , z°) > 0 be such that q = w ° — Mz° , and let

c° = w ° * z° . According to this theorem, for each scalar t E [0, 1), there

exists a unique vector pair (w(t), z(t)) > 0 satisfying

w—Mz=q (16)

w * z = (1 — t)c°; (17)

moreover, as a function in t, the solution curve (w(t), z(t)) is continuous

(by the local homeomorphism of -b on R++). As we have briefly outlined

in 5.9.15, the principal idea underlying the continuation interior-point

method is to numerically trace this solution curve, starting at the value

t = 0 and eventually reaching t = 1 (or some positive value which is suf-

ficiently close to 1), at which point, an exact solution (or an approximate

solution) of the LCP (q, M) is obtained.

A practical way to implement the above conceptual scheme is to carry

out, at each iteration, one step of Newton's method on the system (16),
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(17) for an appropriately chosen sequence of scalars {t„} c [0, 1) converging

to 1; this generates a sequence of vectors {(w", z")} that remain strictly

feasible to (q, M), and which will, under some suitable conditions, converge

to a desired solution of the given LCP. More precisely, the generation of the

sequence {(w", zv)} is as follows. At the beginning of iteration v+1, we are

given the scalar tv+l and the pair (w", zv) > 0 that satisfies w" —Mz" = q.
(Note: in the practical implementation scheme, it is generally not true that

w" * zv = (1 — t v)c° for v > 0.) A direction pair (dw, dz) is generated by

solving the following system of linear equations:

I —M dV 0
= (18)

ZV WV dZ [(1 — tV+l)c° — WV * ZV j

where Wv = diag(w") and Zv = diag(z'). Notice that the lower part

of the above equation corresponds to the linearization of the (nonlinear)

equation w * z = (1 — tv+ l)c° at the pair (w", z"). (We recall that this

linearization is precisely the main idea in Newton's method for solving

nonlinear equations.) By observing that the matrix defining the system

(18) is just the Jacobian V (w", zv), it follows from Lemma 5.9.8 that

(18) has a unique solution.

Having obtained the pair (dw, dz), we set the next iterate to be

(w v+i zv
+i) = (w zV ) + Tv (dw , d)	 (19)z

where T„ e (0, 1] is the steplength determined according to a certain cri-

terion that ensures, among other things, the positivity of the new pair
(w v+l zv+l) The iterations continue until a prescribed stopping rule is

satisfied.

Summarizing the above discussion, we describe below a general frame-

work for the implementation of a continuation interior-point method for

solving an LCP (q, M) that satisfies the assumptions of 5.9.13.

5.9.16 Algorithm. (A Continuation Interior-Point Method)

Step 0. Initialization. Let (w ° , z°) > 0 satisfy q = w ° — Mz°. Set

c° =w ° *z° and v =0.

Step 1. Compute direction. Choose a positive scalar tv+l E (0, 1) and

solve the system of linear equations (18) to get the search direc-

tion pair (dw, dz).
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Step 2. Determine stepsize. Choose a stepsize T„ > 0 so that the new

iterate (wv+l z') defined by (19) remains positive.

Step 3. Termination test. If (wv+l zv+l) satisfies a prescribed termina-

tion rule, stop; otherwise, return to Step 1 with v replaced by

v+1.

The above algorithm involves two different parameters t1 and T,,. We

have left open the question of how they ought to be chosen in order to

ensure the global convergence of the algorithm and to enhance its compu-

tational efficiency. In theory, one can show that it is possible to choose

these parameters so that if the assumptions of Theorem 5.9.13 hold, then

given any prescribed tolerance, e > 0, the overall algorithm will termi-

nate in a finite number of steps with an iterate (w', z') that satisfies the

stopping rule:

(wv)Tzv < s;

furthermore, if e is small enough, then an exact solution of the LCP (q, M)

can be recovered by solving a system of linear equations of order n. See

Exercise 5.11.15 for more details on the recovery procedure. In practice,

one may use the merit function (1) as a guide for the choice of the param-

eters tv+l and 'ry in order to ensure the computational effectiveness of the

algorithm.

A compact form of the continuation method

In effect, the interior-point method of the last subsection (Algorithm

5.9.16) is derived from the numerical continuation technique applied to the

2n x 2n system of equations (16), (17). It turns out that if the matrix M E

P0 has a positive diagonal, then one may simplify this system of equations

by eliminating the w-variables, thereby obtaining a reduced system of order

n. In what follows, we explain how this reduction can be accomplished and

introduce the underlying mapping, called 'I' in the sequel, that plays a

similar role as 1 (see (11)).

Consider the system (9), (10) where c is a positive vector. By substi-

tuting w = q + Mz into the equation involving the Hadamard product,
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this system is recognized as equivalent to

zi(gi+miizi+Ymijzj) = ci, 2 = 1,...,n.

Note that the i-th of these equations can be considered as a quadratic

equation in the variable zi. Solving for zi and taking the positive root, we

obtain after a rearrangement of terms,

( 2

2miizi + mijzj + qi — 1 Y_ mij zj + qi 
1
1 + 4miici = 0 (20)

jai \ 
jai

for i = 1, ... , n. Let W i (z) denote the expression on the left-hand side of

the above equation, and W : Rn —> Rn be the resulting mapping. Note that

as c changes, so does this mapping.

Clearly, solving for a positive solution (w, z) of the system (9), (10) is

equivalent to finding a zero of the mapping W. The noteworthy property of

this mapping is that any one of its zeroes is necessarily a positive vector.

(The fact that c is a positive vector is essential to the truth of this state-

ment.) Unlike the case of (9), (10), it does not seem possible to derive a

"global" version of that applies universally to all vectors q (cf. the map-

ping 4) in (11) which is independent of q); in other words, the dependence

of the mapping IF on the vector q seems to be an intrinsic feature of this

approach and cannot be removed.

The main idea of this continuation method is to numerically trace a

solution curve of the system (20) for a family of vectors c" = t„c° where

{t,} is a sequence of positive scalars converging to zero.

5.10 Residues and Error Bounds

In the previous sections, we have discussed and analyzed the conver-

gence of many iterative procedures for solving the LCP. Since in general,

these methods do not terminate finitely, it is essential that there be rules

which can be employed to stop their execution (cf. the discussion of the

inexact splitting method in Section 5.7). Ideally, these rules should have

the property that the iterate obtained at termination is a "satisfactory

(approximate) solution" to the problem. This consideration immediately

raises the question: when is a vector qualified as a satisfactory approximate
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solution of the LCP? In general, there are two ways to answer this ques-

tion: one is that if an iterate satisfies all the defining conditions of the LCP

(i.e., feasibility and complementarity) within a prescribed tolerance, then

it is deemed acceptable; the other answer is that if the iterate is within a

prescribed distance to the solution set of the problem, then it is considered

satisfactory. In order to employ these ideas to devise termination rules

for an iterative method, it is important to be able to quantify the notion

of "satisfying the defining conditions of the LCP approximately" and to

have a measure of the distance between a vector and the solution set of the

problem. In theory, the latter is readily available. Indeed, the quantity

d(x,S) = inf{)x—zll :z E S}

where S = SOL(q, M) and II • II denotes a given vector norm, measures

the distance from an arbitrary vector x to S. If this quantity d(x, S) were

available, then a condition such as

d(x, S) < e (1)

where s is a given positive scalar (called the tolerance) could be used as

a termination criterion. Unfortunately, the practicality of a stopping rule

based directly on this distance measure is slight because the solution set

S is generally unknown. (If it were known, there would be no need to

solve the problem in the first place.) Consequently, a different and more

practical approach is called for.

Quantification of the idea of approximately satisfying the constraints

of the LCP leads to the notion of a residue. In general, a residue for the

LCP (q, M) may be defined as a function r(•, q, M) : Rn — R+ that does

not depend on the solution(s) of (q, M) and possesses the property that

r(x, q, M) = 0 if and only if x E SOL(q, M). The quantity r(x, q, M)
is called the residue of the vector x. The following expressions give two

examples of a residue

r(x, q, M) = II ((q + Mx)-, x-, xT(q + Mx))( (2)

r(x, q , M) = I min(x, q + Mx) II . (3)

Since r(x, q, M) depends only on the given vector x and the data of the

LCP (q, M), and not on the solution(s) of (q, M), a condition such as

r(x, q, M) < a	 (4)
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can be used as a termination rule for an iterative algorithm; any vector x
satisfying this rule may be considered an acceptable (approximate) solution

of (q, M). An obvious difference between the two rules (1) and (4) is that

the former is only a conceptual rule and can not be implemented during

the execution of an iterative scheme, whereas the latter can certainly be

used to test if an iterate z' is a satisfactory (approximate) solution or not.

Given the two measures d(•, S) and r(•, q, M), it is natural to ask if there

is any quantitative relationship between them. Ideally, one would like to

obtain positive constants cl (q, M) and c2 (q, M) such that

cl (q, M)r(x, q, M) < d(x, S) < c2(q, M)r(x, q, M)	 (5)

for all vectors x in a certain domain D that is of interest. Among their

implications, these inequalities would ensure that by an appropriate choice

of the tolerance e and by enforcing the rule (4), one can bound the distance

from the vector x to the solution set S to any prescribed accuracy. Another

consequence of (5) is that if one can derive (upper or lower) bounds for

either quantity d(x, S) or r(x, q, M), then an implied bound on the other

quantity can be obtained immediately from (5). The remainder of this

section is devoted to the investigation of the expression (5) under some

specific form of the residue function r(•, q, M).
To begin, we illustrate the fact that the constants cl and c2 need not

exist if the domain D is the whole space RTh .

5.10.1 Example. Consider the vector q and matrix M given by

0
q=

	

_2 ,M = L 	1
The unique solution of this LCP (q, M) is z = (1, 1). Let r(x, q, M) be

given in (3) using the 12 -norm. With x(t) = (t, 1), it is easy to verify that

	^jX(t)—z112
 =t-1,	 fort>2,

r(x(t), q, M)

which tends to oc as t — oc. Thus, the constant c2 can not exist for this

particular residue if D is the entire space R2 .

On the other hand, if r(x, q, M) is given by (2) with the 12 -norm, and

ifx(t)=tz, then ast--goo
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Ilx(t)-2112 <2-0
r (x(t), q, M) - t

which shows that the constant cl can not exist for this residue if D is R 2 .

Note that the two residues r(x, q, M) given by (2) and (3) are contin-

uous functions of x. In the following result, we demonstrate that under

a Lipschitzian property on the residue function r(., q, M), the existence of

the constant cl (q, M) is always guaranteed. This Lipschitzian property is

satisfied by the residue function (3) on an arbitrary domain D and also by

(2) if the domain D is compact.

5.10.2 Proposition. Suppose S = SOL(q, M) 0 and that the residue

function r(., q, M) : Rn R+ is Lipschitz continuous in the domain D D S

with modulus c(q, M) > 0. Then, the left-hand inequality in (5) holds with

cl(q, M) = c(q, M) -1 in D.

Proof. Let z E S be arbitrary. Then, r(z, q, M) = 0 and the Lipschitzian

property of r(•, q, M) implies

r(x, q, M) = r(x, q, M) - r(z, q, M) < c(q, M) II x - z

from which the desired inequality follows easily. ❑

The above result also suggests that the constant cl (q, M) may be taken

as the inverse of the Lipschitz modulus of the residue function r(., q, M) if

r(x, q, M) is Lipschitz continuous in x. Unfortunately, the other constant

c2(q, M) is generally not as easy to obtain without restricting the matrix

M.

A fundamental constant of a P-matrix

The fundamental role played by the class of P-matrices in LCP theory

is well documented. In this subsection, we introduce a key constant asso-

ciated with a P-matrix which is central to the derivation of error bounds

of approximation solutions to the corresponding LCP.

For an arbitrary matrix M E Rn"n, the quantity

c(M) = min { max zz(Mz) 2 }	 (6)
^IzUj_=1 1<i<n
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is well defined. Moreover, according to the characterization 3.3.4(b) of a

P-matrix, c(M) > 0 if and only if M E P. Clearly, the inequality

max zz(Mz)i > c(M)Mz^^ 2' ,	 (7)
1<i<n

holds for an arbitrary vector z. If the matrix M is nonsingular, we may

replace M with its inverse M-1 in (7), make the substitution y = M — 'z,

and obtain the inequality

max y(My)z > c(M 1 )MMMyJJ^•	 (8)1 <Z<n

In principle, we could use an arbitrary vector norm  1 1 instead of the

1^-norm to define c(M); the latter is chosen to conform with the quantity

xrM(z) = (max z2(Mz)2) 1 ^ 2

1 <i<n

which is motivated by the characterizing property 3.3.4(b) when M is
a P-matrix. If M is the identity matrix, irM(z) reduces to z^^ 0 ; thus,

7rM(z) may be thought of as a generalization of the l^-norm of vectors to

an arbitrary P-matrix M (just like the generalization of the 1 2 -norm to an

elliptic norm A in the case of a symmetric positive definite matrix A).

Note that in general, 7rM(z) does not define a vector norm; as a matter of

fact, it is not difficult to show that if M E P, then 7rM(z) defines a norm

on Rn if and only if M is a positive diagonal matrix (see Exercise 5.11.17).
The constant c(M) is in general difficult to compute. However, it is

easy to derive upper bounds for c(M) when M E P. For this purpose, we

introduce a related quantity for a P-matrix M:

6(M) = min{a(M^a ) : a C {l, ... , n}}	 (9)

where u(M) denotes the smallest of the real eigenvalues (if any exists)

of M. The above minimum ranges over those principal submatrices of

M having real eigenvalues. Included in this range are the singletons; these

correspond to the diagonal entries of M which must be positive. In general,

according to the characterization 3.3.4(c) of a P-matrix, each of the real

eigenvalues of a principal submatrix of a P-matrix must be positive. Con-

sequently, S(M) is a well-defined, finite and positive quantity; moreover,

we have

5(M) < min rn .
1 <i<n
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If M is a symmetric P-matrix, then the constant 8(M) reduces to the

smallest eigenvalue of M by the interlacing property of eigenvalues; see

Exercise 5.11.18. The following result shows that c(M) is always bounded

above by 6(M) if M is a P-matrix.

5.10.3 Proposition. Let M be an n x n P-matrix. Then

c(M) <8(M) < min mii.
1<i<n

Proof. It suffices to prove the first inequality. Write S = 8(M). By the

definition of 8, the matrix M — 81 P. Thus, there exists a vector z with

= 1 such that

max zi ((M — SI)z)i <_ 0.
1<i<n

This implies

c(M) < max zi(Mz)i <8
1<i<n

as desired. ❑

This proposition shows that the quantity c(M) admits an upper bound

which is in terms of the smallest of the real eigenvalues of the principal

submatrices of M. It seems natural to ask whether a lower bound for c(M)
can be obtained in terms of such eigenvalues only. More specifically, one

may ask the question: Does there exist a constant A > 0 and a function

f both depending only on n such that c(M) > ) f (8(M)) for an arbitrary

P-matrix M? The following simple 2 x 2 matrix answers this question in

the negative. The same example also demonstrates that lower bounds for

c(M) must involve quantities other than these eigenvalues, and that the

off-diagonal entries of M possibly play some role in these bounds.

5.10.4 Example. Consider the matrix

lt
M =

01

where t is any nonzero number. Clearly, M and its principal submatrices all

have eigenvalues equal to 1. It is easy to show, however, that c(M) < 1/t 2

which implies that c(M) tends to 0 as t -^ oo.

We postpone the derivation of lower bounds for the constant c(M) until

a later subsection.
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Absolute and relative error bounds

In the sequel, we demonstrate how the quantity c(M) can be used to

derive the desired constant  C2 (q, M) in (5) when M is a P-matrix and the

residue r(x, q, M) is given by (3). We also show how the same constant

c(M) is instrumental in the derivation of relative error bounds for the LCP

with a P-matrix.

5.10.5 Proposition. Let M be an n x n P-matrix. Let z denote the

unique solution of the LCP (q, M) and let x be an arbitrary n-vector.

Then

JIz — xll" < 1 	IM11 ° II min(x, q + Mx)II,,. 	(10)

Proof. Let v = min(x, q +Mx) and w = q +Mz. Then the vector y = x—v

satisfies the complementarity system

y> 0, u = q+(M —I)v+My> 0, YTU =0.

Thus, we have for each i = 1, ... , n,

0 >(y —z)i(u—w)i =(x—v—z)2(—v +M(X—z))^

> —(x — z)zvz — vz(M(x — z)) + (x — z)^(M(x — z))z.

In particular, for i such that

(x — z)2(M(x — z))i = max(x — z)^(M(x — z))^,
7

we derive from the above inequality and the condition (7),

c(M) Il x — zl l00 < (x z)2v2 + vz (M(x — z)) 1

< (1+ IIMII—)IwlIAX — z^I.
from which the desired inequality (10) follows readily. ❑

Combining Propositions 5.10.2 and 5.10.5, we derive the following

absolute error bounds for the LCP with a P-matrix.

5.10.6 Theorem. Let M be an n x n P-matrix. Let z denote the unique

solution of the LCP (q, M), and x be an arbitrary n-vector. Let r(x, q, M) _
min(x, q + Mx) I I ^. Then

( ^I	 II ^) r(x, 
q, M) < Ilz — xll,, < 1 + 1I MII — r(x, q, M).	 (11)maxi, M	 cM
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Proof. It suffices to verify the Lipschitzian property

min(u, q + Mu) — min(v, q + Mv)	 < max(l, M)Mu — v. (12)

Let x = min(u, q + Mu) and y = min(v, q + Mv). Consider an arbitrary

component i, and suppose that

xi — yi l = xti — yi.

Suppose also that min(v2, (q + Mv);) = vz. Then

1 xi — yzj < ui — vi < max(1, M0)Mu — vJ.

By a similar argument, we may establish the validity of the inequality

x^ — y < max(1, IIM)u — v^^,,

in all other cases. This proves the desired Lipshitzian property (12) of the

"min" function. ❑

The inequality (11) gives upper and lower bounds of the error z — xI

in terms of the residue measure min(x, q + Mx)I(,,. Often, it is useful to

bound the relative error — xII^/I^zIl in terms of a "relative residue".

To derive the latter bounds, we establish the following bounds for the exact

solution of the LCP (q, M).

5.10.7 Proposition. Let M be an n x n P-matrix and let z be the unique

solution of the LCP (q, M). Then,

c(M-1 )jj( — q)+	 < z) < c(M)-1jj(—q)	 .	 (13)

Proof. Without loss of generality, we may assume that q is not nonnega-

tive, or equivalently, that z is nonzero. Since z E SOL(q, M), we have by

(7),

c(M)z < max zz(Mz)i = max z2( — q)i
1<i<n	 1<i<n

= max zz((—q)+)j1<i<n

from which we obtain the right-hand inequality in (13).
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To prove the other inequality, we note that Mz > —q. Thus,

Mz^ > (Mz) + > ( — q) +,

and

IlMz	 > (—q)+.

ByBy (8) and the fact that z2 (q + Mz)z = 0 for each i, we deduce

( — q)+ ' 2  < c(M—i ) -1 maxi<^<n, z^(Mz)z

< c(M—i ) -1  maxi<i<,,, zz( — q)i
<

from which the desired left-hand inequality in (13) follows. ❑

Notice that it is the vector ( —q) + , and not —q, that serves to define the

magnitude of the bounding term in the inequality (13). This is consistent

with the fact that zero is the unique solution of the LCP (q, M) if and only

if q is a nonnegative vector (assuming that M E P ).
Combining 5.10.6 and 5.10.7, we immediately obtain the following

relative error bounds for the LCP with a P-matrix.

5.10.8 Theorem. Let M be an n x n P-matrix. Let z denote the unique

solution of the LCP (q, M), and x be an arbitrary n-vector. Let r(x, q, M) _
min(x, q + Mx) ^^ ^. Assume that (—q) 	 0. Then

c(M)	r(x, q, M)	 liz — XII^ 	( 1 + TIMID) r(x, q, M)
max( 1 , l^M))„ ) 11( —q) +11^ -	 ^^z^^^	 c(M)c(M—') M( —q) +^^^. 

(14)

0

5.10.9 Remark. The two multipliers of the relative residue term in ex-

pression (14) are, respectively, less than or equal to and greater than 1.

Indeed, the lower-bound multiplier is less than or equal to 1 because of

5.10.3; the fact that the upper-bound multiplier is greater than 1 can be

seen by setting y = x in (8) and multiplying the resulting inequality by (7)

in order to yield c(M)c(M—i ) < 1.

The error bounds obtained in 5.10.6 and 5.10.8 pertain to arbitrary

vectors x E R. For such "global” bounds to hold, the matrix M is as-

sumed to be in the class P. This P-property can be somewhat relaxed
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if one restricts attention to vectors x which are close to the solution z of

(q, M). The derivation of such local error-bound results is considerably

more complicated and depends crucially on the notion of a stable solu-
tion of the LCP. We postpone this development until Chapter 7 where we

discuss the sensitivity and stability issues (see Section 7.3 and Corollary

7.3.14).

An important feature of the error bounds derived herein is that the

bounding constants are all independent of the vector q; in other words,

the same constants apply uniformly to all vectors q (for a fixed matrix

M). This turns out to be very crucial when these error bound results are

employed in an analysis of the convergence rate of the splitting method

5.2.1 for solving the LCP (see Theorem 7.3.15).

Lower bounds for c(M)

The derivation of lower bounds for the constant c(M) is not a trivial

task. Exercise 5.11.19 discusses more about this matter for a general P-

matrix. In the sequel, we consider the classes of diagonally stable matrices

and H-matrices with positive diagonals, and show how lower bounds for

c(M) can be derived for these matrices. We note from the various error

bound inequalities (11) and (14) that any lower bound for c(M) immedi-

ately yields an implied bound for the error of an approximate solution of

the LCP.

Define the symmetric rank-two matrix

Ai = 1 (ezeTM+MT eieT)

for i = 1, ... , n. This matrix Ai is obtained by symmetrizing the i-th row

of M and substituting zeroes in all other entries of M. It is easy to see

7rM(x) 2 = max xTAix.
1<i<n

The following result gives a lower bound for the quantity c(M) when M is

diagonally stable.

5.10.10 Proposition. Let M be an arbitrary n x n diagonally stable ma-

trix. Then,
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n

c(M) > max {µi (E AiAi)
n

: Ai > 0, E Aj = 1} >0 (15)
=i	 i=1

where µ1(N) denotes the smallest eigenvalue of a symmetric matrix N. In

particular, if M is itself positive definite, then

c(M) >

where M denotes the symmetric part of M.

Proof. Let

n	 n

L(M) =max {fcl(EAiAi) : AZ > 0 Ai =1 }.

Since each A i is a symmetric matrix, and since the smallest eigenvalue is a

continuous function of the entries of the matrix, it follows that the above

maximum is actually attained. Since M is diagonally stable, there exists

a positive diagonal matrix D such that DM is positive definite. Without

loss of generality, we may assume that the diagonal entries of D sum to

unity. Clearly, E2 1 dijAi is just the symmetric part of DM whose smallest

eigenvalue is positive. Consequently, L(M) > 0.

Let x E Rn be an arbitrary vector jx	 = 1. Suppose that the maxi-

mum in L(M) is achieved by the vector A. Then, we have,

77(x) 2 = maxi<z <nxTA2x

>	 z i AixTAix p1(E 1 AiA2)

from which the desired inequality (15) follows. Finally, if M is itself positive

definite, then M/n is equal to the convex combination of the A i 's with each

A equal to 1 /n. Consequently, the desired bound on c(M) follows. El

The computation of the lower bound L(M) is not completely trivial,

but can be somewhat simplified by noting that

n	 n

L(M) = max {µi (	 AiAi) :	 Az = 1}	 (16)

in which the multipliers A are not required to be nonnegative. The jus-

tification for the simplified expression of L(M) is due to the fact that the
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least eigenvalue of a symmetric matrix is always bounded above by the

smallest diagonal element of the matrix; thus the maximum in (16) can

not occur at a vector A with a negative component. In turn, by eliminating

one of the )i variables using the summation equation, the computation of

(16) can be turned into an unconstrained optimization problem involving

the maximization of the minimum eigenvalue of a symmetric matrix. This

latter eigenvalue-maximization problem has been the subject of intensive

research and some highly efficient solution methods have been developed;

see 5.12.25 for a reference.

When M is an H-matrix with positive diagonals, a particularly simple

lower bound for c(M) can be derived.

5.10.11 Proposition. Let M be an H-matrix with positive diagonals and

M denote its comparison matrix. Then, for any vector p > 0, the vector

d = M-lp > 0 and

c(M) >
(mini pi) (mini d^)

(maxi dß) 2
(17)

Proof. By Theorem 3.11.10, the matrix M has a nonnegative inverse;

thus the vector d = 1V1 -1 p is positive for any positive p.

To prove the inequality (17), consider first the case where d is the vector

of all ones. (This is equivalent to the case where the matrix M is strictly row

diagonally dominant.) Let x E Rn be an arbitrary vector with = 1

and i be an index where the maximum in iix^J = is achieved. Without loss

of generality, we may assume that xz > 0. Then xZ = 1 and it is easy to

verify that
7M(X)2 > (

mii -	 mzj l) xi = pi
7^i

Thus, the inequality (17) holds in this case.

In general, let M be an H-matrix with positive diagonals, and let p and

d be as given. Let D = diag(dz). Then, the matrix N = MD is strictly row

diagonally dominant and the above derivation implies that c(N) > mini pi.

Let x E RTh with x( = 1 be a vector achieving the minimum in the

quantity c(M). With the change of variables y = D-l x, we obtain

c(M) = maxdiyz(Ny)i > (mind;)(maxyz(Ny)Z)
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which, by (7), implies

c(M) > (mindj)c(N)My.
i

Since x = Dy, we derive ) y ) « > (maxi d^) -1 in view of the fact that

1. Consequently, using the established inequality for c(N), we

obtain the desired inequality (17). ❑

The positive semi-definite case

Theorems 5.10.6 and 5.10.8 have shown that when M is a P-matrix,

the quantity

min(x, q+ Mx) ),, (18)

can be used to bound the distance between an arbitrary vector x and the

exact solution of the LCP (q, M). In this subsection, we consider the case

where M is positive semi-definite.

To begin the discussion, we make two preliminary observations. First,

as example 5.10.1 shows, the quantity (18) is no longer a valid residue.

Second, as M is not assumed to be a P-matrix, the LCP (q, M) may have

multiple solutions (the case where SOL(q, M) = 0 is of no interest in the

present context). Hence, unlike the previous theorems which bound the

distance between x and the unique solution z of (q, M), generalized results

which provide bounds for d(x, S) where S = SOL(q, M) should be derived.

More specifically, the error bound results obtained in the sequel all assert

that for a given vector x, there exists a solution z E S (dependent on x)

such that x — z is bounded above by an appropriate residue multiplied

by a constant which is dependent on q and M only.

The analysis of error bounds for the positive semi-definite LCP is based

on two known results: one concerns a special property of the solutions of

an LCP of this type (Theorem 3.1.7), and the other gives a bound on the

distance between an arbitrary vector and a polyhedron (Exericse 2.10.22).

For ease of reference, we restate these results in the lemmas below.

5.10.12 Lemma. Let M E R''l"n be positive semi-definite, and q E R'` be

arbitrary. Suppose that SOL(q, M) 0. Then, there exist a vector d E Rn'

and a scalar a such that for any z E SOL(q, M),
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(M+MT)z=d and qT z= a;

moreover,

SOL(q, M) = {z E R+ : q + Mz > 0, z T (q + d) + a < 0, (M + MT )z = d}.

0

The proof of the above lemma follows rather easily from Theorem 3.1.7,

and is left to the reader.

5.10.13 Lemma. Let P = {x E Rn : Ax = b, Cx > d} be a nonempty

polyhedron. Then, there exists a constant A > 0, dependent on A, C, b and

d, such that for any vector a E R,

Ila — Hp(a)II ,, < A(II(b — Aa, (Ca — d) )II,,)

where IIP (a) denotes any point in P that is nearest to a under the l,,-norm.

Combining these two lemmas, we immediately obtain the following error

bound result for a positive semi-definite LCP.

5.10.14 Theorem. Let M E Rnxn be positive semi-definite, and q E R'
be arbitrary. Suppose that SOL(q, M) 0. Let d and a be as given in

5.10.12. Then, there exists a constant c> 0, dependent on q and M only,

such that for any vector z E R' (with w = q + Mz),

lIz—ns(z)Il. _<cII(z ,w ,(zT(q+d) +a)+,(M+MT)z—d)	 ( 1 9)

where S = SOL(q, M). ❑

The above theorem shows that for a (solvable) LCP of the positive semi-

definite type, the quantity on the right-hand side of (19) less the multiplier

c can be used as a residue function for the problem. An undesirable feature

in this quantity is the presence of the pair (d, a), which, albeit a constant

of the problem (q, M), is generally not available without obtaining at least

one solution. In Exercise 5.11.21, the reader is asked to derive an alternate

residue function which depends on another constant of the problem (q, M).
In what follows, we consider two special cases in which a residue function

can be prescribed that depends only on the test vector z in question.
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5.10.15 Corollary. Let M E Rf' x f be positive semi-definite, and q E RTh
be arbitrary. Suppose that SOL(q, M) 0. Then, there exists a constant

c' > 0, dependent on q and M only, such that for any vector z E FEA (q, M),

—IIs(z))" <c'(zTw+	 ).	 (20)

Proof. Let be an arbitrary solution of (q, M), and w = q + M. Since

z E FEA(q, M), we have z = w = 0, and

0 < (z —z) TM(z— z) =zTw—(zTw+zTw)< zw.

Furthermore, it is easy to show that

	z T (q +d) +a=zTw+zTw<zTw.	 (21)

Since M + MT is symmetric positive semi-definite, it follows from Exercise

2.10.11 that there exists a constant r > 0 such that

(M + MT )z — d < (M+MT )z —d^^ 2

=(M+MT )(z -2)11 2

< Y(z — z) T (M + MT)(z — z)

<2rzTw.

The desired inequality (20) now follows easily by combining the above

inequalities. ❑

The following example shows that the square root term zT w in (20)

is essential and cannot be dropped.

5.10.16 Example. Consider the data

1 —1 1	 0
M= 

1	 1	 q	 1

We can see that SOL(q, M) = {0} and FEA(q, M) _ {x e R+ : x2 <_ x1}.

Let z(e) = (e, 62 ) fore e [0, 1]. Then,

z(E) T w(E)	 2E2 + E4
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as e —p 0. On the other hand, with the constant c' = 1, it is easy to show

that the inequality (20) holds for z(e) with e E [0, 1].

The matrix M given above is positive definite; hence, the error bound

results of Theorems 5.10.6 and 5.10.8 are applicable to this LCP (q, M).

The significance of this observation is that for this problem, while the quan-

tity xT (q + Mx) is not a valid residue for an arbitrary feasible solution x,

the function ( min(x, q + Mx) is a valid residue for all vectors x. Inciden-

tally, it is possible to have a positive semi-definite LCP for which the latter

"min" function fails to be a legitimate residue and the square root term is

needed in (20); see Exercise 5.11.22.

The other special case we consider is when the LCP (q, M) possesses a

nondegenerate solution. We first show that under this additional assump-

tion, the representation of the solution set of (q, M) can be simplified.

Indeed, the following result gives a necessary and sufficient condition for

the existence of a nondegenerate solution to a positive semi-definite LCP

in terms of such a simplified representation.

5.10.17 Theorem. Let M E R" be positive semi-definite, and q E R''

be arbitrary. Suppose that SOL(q, M) 0. Then, (q, M) has a nondegen-

erate solution if and only if

SOL(q, M) = {z e R+ : q + Mz > 0, z T (q + d) + a < 0}, (22)

where d and Q are as given in 5.10.12.

Proof. Let S denote the set on the right-hand side of (22). Clearly, the

inclusion SOL(q, M) C S always holds.

To prove the necessity part, it suffices to show the reverse inclusion

S C SOL(q, M). Let be a nondegenerate solution of (q, M). Then, as

derived in (21),

zT(q+d)+a= zTw+zTw.

If z E S, it follows that zT w = zT w = 0. By the nondegeneracy of the

solution z, one can easily show that z and w are complementary. This

establishes the equality of the two sets in (22).

Conversely, suppose that (22) holds. To show that a nondegenerate

solution of (q, M) exists, consider the following linear program:
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minimize	 —T

subject to	 z E S

z + (q + Mz) > Te.

If the LCP (q, M) has no nondegenerate solution, then the optimum ob-

jective value of this program must be zero; hence, so is that of the dual

program:

maximize qT (u + v) + a

subject to u + MT (u + v) —(q + d) < 0

eTU =1, u,v, >0.

Let (u, v, b) be an optimal solution of the dual program. Then setting

the optimal dual objective equal to zero and premultiplying the first dual

constraint by (u + v) give:

0> (u + v)TU + (u + v)T M(u + v) — V)(u + v) T (q + d)

= (u + v) T u + (u + v) T M(u + v) — V)dT (u + v) — OrV) 2

= (u + v) T u + (u + v — *z) T M(u + V 1pz)

where the last equality follows from the definition of a and d and the

identity a = _TM . This is a contradiction because of the constraints

u> 0, eTu = 1 and the positive semi-definiteness of M. ❑

By combining the above theorem with Lemma 5.10.13, we immediately

obtain the following simplified error bound for a positive semi-definite LCP

with a nondegenerate solution.

5.10.18 Corollary. Let M E R" ' be positive semi-definite, and q E Rn
be arbitrary. Suppose that SOL(q, M) has a nondegenerate solution. Then,

there exists a constant c" > 0, dependent on q and M only, such that for

any vector z E R,

z — Hs(z) < c"(z , w , (zTw)+)^^.. (23)

Proof. It suffices to note that the expression (21) implies

(zT (q + d) + or)+ < (zTw)+. ❑
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5.11 Exercises

5.11.1 Let M be a positive definite matrix and let z* be the unique

solution of the LCP (q, M). Consider the iteration (5.3.14) for solving the

LCP (q, M).

(a) Show that with A _ M where It is the least eigenvalue of the

symmetric part of M, the sequence {zv} satisfies

^zv+l - z* 112 <_ ß1l zv - z* 112

where ß = 1 — 1/7 2 and ry = MM2/p. Give an argument to explain

why this choice of A is reasonable.

(b) Let the sequence {z"} be generated as described in part (a). Show

that if q 0, then there exists an integer v > 0 which depends on q,

M and z° only, such that if the index j satisfies

z^+1 =maxzz+l
i

then z^ > 0.

(c) Use the result from part (b) to derive a modification of the iterative

method defined by (5.3.14) which will solve the LCP (q, M) in a finite

number of iterations.

5.11.2 Let M be an H-matrix with positive diagonals. Let {z"} be a

sequence of vectors generated by the PSOR method as described in Corol-

lary 5.3.16. Show that part (b) of Exercise 5.11.1 remains valid for this

PSOR sequence.

5.11.3 Let M be an arbitrary square matrix, and let {z"} be a sequence

of vectors generated by Algorithm 5.2.1. Suppose that {z"} converges to

a nondegenerate solution z* of the LCP (q, M). Show that there exists an

integer v > 0 such that for all v >v,

{i:z2 =0}={i:z? =0}

{i:w? =0}={i :w' =0}

where w* = q + Mz* and w" q + Czv -1 + Bz".
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5.11.4 Consider the LCP (q, M) where q and M are given by (5.3.11).

Suppose that Q is a positive diagonal matrix. Describe an efficient imple-

mentation of the PSOR method that avoids the explicit formation of the

matrix M.

5.11.5 Write a (short) computer program to implement the PSOR method

for the LCP (q, M') arising from the convex curve fitting problem as dis

-cussed in Exercise 1.6.3. You may take xi+l xz = 1 for all i = 0, ... , n.

Try different values of the relaxation parameter w E (0, 2) and report your

results.

5.11.6 This exercise is intended to provide an outline of the proof for

Proposition 5.4.4. The notation set forth in the proposition is used.

(a) Show that there exists a vector A* such that

y* = y + HTA*, and HHT\* + (b + Hy) = 0.

(b) Use a spectral decomposition of the matrix HHT to complete the

proof of 5.4.4.

5.11.7 Let A E Rrn x n and b E Rm be given. Suppose that A 2 . (A 2 .) T = 1

for i = 1, ..., m. Let w E (0, 2) and a E RTh be arbitrary. Suppose that the

system of linear inequalities

Ax>b (1)

is consistent. Consider the following iterative method for finding a solution

of this system closest to the vector a in the Euclidean norm. Let z° = 0

and x° = a. Generate two sequences {z"} and {x"} in the following way.

Given z" and xv, define for i = 1,... , m,

zz + 1 = max(0, — w(A^xv +(i-1)/m — 
b)) (2)

Xv+i/m v+(z-1)/'m + (A' ) T(zv+l - zv ) . (3)

(a) Show that the sequence { Z V } is the specialization of the PSOR method

to the LCP (q, M) where q = —b + Aa and M = AAT, and that for

each v, x" = a + ATzv .

(b) Show that the sequence {xv} converges to the unique solution of the

system (1) that is closest to the vector a under the Euclidean norm.
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(c) If x* is the limit of {x'}, show that there exists a constant c E (0, 1)

such that for all v sufficiently large, (x'^+1 — x * 112 < cll x' — x* 11 2 .

5.11.8 This exercise uses the notation and assumption in 5.3.12.

(a) Show that p(B, C) < 1 if and only if the matrix B — CTB -1 C, where

B is the symmetric part of B, is positive semi-definite. (Compare this

result with part (a) of Proposition 5.3.13 in which the symmetry of

B is also assumed.) Show also that if p(B, C) < 1, then IUI must be

positive semi-definite.

(b) Suppose that M is a positive semi-definite matrix satisfying the im-

plication (2.10.1), i.e.,

xTMx = 0	 Mx=0.

Show that there exists a constant A > 0 such that for all A > A, the

quantity p(B, C) < 1 for B = Al. Moreover, with the latter matrix

B, the following implication holds:

xT (B — CTB 1 C)x = 0	 (B + C)x = 0.	 (4)

(c) A splitting (B, C) of M is called a T-splitting if (i) B is positive

definite, (ii) p(B, C) < 1, and (iii) the implication (4) holds. Suppose

that (B, C) is a T-splitting of M. Show that for any z* E SOL(q, M)

and any v E SOL(q + Cu, B),

v-z*( < Ilu-z*IIB

with equality holding only if v E SOL(q, M).

(d) Suppose that (B, C) is a T-splitting of M. Show that if SOL(q, M)

is nonempty, then for any z° > 0, the uniquely defined sequence {z"}

generated by Algorithm 5.2.1 converges to some solution of LCP

(q, M)•

5.11.9 Let f(z) = qTz+ 2 zTMz where q E R and M E Rn"n is symmet-

ric. Fix a vector z E Rn and a direction d E Rn that satisfy dT (q+Mz) <0

and dT Md > 0. Consider the univariate function

g(r) = f(z + Td), T E R.
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(a) Show that g(T) is strictly convex in -r E R, and that its (uncon-

strained) global minimum is attained at the value

_ —dT (q + Mz)
T 	dTMd

Show also that

g(7) = f (z) + 2 dT (q + Mz).

(b) Consider the constrained 1-dimensional minimization problem

minimize	 g(r)

subject to -r > 0, z + rd > 0.

If T* denotes the minimum point of this problem, show that

g(7*) < f(z) + dT (q + Mz).

5.11.10 Let M E Po n Rn"n and q E Rn. Suppose that (q, M) has a

solution z* satisfying (i) Maa is nonsingular (where u = suppz*), and (ii)

z* is nondegenerate (i.e., z* + q + Mz* > 0).

(a) For each s > 0, let z(E) be the unique solution of the LCP (q, M+6I).

Show that z(E) converges to z* as E — 0.

(b) Deduce from (a) that z* is the only solution of (q, M) possessing the

two given properties.

5.11.11 Supply the missing details in the proof of Proposition 5.8.2.

5.11.12 Develop a damped-Newton method for solving the LCP (q, M)

that is based on the equation

q+Mz+ —z — =0.

5.11.13 Consider the damped-Newton method 5.8.5 for solving the LCP

(q, M) where M is of order n. Suppose that M E Z and that q contains no

zero component. Prove that if the initial vector z° is chosen to be zero, then

we may conclude that the problem is infeasible if, during any interation,

the algorithm produces a ua which is not strictly positive. From this, show

that if 5.8.5 does not terminate with a solution to the problem within n

steps, then we may conclude the problem is infeasible.
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5.11.14 Consider the interior-point method 5.9.3 applied to the aug-

mented LCP (q', M') given by (3.7.10) where a > 0. Show that any se-

quence produced by the method must be bounded.

5.11.15 Let M E Rnxn and q E R'. Suppose the vector z E FEA(q, M)

satisfies the condition (with w = q + Mz) :

zTw < E

where E is a certain positive scalar. Show that there exists a value e > 0

such , that if 0 < e <‚ then the LCP (q, M) has a solution z* with w* _

q + Mz* and

zZ = 0, for all i E I, and wi = 0, for all i E J,

where

I= {i:zi<VE} and J= {i:wi<VE}.

The proof of this is based on the following considerations: (i) the set

FEA(q, M) has a finite number of extreme points, (ii) there must exist

a positive scalar S such that if z is any one of these extreme points with

w = q + Mz, then

[zi > 0	 zi > 6] and [wi > 0	 wi > S],

and (iii) any feasible vector of (q, M) is the sum of a convex combination

of extreme points and a nonnegative combination of extreme rays of the

feasible region.

5.11.16 Let a, b, c and d be nonnegative scalars. Show that the inequality

(5.9.12) holds. Use this inequality to prove Lemma 5.9.10.

5.11.17 Let M be an n x n P-matrix. Show that the quantity

Tm(z) = ( max zi(Mz)) 1/2

1 -<i-<n

defines a norm on vectors in Rn if and only if M is diagonal.

5.11.18 An important property of eigenvalues of a symmetric matrix is

that of interlacing. Specifically, let A E Rn"n be symmetric, and Ar be
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any principal submatrix of A of order r. Suppose that the eigenvalues of

A and AT are arranged in nondecreasing order:

A1(A) < ... <	 (A),	 and Ai(Ar) < ... < ,(Ar ).

Then for each integer k such 1 < k < r, we have

' k (A) < )k (Ar) < . k+n- r (A).

Use this fact to show that if M is a symmetric P-matrix, then the constant

6(M) defined in (5.10.9) is equal to A1(M).

5.11.19 Let M be an n x n P-matrix and let 6(M) be defined by (5.10.9).

Let

S = 6(M),	 = max Imj^ 1.
z07

Define the matrix M(6, , n) by

0 if i>j

(M(S, (, n))i^ =	 6 if i = j

-( if i < j

(a) Show that M(6, (, n) E K and c(M) > c(M(Ö, C, n)).

(b) Show that

(1 + 6 /^) 2 (1 + (16)2(n _ 1) > c(M(b, ^, n)) >— (1+ (/6) 2 n_ 1)

5.11.20 Let M be a positive definite matrix. Let z denote the unique

solution of the LCP (q, M) and x be an arbitrary vector. Show that

z - X112 C 1 i(M)
M2 11 minx, q+ Mx))2

where M is the symmetric part of M and Al (M) denotes the least eigen-

value of NI.

5.11.21 Refine the argument in Corollary 5.10.15 to show that under

the assumptions of Theorem 5.10.14, there exist positive constants cl and
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C2, both dependent on q and M only, such that for any vector z E Rn (with

w = q + Mz),

IIz—HS(z)II—<cl[))(z ,w ,(zTw)+)II.+(zTw+C211(z ,w )((00) 1 / 2 ].

As a matter of fact, we have c2 = min{ (w, z) ^ ^ 1 : z E S}, where as usual,

S = SOL(q, M). Exercise 7.6.7 shows how bounds on c2 can be derived

under a strict feasibility assumption.

5.11.22 Consider the pair

0 	0q= 1, M= 0
0

Show that for this LCP, the "min" function given by (5.10.3) fails to be

a valid residue for arbitrary (feasible) vectors in R 2 , and that Corollary

5.10.15 fails to hold without the square root term in (5.10.20).

5.12 Notes and References

5.12.1 The early study of iterative methods for solving the LCP was

mainly concerned with the symmetric problem and its application to a non-

negatively constrained convex quadratic program. Hildreth (1954, 1957)

developed a projected Gauss-Seidel relaxation method for solving a strictly

convex quadratic program with only inequality constraints; his method ac-

tually solved the dual problem which was equivalent to an LCP (although

it was not recognized as such at that time). In turn, Hildreth's procedure

was closely related to some relaxation methods for solving a system of lin-

ear inequalities that were proposed a few years earlier in Agmon (1954),

and Motzkin and Schoenberg (1954). These papers were among the ear-

liest published articles on this subject. A more contemporary treatment

of these relaxation methods and analysis of their convergence rates can be

found in Goffin (1980), Mandel (1984b) and Iusem and De Pierro (1990).

One important application of these iterative methods for solving linear in-

equalities is image reconstruction from projections, see the monograph of

Herman (1980) for more details.

5.12.2 Except for some scattered papers, the study of iterative methods

for quadratic programs and/or the LCP was not very intense in the nineteen
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sixties. Then, a paper by Cryer (1971b) was published which developed the

first SOR method for quadratic programming. Cryer's work was extended

by Cottle, Golub and Sacher (1978), Mangasarian (1977) and Cottle and

Pang (1980). More will be said about these papers in subsequent notes.

5.12.3 The finite-dimensional contact problem was sketchily formulated

as an LCP by Fridman and Chernina (1967) who proposed an iterative

scheme (the projected Gauss-Seidel method) for solving it. Our treatment

of contact problems is based mainly on Conry and Seireg (1971). For

other relevant work, see Fischer (1974), Chand, Haug and Rim (1976), and

Eckhardt (1978). The paper by Maier et al. (1979) features an interesting

application of the LCP to a contact problem concerned with the design

of underwater pipelines. For comprehensive studies on the mechanics of

contact problems see Kalker (1975, 1977) and Panagiotopoulos (1985).

5.12.4 The free-boundary problem for journal bearings came to the at-

tention of the optimization community largely through the publications

of Cryer (1971a, 1971b). Cryer's work was, in turn, inspired by that of

Christoperson (1941). For the most part, the material presented here is

based on the Ph.D. thesis of Sacher (1974) and the paper by Cottle, Golub

and Sacher (1978). The monograph by Crank (1984) contains a nice ac-

count of the problem and the LCP formulation.

5.12.5 The network equilibrium problem is a special instance of the mar-

ket equilibrium problem discussed in Section 1.2 in which the supply side

linear program is a minimum cost network flow problem. In addition to the

classic treatise by Takayama and Judge (1971), there is a vast literature

on the network equilibrium problem. The monograph edited by Harker

(1985) contains a sample of research articles on this problem. Our treat-

ment in Section 5.1 follows the discussion in Glassey (1978) and Pang and

Lee (1981). Incidentally, these two papers describe some specialized pivot-

ing methods for solving the LCP arising from the single commodity affine

case of the network equilibrium problem.

5.12.6 A number of papers have reported computational results with the

use of SOR methods for solving LCPs arising from the application problems

discussed in Section 5.1. Cottle, Golub and Sacher (1978), Cottle and Go-

been (1978) pertain to certain free-boundary problems; Pang (1982), Gilder
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(1989) and Gilder and Morris (1989) concern the network equilibrium prob-

lem. Cottle (1984) applied an SOR method to solve a constrained matrix

problem (formulated as an LCP with network structure) and reported com-

putational experience with the method.

5.12.7 Mangasarian (1977) proposed a very general iterative scheme for

solving the symmetric LCP and established its convergence under some

fairly broad assumptions. This paper can be credited as being the first one

in which a systematic study of the convergence of iterative methods for

the LCP was carried out; it has provided the impetus for much subsequent

research on this subject, among which is the work of Aganagic (1978a)

and Ahn (1981) who investigated the convergence of iterative methods for

solving the asymmetric LCP.

5.12.8 Inspired by the aforementioned papers of Mangasarian, Aganagic,

and Ahn, Pang (1982) introduced a matrix-splitting algorithm as a unifi-

cation of many of the iterative methods for solving the LCP. Incidentally,

Mangasarian's scheme is general enough to include the splitting algorithm

as a special case. Nevertheless, the way Mangasarian (1977) specified his

algorithm restricted it to be one of the relaxation type; he made no men-

tion of casting it in the form of a splitting method. The advantage of the

splitting framework is its simplicity and ease of analysis. Pang's splitting

algorithm is the main topic discussed in Sections 5.2 and 5.3; the results

presented therein appear in the papers by Pang (1982, 1984, 1986a).

5.12.9 Aganagic (1978a) initiated the use of the norm contraction ap-

proach in the convergence analysis of the simple iteration (5.3.14). The lat-

ter is the well known projection method for variational inequality problems

specialized to the LCP. For references on the general projection method,

see Glowinski, Lions and Tremolieres (1981), and Pang and Chan (1982).

Aganagic (1978a) is believed to be the first one to employ it for solving the

asymmetric LCP.

The notion of a T-splitting of a matrix defined in Exercise 5.11.8 was

introduced in Iusem (1990b). As shown in this exercise, a special case of

this T-splitting idea leads to a projection method for solving an LCP with

a certain kind of positive semi-definite matrix. The paper of Bertsekas and

Gafni (1982) establishes the convergence of this method in the context of

a variational inequality problem of a particular type.
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Ahn (1981) was the first one to employ a vector contraction approach to

analyze the convergence of Mangasarian's 1977 scheme for an asymmetric

LCP. Ahn (1983) used the monotone approach to establish the convergence

of this scheme for solving an LCP with a Z-matrix and with upper bounds

on the (primary) variables.

5.12.10 The family of SOR methods is among the most effective for solv-

ing large, sparse LCPs. The efficiency of these methods is crucially depen-

dent on the choice of the relaxation parameter w, see (5.2.1). There is little

theory concerning the choice of an optimal parameter value. Generally

speaking, if one can identify the positive variables of the limit solution in

a finite number of iterations, then the iterative method essentially reduces

to that for solving a system of linear equations. (Exercises 5.11.2 and

5.11.3 are relevant to this consideration.) In this case, it becomes possible

to borrow from the theory of linear equations to help identify a good value

for w. See the text by Hageman and Young (1981) for more discussion on

the latter subject.

5.12.11 The SOR methods, in conjunction with a type of proximal-point

scheme (see 5.12.16), have been used extensively for solving large-scale

linear programs. Discussions of these applications can be found in the work

of Mangasarian (1981a, 1983, 1984a), and Cheng (1982). Implementation of

the resulting algorithms in a parallel computation environment is discussed

in Mangasarian and De Leone (1987, 1988b), De Leone and Mangasarian

(1988a, 1988b), De Leone, Mangasarian and Shiau (1990), and Pang and

Yang (1988). The last paper is the source for the two-stage splitting method

discussed in Section 5.7.

5.12.12 The topic treated in Section 5.4 was an open research question

for a long time. Inspired by Mangasarian's 1977 paper, many of the early

theoretical studies of the iterative methods for solving the symmetric LCP

were mainly concerned with the notion of subsequential convergence of the

iterates. There was generally a lack of sequential convergence results except

in the positive definite case—Cryer (1971b) and a few special instances—

Pang (1986a). Then, a breakthrough occurred with a paper by Luo and

Tseng (1991) in which they proved Theorem 5.4.6, thus settling an out-

standing question. This result was independently established by De Pierro
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and Iusem (1993) whose proof we follow, as it is somewhat easier to com-

prehend than that of Luo and Tseng.

5.12.13 The family of matrix splitting methods provides one of several

approaches for solving large sparse, strictly convex quadratic programs.

Related approaches include: the row action methods of Lent and Cen-

sor (1980) and Censor (1981), a dual differentiable exact penalty function

method proposed in Han and Mangasarian (1983a); a Lagrangean relax-

ation scheme used by Ohuchi and Kaji (1981, 1984), and Cottle, Duvall and

Zikan (1986); a closely related dual active set algorithm of Hager (1987),

Hager and Hearn (1993), and the dual conjugate gradient method sug-

gested by Lin and Pang (1987). The last of these papers is a survey article

that provides more detailed discussion of these other approaches, and con-

tains some computational results comparing several of the corresponding

methods.

5.12.14 The diagonalization process introduced in Section 5.5 is an ef-

fective tool for solving non-separable strictly convex quadratic programs;

some computational experience with this approach is reported in Lin and

Pang (1987). Application of the diagonalization idea for solving linearly

constrained convex (nonlinear) programs is discussed in Feijou and Meyer

(1984). This technique has been used quite successfully for solving some

practical market equilibrium problems; see Ahn (1979) and Ahn and Hogan

(1982). Its generalization to the context of the variational inequality prob-

lem is discussed in Pang and Chan (1982).

5.12.15 The development of the symmetric variational inequality ap-

proach in Section 5.5 follows that in the paper by Pang (1991a). Among the

specific algorithms resulting from this approach is the gradient projection

method for solving the LCP with a P-matrix discussed in Cheng (1984).

5.12.16 The proximal point algorithm is a well-known iterative scheme

for finding a zero of a maximal monotone operator. This algorithm is based

on a fundamental result of Minty (1962) concerning a proximal map. The

paper by Rockafellar (1976a) gives an excellent exposition of the algorithm

in this general context, and Rockafellar (1976b) discusses its applications

to convex programming. The former paper also contains a brief historical

account of this important algorithm. Further studies of the proximal point
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algorithm can be found in Spingarn (1983) and Ha (1990). Part (b) of

Theorem 5.6.2 is the specialization of a general result that holds in mono-

tone operator theory; see Brezis (1973). Subramanian (1988b) discusses

this result in the context of the nonlinear complementarity problem.

5.12.17 Gana (1982) and Venkateswaran (1993) discuss the regulariza-

tion idea applied to an LCP with a Po-matrix as outlined in the paragraph

preceding Theorem 5.6.2. Kostreva (1989) employs the same idea to the

LCP arising from a convex quadratic program. Some convergence results

similar to this theorem are established, including one that requires a non-

degeneracy assumption on the vector q; see Exercise 5.11.10. In Gana

(1982) and Kostreva (1989), the authors claim the convergence of the en-

tire sequence of iterates; however, their "proofs" are based on an invalid

argument. The paper of Venkateswaran (1993) also describes an algebraic

scheme to implement this regularization approach. The resulting algorithm

becomes a generalized Bard-type pivoting method that performs computa-

tions with rational functions in the parameter E.

5.12.18 Mangasarian's 1977 scheme is a type of variable splitting method

that also incorporates the underrelaxation step. More discussion of this

and other generalized splitting methods can be found in the paper by Luo

and Tseng (1991). Mangasarian (1991) and Li (1993) consider an inexact

splitting method and investigates its convergence in the case of a symmetric

positive semi-definite LCP.

5.12.19 The damped-Newton method (Algorithm 5.8.5) is a specializa-

tion of some Newton-type methods for solving certain B-differentiable sys-

tems of nonsmooth equations proposed by Pang (1990a). Our presentation

of this algorithm is based on Harker and Pang (1990b) in which some com-

putational results are reported. A refinement of the algorithm that involves

solving LCPs of smaller sizes can be derived from the method described in

Pang (1991b). The theoretical advantage of the refined algorithm is that a

quadratic rate of convergence can be established under the assumption of

sequential convergence. Harker and Xiao (1990) and Xiao (1990) discuss

extensively the application of the nonsmooth Newton methods for solv-

ing the nonlinear complementarity problem. The computational results

they report provide evidence of the practical efficiency of these methods

for solving realistic applied problems.
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5.12.20 The notion of a strongly regular vector in Definition 5.8.3 orig-

inates from that of a strongly regular solution of a generalized equation;

the latter concept was introduced by Robinson (1980a). More discussion

about this will be given in the Notes and References section of Chapter 7.

5.12.21 Kostreva (1976) discussed the application of Newton's method

for solving the system of piecewise linear equations (5.8.1). The all-change
algorithm, as the resulting method was called in the reference, differs from

Algorithm 5.8.5 in that it contains no linesearch routine. In the absence of

this important step, the algorithm becomes a kind of heuristic procedure

for solving the LCP. Indeed, Kostreva offered no theoretical justification

for his all-change algorithm. Aganagic (1984) also used the system (5.8.1)

in developing a Newton method for the LCP. His development restricts M

to be a hidden Z-matrix.

5.12.22 The interior-point method (Algorithm 5.9.3) originates from an

algorithm introduced by Karmarkar (1984) for solving linear programs.

Due to its remarkable practical efficiency and dramatic departure from the

traditional simplex method, there is an abundance of research on the latter

algorithm. The volumes edited by Megiddo (1989b) and Gay, Kojima and

Tapia (1991) contain excellent collections of papers in this area.

The extension of Karmarkar's algorithm to the LCP has been the sub-

ject of many papers. Of particular relevance to our discussion in Section

5.9 are the articles by Kojima, Megiddo and Ye (1988), Ye (1988b), Ye

and Pardalos (1991), Todd and Ye (1990) and Kojima, Megiddo, Noma

and Yoshise (1991). The last of these is an extensive survey paper which

presents a unified approach to the entire subject and contains a long bibli-

ography. The function in (5.9.1) was introduced by Todd and Ye (1990)

for solving linear programs.

A major aspect of the interior-point methods not covered in our presen-

tation is their polynomial computational complexity when they are applied

to a positive semi-definite problem. The reader is referred to the excel-

lent lecture notes of Kojima, Megiddo, Noma and Yoshise (1991) which

documents many results of this nature.

The compact form of the continuation interior-point method is drawn

from the Ph.D. dissertation of Chen (1990). In this work, Chen developed

the method for solving a monotone variational inequality and the nonlinear
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complementarity problem with a P-function; the latter kind of function is

a nonlinear generalization of the class of P-matrices. Two related pieces

of work that precede Chen's thesis are Kojima, Mizuno and Noma (1989,
1990). Interestingly, this kind of continuation method for solving com-

plementarity problems is intimately connected to a conceptual algorithm

analyzed in a paper of McLinden (1980) published almost a decade earlier.

The reader is referred to the book by Allgower and Georg (1990) for a

general introduction to the subject of numerical continuation methods for

solving systems of nonlinear equations.

5.12.23 In Definition 2.9.10, we introduced the idea of a homotopy. This

concept dates back to at least the nineteenth century. Homotopies are a

powerful tool both analytically and computationally. They can be used

to prove theorems and, indeed, much topological theory is based on them.

They can also be used to find numerical solutions to differential equations,

integral equations, and nonlinear systems of equations. In Section 5.9, ho-

motopies are used analytically in the proof of Theorem 5.9.13, and they

are used computationally as the basis of Algorithm 5.9.16. The reader

may wish to consult Remark 5.9.15. Besides this, there are other connec-

tions between the LCP and homotopies. One may view Lemke's method as

being akin to the homotopy concept (see the beginning of Section 6.3). In
addition, homotopy algorithms exist for the general complementarity prob-

lem, fixed point problems, and other LCP related problems. The reader is

referred to 2.11.1 for a brief historical account and some references con-

cerning these homotopy (fixed-point) methods.

5.12.24 As noted in 5.12.1, some of the earliest iterative methods for

solving the LCP appeared in the nineteen fifties. Nevertheless, in the

field of mathematical programming, there are rather few formal studies

of residues and error bounds. In the context of the LCP, the papers by

Mangasarian and Shiau (1986), Mathias and Pang (1990), Mangasarian

(1990a, 1992), and Luo and Tseng (1992b, 1992c) seem to be the only

available references. The two related papers, Pang (1986b, 1987), discuss

some error-bound results for the nonlinear complementarity problem and

the variational inequality problem.

Much of the development in Section 5.10 concerning an LCP with a

P-matrix is drawn from Mathias and Pang (1990). The basic error-bound
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result for a positive semi-definite LCP (Theorem 5.10.14) and its con-

sequence (Corollary 5.10.15) appear in the article by Mangasarian and

Shiau who also present the example in 5.10.1 to illustrate the deficiency

of the quantity min(x, q + Mx) ) as a residue function. In turn, the work

of these authors is based on the earlier results of Mangasarian (1981b)

which introduced the notion of a condition number for systems of linear

inequalities (see Lemma 5.10.13). Hoffman (1952) is believed to be the

first person to have derived such error-bound results for linear inequalities.

Unlike Mangasarian (1981b), Hoffman did not give explicit expressions for

the multiplier of the residue (i.e., the constant A in 5.10.13), only esti-

mates were given in special cases. The LCP in Exercise 5.11.22 is due to

Jun Ren (communicated to us by O.L. Mangasarian).

5.12.25 Defined in equation (5.10.6), the fundamental quantity c(M) as-

sociated with a P-matrix M appears as an important constant in the com-

plexity analysis of the interior point methods for solving the LCP (q, M);

see Kojima, Megiddo and Noma (1989) and Ye (1988b). See also Mathias

and Pang (1990) and Note 5.12.24. The computation of the lower bound

L(M) in expression (5.10.16) involves solving an eigenvalue optimization

problem; the reader is referred to Overton (1992) for an excellent exposition

of the latter subject.

5.12.26 Theorem 5.10.17 was obtained by Ferris and Mangasarian (1991)

as a by-product of their study of the "sufficiency" of the minimum prin-

ciple. The consequence of this theorem, Corollary 5.10.18, was proved

earlier in Mangasarian (1990a). In an interesting paper by Luo and Tseng

(1990b), the authors obtain a complete characterization of when the quan-

tity min(x, q + Mx)) provides a bound on the distance from any feasible

point to the solution set of the LCP (q, M) with M positive semi-definite;

their study actually concerns the monotone affine variational inequality

problem of which the positive semi-definite LCP is a special case. Man-

gasarian (1992) derives some global error-bound results for the latter prob-

lem that are based on Theorem 5.10.14 and Corollary 5.10.18.

5.12.27 The subject of local error bounds is closely related to that of sen-

sitivity theory. The reader is referred to Section 7.7 for notes and references

on the latter subject.

 



Chapter 6

GEOMETRY AND DEGREE
THEORY

We have so far studied the linear complementarity problem algebraically

and algorithmically. In this chapter we will consider the geometric side of

the LCP. The foundation for this chapter has already been laid in Defini-

tion 1.3.2 and in Proposition 1.4.4.

In Section 1.3 we defined the complementary cones, pos C(c ), of a ma-

trix M. It was also mentioned that the LCP (q, M) has a solution if and

only if q is contained in one of the complementary cones. In fact, it will

turn out that for "most" q, the number of solutions to the LCP (q, M)

equals the number of complementary cones containing q. Thus, we may

study the question of the existence and number of solutions to linear com-

plementarity problems by examining the properties of the complementary

cones, their facets, and their union. This will lead to new insights concern-

ing matrix classes we already know. In addition, it will suggest the study

of some new matrix classes.

In Section 1.4 we discussed piecewise linear functions and considered, in

particular, the piecewise linear function f (x) defined in (1.4.8). Proposition

507
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1.4.4 shows that there is a bijection between solutions to f (x) = q and

solutions to the LCP (q, M). Since, as we will show, f (x) is just the

representation of the complementary cones as a piecewise linear function,

we may learn more about the LCP (q, M) and its geometry by examining

f (W).

A tool that is quite useful in studying f (x) is degree theory. Initially,

one might wonder why degree theory should be needed. The map f (x)
associated with an LCP (q, M) is a piecewise linear function with very

special structure. It would seem that degree theory, which deals with the

global properties of uniformly continuous maps, would add very little to

what we might discover by exploiting the special structure of f (x). In
essence, it would seem that f (x) is too special a function, and degree theory

too general a tool, for there to be much gain in applying one to the other.

However, one finds that f (x) is not too special a function, especially

in high dimensions. As mentioned in Section 1.4, and shown in Eaves and

Lemke (1981), any piecewise linear equation can be represented by an LCP.

While they may, at first, appear to be simple extensions of linear functions,

piecewise linear functions can approximate any uniformly continuous func-

tion arbitrarily closely. Therefore, while f (x) may seem quite simple in

very low dimensions, this simplicity quickly evaporates as the dimension

increases. Unfortunately, it is in very low dimensions that we can most eas-

ily visualize the complementary cones, and general geometry, of the LCP.

Thus, a trap exists for anyone studying the geometry of the LCP in that

many patterns and properties which exist (or seem to exist) in R2 and R3 ,

often break down in R4 or R5 . We will encounter some examples of this

throughout this chapter.

We have tried to point out that f (x) is not too special a function but,

fortunately, it is special enough that degree theory turns out not to be

too general a tool. As the next section will show, calculating the degree

of f (x) is fairly simple. Also, degree theory is a good framework with

which to study the local behavior of f (x). Furthermore, many parametric

algorithms for the LCP can be viewed as being based on homotopies, hence

are amenable to study using ideas from degree theory. In fact, we will revisit

Lemke's algorithm from this viewpoint in Section 6.3.
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6.1 Global Degree and Degenerate Cones

In Section 2.9 we discussed degree theory for continuous nondegenerate

homogeneous functions in general. In this section we will examine the

specific case in which the function represents an LCP. To this end, we bring

to the forefront the piecewise linear map given in (1.4.8). The following

notation will be used throughout this chapter.

6.1.1 Notation. For any M E Rnxn we let fM : Rn — Rn denote the

piecewise linear function given by

fM(x) = x+ — Mx —

where, as usual, xz = max(0, xi) and x = max(0, —xi) for all i = 1, ... , n.

We will simply write f (x) when it is clear which M is meant.

The following proposition gives several elementary properties of fM (x).

Before stating this proposition, we wish to point out that the complemen-

tary cones of the n x n identity matrix I are, in fact, the orthants of R.

More precisely,

posCi(a) = {xER"':xi<0foriGaandxi>0fori^a}

for allc^C {1,...,n}.

6.1.2 Proposition. For any M E Rh"n the function fM : RTh --> R"` is

continuous, piecewise linear, and positive homogeneous of degree 1. In

addition, the pieces of fM are the orthants of R"'' and, given any index set

cY in {1, ... , n}, we have

fM(x) = C_M(a)x	 for all x E posC1(a) .

Thus, the image of pos Cj(a) under fM is precisely the complementary

cone pos Cm(ati).

Proof. This is Exercise 6.10.2. ❑

We can now use fM to apply the concepts of index and degree to the

LCP. Let x E RTh be in the interior of some orthant, say x E int(pos C1(a)).

From 6.1.2 it follows that fM is differentiable at x and V fM(x) = C_M(a).
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As det C_M(a) = det Maa , we conclude from 2.9.3 that the index of fM

at x, if it exists, is sgn(det M). We now restate 2.9.3 and 2.9.4 in the

framework of the LCP.

6.1.3 Definition. Let M E RTh X T be given. Suppose x E Rn is contained

in the interior of pos CI (a), for some a C { 1, ... , n}, and that Maa is

nonsingular. We then define the index of M at x, denoted by indM(x), to

be equal to the index of fm at x. Thus, indM(x) = sgn(det Maa ), where

det M0 = 1. We will denote indM(x) simply by ind(x) when it is clear

which M is meant.

Notice, from the above, that if one point in the interior of pos CI(a) has

a well-defined index, then they all do, and the index is the same for each

point. Thus, we may define the index of the orthant pos Cr(a) to be the

common index of the points in its interior. Of course, if the points in the

interior do not have a well-defined index, then neither does pos Ci (a). By

the index of the complementary cone pos CM(a) we mean the index of the

orthant pos C1 (a). This usage somewhat abuses the definition of index, as

a complementary cone is in the range (not the domain) of fM.

From 1.4.4 we observe that x E fM' (q) if and only if (a ; x - ) solves the

LCP (q, M). Thus, if (w, z) solves the LCP (q, M) for some q E R, then

we define the index of (w, z) to be indM(w-z) and denote it as indM(w, z).

Of course, if indM (w - z) is not well-defined, then neither is indM (w, z).

6.1.4 Definition. Let M E Rfl x l be given. Suppose, for some q E RTh,

that fM1 (q) consists of finitely many points and, further, that indm (x) is

well-defined (using 6.1.3) for all x E f fl (q). We then define the local

degree of M at q, denoted by degm (q), to be equal to the local degree of

IM at q. We will denote this simply by deg(q) when it is clear which M is

meant. Notice,

deg(q) = ^ indM(x) .

xEfml (q)

Thus, the local degree of M at q, if it exists, equals the sum of the indexes

of all (w, z) which solve (q, M).

Now that we have a notion of local degree, we should examine Rn to

see which points have a well-defined local degree and which do not. To this

end, we introduce the following.
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6.1.5 Notation. Given any matrix M E R"" let 1C(M) denote the union

of the facets of all the complementary cones of M. It follows from 6.1.2,

that 1C(M) equals the image of the coordinate hyperplanes under fM.

6.1.6 Definition. Let M E R"z"Th be given. The complementary cone

pos CM (a) is said to be full or nondegenerate if det M. 0, and degen-

erate otherwise.

6.1.7 Remark. Note that Definitions 1.3.2 and 6.1.6 agree on the mean-

ing of the word full. Also, looking back at Definition 3.6.1, we see that a

matrix is nondegenerate if and only if all of its complementary cones are

nondegenerate.

According to 6.1.3 and 6.1.4, there are several circumstances under

which deg(q) may not be well-defined. One possibility is that there is some

point x e f —1 (q) which is contained in a coordinate hyperplane of RTh.

Since x would then not be contained in the interior of one of the pieces

of f, i.e., in the interior of an orthant, we cannot be certain that f is

differentiable around r. Thus, we may not be able to define an index for x

and, indeed, 6.1.3 does not give x an index. In turn, 6.1.4 does not give

q a local degree. The image of the coordinate hyperplanes, 1g(M), is thus

a set of points that do not have well-defined local degrees.

Another circumstance under which deg(q) fails to be defined is the

case where, for some point x E f —1 (q), we find x E int(pos CI (a)) and

det Maa = 0. This implies that q = f (x) is contained in a degenerate

complementary cone. Thus, the degenerate complementary cones, along

with JC(M), are a set of points which are not given a well-defined local

degree by 6.1.3 and 6.1.4. It turns out that we need only consider K(M).

6.1.8 Theorem. Let M E Rn x l be given. The local degree of q relative

to M is well-defined if and only if q 0 1C(M).

Proof. From 6.1.5, if q E K(M), then there is some x E f(q) which lies

on the boundary of an orthant. Thus, ind(x) is not defined by 6.1.3, so

deg(q) is not well-defined.

Let q e R' \(M) be given. We must show that f 1 (q) has only finitely

many points and, further, that if x E f l  (q), then x E int(pos C.,(a)) and

det MMa y4 0 for some cti C {1, ... n}.
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Suppose x E f —1 (q) is given. If x is not in the interior of some orthant,

then x is contained in a coordinate hyperplane, i.e., some component of x

is zero. This would imply that q, which equals f (x), is in IC(M). Thus,

there is some index set ci such that x E int(posCi(a)).

Now, suppose det MMa = 0. Since det C_M(a) = det MMIX = 0, there

exists a y C Rn with y 0 and C_M(a)y = 0. One easily sees that a

A E R can be found such that x + Ay is contained in the boundary of

pos Ci (ca). From 6.1.2, we have q = f (x + Ay). Thus, as above, we have

the contradiction that q e K(M).

The last thing we must ensure is that f 1 (q) < oo. If x E f 1 (q),

we have shown that x E int(pos CI(a)) and det M. 0 for some index

set a. From 6.1.2, it follows that x = (C_M(a)) — 'q. Thus, x is the only

element of f' (q) contained in pos Ci (a) . Since there are only finitely

many complementary cones, there can be only finitely many elements in

f-1(q). ❑

In the above proof of 6.1.8 we proved some side results which are in-

teresting on their own. We state them now as corollaries.

6.1.9 Corollary. Any degenerate complementary cone is the union of its

facets. ❑

6.1.10 Corollary. Let Me R'>< n and q E Rn' be given. If pos CM (ci) is

a full complementary cone, then there is at most one element of fMl (q) in

the orthant pos CI (a). ❑

6.1.11 Corollary. Let M E Rn"n and q E RTh be given. If q V 1C(M),

then the number of solutions to the LCP (q, M) equals the number of

complementary cones containing q. ❑

While it is possible to give a well-defined index to some of the points

on the coordinate planes, it is not necessary for our efforts in this book.

Thus, 6.1.8 answers the question which was raised just before 6.1.5, to

wit, what is the set of points in RTh which have, by 6.1.4, a well-defined

local degree?

We now know that deg(q) is well-defined as long as q K(M). There-

fore, we might wonder how extensive is the set Rn \ 1C(M). The following

theorem answers this question.
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6.1.12 Theorem. If M e Rn"n, then .(M) C R' is a closed cone,

dimK(M) = n — 1, and R' \ K(M) is dense in Rn.

Proof. K(M) is the union over all index sets a and over all i E {1, ... , n}

of the closed convex cones posC(a). Z . Thus, K(M) is a closed cone.

One can show, see 6.10.1, that pos C(n). z has a nonempty relative

interior in its affine hull, which is the subspace spanned by the columns

of C(a).r. By 2.9.14 and 2.9.15(a), the dimension of pos C(a).z is no

greater than n — 1. Thus, 2.9.16 implies that dimK(M) G n — 1.
The rank of C(ø).1 is n — 1 as C(0) is the identity matrix. Thus, the

above argument shows that pos C(ø).1 has dimension exactly equal to n-1.
Thus, dimK(M) > n — 1 and, so, dimK(M) = n — 1. The theorem's final

conclusion follows from 2.9.17 and from what we have already shown. ❑

Throughout Section 2.9 we required that the function f be a continuous

nondegenerate homogeneous function in order for index, local degree, and

degree to have meaning. While fM is continuous and homogeneous, we

have not required fM to be nondegenerate in the definitions of index and

local degree given here. The reason for this omission can be explained as

follows.

By Definition 2.9.1, fM is degenerate if there is some x 0 such that

fM(x) = 0. We could, of course, make fM nondegenerate by restricting

the domain of fM to consist only of those orthants posCr(cti) for which

0 x E pos Ci (a) implies fM (r) ^ 0. The key thing to observe is that

this does not affect the points with a well-defined index and, hence, it does

not affect the points with a well-defined local degree. For if pos Ci(a) is an

orthant excluded from the domain of fM, then for some x 0 in pos Ci(cr)

we have 0 = fM(x) = C_M(a)r. Thus, 0 = detC_M(a) = detMaa.

Therefore, if x E pos C1(ci ), then Definition 6.1.3 does not, as it stands,

give a meaning to indM(x). We do not need to add the requirement that

fM is nondegenerate to obtain a valid definition of index and local degree.

However, to extend things to encompass degree in the global sense, we must

require nondegeneracy of fM. This calls for making a further distinction

among degenerate cones.

6.1.13 Definition. Let M E Rnxn be given. The complementary cone

pos CM (cr) is said to be strongly degenerate if there exists a nonzero and
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nonnegative vector x such that CM(a)x = 0. Notice, by Definition 6.1.6,

a strongly degenerate cone must be degenerate. If a cone is degenerate,

but not strongly degenerate, it is said to be weakly degenerate.

From the comments before the definition, it is clear that fM is nonde-

generate over all of Rn if and only if M has no strongly degenerate com-

plementary cones. With this is mind, we can state the following theorem

which follows directly from Corollary 2.9.7.

6.1.14 Theorem. Let M E Rnxn be given. If no complementary cone

of M is strongly degenerate, then the value of deg M (q) is the same for all

q C(M). ❑

We have already encountered the set of matrices which have no strongly

degenerate complementary cones. It is the class Ro defined in 3.8.7, as the

reader is asked to prove in Exercise 6.10.7. It seems the R0-matrices are

particularly amenable to degree-theoretic analysis. Theorem 6.1.14 leads

us to the following terminology.

6.1.15 Definition. Let M E RnxnnRo be given. We define the degree of

M, denoted by deg M, to be the common value of deg (q) for all q 0 K(M).

6.1.16 Examples. Consider the matrices

r 2 —1 1 —1
Ml = IL and M

2—1 2 1 1

Ml E P C Ro . The complementary cones of Ml are depicted in Figure 1.2.

The set K(M1 ) C R2 consists of the rays along the vectors (1, 0), (0, 1),

(-2 1), and (1, 2). For any point q 1C(M1) the set f(q) consists of

exactly one point with index +1. Since Ml has no degenerate complemen-

tary cones, we see that deg Ml is well-defined and equal to +1.

The complementary cones of M2 are depicted in Figure 1.4 The set

K(M2) C R2 consists of the rays along the vectors (1, 0), (0, 1), (-1, 1),

and (1, —1). If q (M2) and eTq > 0, then fMz (q) consists of exactly

one point with index +1. If eTq < 0, then q V 1C(M2 ) and f' (q) is empty,

so degM2 (q) = 0. Thus, M2 does not have a well-defined degree. Notice,

pos CM2 ({ 1, 2}) is strongly degenerate.
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In the above example, M2 does not have a well-defined degree. However,

a fair amount can still be said. If we restrict fM2 to be defined only for those

x e R  not contained in int(pos CI( {1, 2 }), then fM2 is now nondegenerate.

By 2.9.6 and 6.1.9, degM2 (q) is invariant within any connected component

of R2 \ fM2 (posCl( {1,2 })). On examination, we find that there are two

connected components consisting of the two halfspaces on either side of

the hyperplane {q E R2 : eTq = 0}. This is all consistent with the given

example. It also suggests the following result.

6.1.17 Theorem. Let M C Rn"n be given. Let C be the union of the

strongly degenerate complementary cones of M. We then have degm (q) =
degm (q') for any q, q' C R"L \ K(M) which are in the same connected com-

ponent of Rn \ C.

Proof. Let D C R  be the union of all the orthants of Rn which are

not mapped by fM into strongly degenerate complementary cones. Thus,

fM : D —> RTh is nondegenerate. It is clear that fM (bd D) is contained in

the union of the strongly degenerate complementary cones. The theorem

now follows from 2.9.6. ❑

6.1.18 Remark. Notice that Corollary 6.1.9 implies C C K(M).

Clearly, it seems that a closer look at the strongly degenerate comple-

mentary cones is in order. Since we are attempting to view things geometri-

cally, we would like a geometric characterization of the strongly degenerate

cones. It turns out that, except for a trivial case, the strongly degenerate

cones are the complementary cones which are not pointed in the sense of

Definition 2.6.25.

6.1.19 Theorem. Let M e RT"n be given. For any index set a, the com-

plementary cone pos CM (ce) is strongly degenerate if and only if pos CM (a)

is not pointed or CM(a) contains a zero column.

Proof. If C(cti).i = 0, then C(cti)ci = 0. This shows that pos C(a) is

strongly degenerate. We now assume that C(c) has no zero columns.

Suppose pos C(c) is not pointed. It then contains some x 0 in its

lineality space. This means there exists y, z > 0 such that C(a)y = .x and

C(a)z = — x. Thus, C(a)(y +z) = 0. Clearly, as x 0, neither y nor z can
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be zero. Hence, y + z is nonzero and nonnegative, which shows pos C(a)

to be strongly degenerate.

Suppose pos C(a) is strongly degenerate. There is then an x 0 such

that x > 0 and C(c^)x = 0. We may assume xz = 1. By assumption,

0. Clearly, C(c).2 E posC(a). Yet, x—e > 0 and C(cti)(x —ei) =

—C(cti).i. Thus, C(a).z is in the lineality space of pos C(cti), so the cone is

not pointed. ❑

6.1.20 Remark. If A E Rn > P, then the cone pos A is said to be strictly

pointed if it is pointed and if A has no zero columns. Thus, among com-

plementary cones, the strongly degenerate cones are precisely those cones

which are not strictly pointed.

We now have some understanding of index and degree for a fixed matrix

M. It is natural to continue our line of inquiry and ask what happens as

the matrix M changes slightly? It would be nice if we could adapt the

homotopy theorems, 2.9.11 and 2.9.12, to cover the matrix M in an LCP.

This is actually easy to do. In Exercise 6.10.6 the reader is asked to show

that fM is continuous in M. Given this, the next two results follow as

corollaries to Theorems 2.9.11 and 2.9.12. The reader may wish to look

back and see how Theorem 6.1.17 followed from Theorem 2.9.6.

6.1.21 Theorem. For each t E [ 0, 1 ], let Mt e RT"fl be given such that

the function Mt : [ 0, 1] — RT XTh is continuous. Let {cq}j 1 be a collection

of index sets such that, for any t E [ 0, 1] and any i E {1,. . .  , k}, the

complementary cone pos CM, (cq) is not strongly degenerate. Take D C Rn

to be the open cone defined by

k

D = int ( U pos Ci (cti 2 )) .
z_1

For each t E [ 0, 1 ], let the function gt : cl D —* RTh be the restriction of the

function fMt to the cone cl D. Suppose, for some y E R, that the degree

of y with respect to both g o and gl is well-defined (using 2.9.4). If, for all

t E [ 0, 1 ], we have y V gt (bd D), then deggo (g) = degg , (y). ❑

6.1.22 Theorem. For each t E [ 0, 1 ], let Mt E Rn"n be given such that

the function Mt : [0,1]  — Rn x n is continuous. If, for each t E [ 0, 1 ] , none

of the complementary cones relative to Mt are strongly degenerate, then

deg Mt exists and is the same for all t E [ 0, 1 ] . ❑
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One might ask if Theorem 2.9.12 can be fully adapted to the LCP

setting. That is, given M0, Ml E Ro f1 R"', if deg Mo = deg Ml , is it

true that there exist Ro-matrices Mt , for t E (0, 1), such that the function

Alit : [ 0, 1] -- R >< ' is continuous? The answer, in general, is no. While

unfortunate, this answer should not be unexpected. Theorem 2.9.12 allows

general continuous nondegenerate homogeneous functions to be used in the

homotopy. Here we are more restrictive and only allow functions which are

associated with an LCP, i.e., those of the form  IM as given in 6.1.1. As

an example, we have the matrices

—1	 2	 2 3	 —2	 6

Mo = —2	 3	 6 and	 M1 = 2	 —1	 2 (1)

—2	 6	 3 6	 —2	 3

These matrices are nondegenerate and, hence, are in R0 . In addition, one

can check that fMö (e) _ { (1, 1, 1), (-5,—i, —1) } and fMl (e) _ { (1, 1, 1),
( 1, —5, —1) }, from which one can prove that deg Mo = deg Ml = 2.
However, it can be shown that if M E Ro l R3 X 3 and degm = 2, then of

the eight principal minors of M exactly six must be positive and at least

one must be negative. From this it follows that there is no continuous

function Mt : [0,1]  — Ro fl R3x3 with Mo and Ml as in (1). The reader is

asked to supply the details of this argument in Exercise 6.10.20. However,

before attempting part (b) of this exercise, we suggest the reader become

familiar with the material concerning N-matrices in Section 6.6.

Continuing to look into what happens as M changes slightly, we might

wonder how small changes in M affect the complementary cones. Let {Mi}
be a sequence in Rl"n such that lim2_, MZ = M. If q E posCM(ct), can

we find a sequence {qz }, with qi E pos CMS (ct), such that limn —^ qz = q?

The answer is yes. If q E pos CM (a), then there is an x > 0 such that

q = Cm(cti)x. Letting q 2 = CM1 (ca)x gives the desired sequence.

Suppose we now ask the converse of the previous question. If we have a

sequence of points in a sequence of complementary cones, is the limit of the

sequence of points in the limit of the sequence of complementary cones? If

the limiting complementary cone is strongly degenerate, the answer could

be no. However, if there is no strong degeneracy, the answer is yes. We

will now prove a slightly more general result.
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6.1.23 Theorem. Let S C Rh be a compact set. Let {Mi } be a sequence

of matrices in Rn"n such that lim MZ = M. Suppose, for some index

set a, the cone pos CM (a) is not strongly degenerate. If S n pos CMz (a) 0

for all i, then S f pos CM (a) ^ 0.

Proof. Suppose q 2 e S n pos CMS (a), for all i. As S is compact, we may

assume there is some q E S such that lim 2_ q 2 = q. We will show that

q EposCM(a).

For each qz , select some x 2 > 0 such that CMz (a)x i = q i . If the se-

quence {(x z ) } is bounded, then we may assume there is some x E R"''

such that lim xi = x. It would then follow that x > 0 and that

q = limz_^ CMS (oz)x = CM(a)x. Hence, q E pos CM(a).

Suppose, however, that the sequence {)x} is unbounded. We will

show this is impossible. By assumption, if x > 0 and CM(a)x = 0, then

x = 0. By Gordan's Theorem of the Alternative, there is a y E R' such

that yTCM(a) > 0. We then have

yTCMz (o)x i = yTgi (2)

for each i. Since the q i converge to q, the right side of (2) is bounded over

all i. However, as yTCM (a) > 0 and the x 2 are nonnegative and unbounded,

the left side of (2) is unbounded, a contradiction. ❑

6.1.24 Remark. The assumption that pos CM (a) is not strongly degen-

erate is critical. Consider Ml and M2 from 6.1.16. We noted before that

pos CMZ ({1, 2}) was strongly degenerate. Note now that this cone does

not contain (-1, —1). Yet, for any A > 0, if we let M = M2 + AM,, then

(-1, —1) E pos CM({1, 2}).

Although a strongly degenerate complementary cone (as a set in R) is

not necessarily continuous in M, the fact that it is strongly degenerate is,

indeed, continuous in M. This is the essence of the next result.

6.1.25 Theorem. Let a C {1,. . . , n} be given. The set of M E Rl"n for

which pos CM (a) is strongly degenerate is closed in Rn x

Proof. Let {M1} be a sequence in Rn>< such that limn —,, MZ = M.

Suppose pos CM. (a) is strongly degenerate for all i. We must show that

pos CM (a) is strongly degenerate.
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For each i, there must be a nonzero x 2 E Rn such that x2 > 0 and

Cm,(a)xz = 0. By scaling, we may assume that = 1 for all i. Since

S 1 is compact, we may assume there is an x E Rn such that lim n_ xi =

x. Clearly, x > 0 and CM(a)x = 0. Also, )x ) = 1 and, hence, posCM(a)

is strongly degenerate. ❑

We have been concentrating a bit on the complementary cones, the

image of the map fM. We are, of course, interested in what happens in

the domain of fM, as it is the points in the domain which correspond to

solutions of the LCP. Corollary 6.1.10 indicates that for each full comple-

mentary cone containing q, there is exactly one corresponding solution to

the LCP (q, M). What can be said if the complementary cone were de-

generate? The following results answer this question. Notice that we came

close to the answer, for the case of a strongly degenerate cone, in the proof

of 6.1.23.

6.1.26 Lemma. Let A E Rf X P and q E R' be given. If q E ri(posA),

then there exists a u E Rp, with u > 0, such that q = Au.

Proof. As q E pos A, there exists an x > 0 such that q = Ax. For some

ctiC {1,...,p},we have xa =0 and xa >0.

If a = 0, we are done. Otherwise, select p E Rp with Pa = x and

with yz = —b for some S > 0 and all i E a. From continuity and the

fact that Ax = q E ri(pos A), we will have Ay E pos A if we select S > 0

small enough. Thus, Ay = Az for some z > 0. Clearly, A(z — y) = 0 and

(z — y) . > 0. Thus, for A > 0 small enough, we have x + A(z — y) > 0 and

A(x + A(z — y)) = Ax = q. ❑

6.1.27 Theorem. Suppose we are given M E R"i"n, q E R, and an index

set a, such that q E posCM(a). Consider the set S = f' (q) (1 pos CI (a).

The set S is a nonempty polyhedron. If q E ri(pos CM (a)) and if pos CM (a)

is degenerate, then S has infinitely many points. The set S is unbounded

if and only if pos CM (a) is strongly degenerate.

Proof. Rather than deal with 5, we will deal with S+ _ {Ci(a)x : x E S}.

Clearly, z E S+ if and only if z > 0 and CM(a)z = q. If the above

statements are true for S+, then they are true for S.

Since q C posCM(cv), there is some q > 0 such that CM(a)y = q, i.e.,

S+ is nonempty. We see that CM (a) (y + x) = q if and only if x is in
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the nullspace of CM(ce). Thus, S+ is the intersection of the nonnegative

orthant and an affine space, hence it is a polyhedron.

If pos Cm (a) is full, then we already know that S+ is a single point.

If pos Cm(a) is strongly degenerate, then there is an x 0 such that

x > 0 and CM (cti)x = 0. Thus, y + Ax > 0 and CM (cti) (y + Ax) = q, for all

A > 0. Hence, S+ is unbounded.

Now, suppose S+ is unbounded. There is then an unbounded sequence

of (nonzero) points, {x i }, in the nullspace of CM (ci) such that y + xz is in

S+ for all i. As Sn — ' is compact, we may assume there is some x 0 such

that limzy ,, x 2 /^jxi JI = x. Clearly, we must have

lim y + xz =x

which implies, in view of the facts {y + x 2 } C S+ and x'11 —> co, that

x is nonnegative and satisfies CM(a)x = 0. So, posCM(u) is strongly

degenerate.

Finally, suppose pos Cm(a) is degenerate and that q E ri(pos Cm(a)).

By Lemma 6.1.26, there is an x > 0 such that q = CM(a)x. In addition,

degeneracy implies the existence of a y 0 with CM(cti)y = 0. Hence, for

all A> 0 small enough we have x + Ay E S. Thus, S+ has infinitely many

points. ❑

Before ending this section we will illustrate some of the material pre-

sented by examining the matrix

—1 2 1

M= 2 —1 1

1 1 0

We wish to show that M is a Q-matrix. Unfortunately, by letting z =

(0, 0, 1) and w = (1, 1, 0), we see that the LCP (0, M) has a nontrivial

solution. Thus, M Ro D R. This means that deg M is not defined.

It also means that the material in Chapter 3 cannot be (directly) used to

show M E Q. We will have to look at the structure of K(M) a bit more

carefully.

Let C be the union of the strongly degenerate complementary cones of

M. If in each connected component of R 3 \ C we could find a point with a

 



6.1 GLOBAL DEGREE AND DEGENERATE CONES 	 521

well-defined and nonzero local degree, then Theorem 6.1.17 would imply

that every point with a well-defined local degree would have a nonzero local

degree. It would then follow from Theorem 6.1.8 that the LCP (q, M) had

a solution for every q V K(M). As K(M) is closed, Theorem 6.1.12 would

imply that K(M) = R3 , i.e., M E Q. Thus, we will now find C and

show that each connected component of R3 \ C contains a point with a

well-defined and nonzero local degree.

The complementary cone pos C({3}) is strongly degenerate. However,

all the other complementary cones are full. Therefore, C = pos C({3 }) and

this is the hyperplane {x E R3 : x3 = 0 }. It follows that R3 \C has the sets

H+ = {x E R3 : x3 > 0} and H — = {x E R3 : x3 <0} as its two connected

components.

Consider the point q l = (1, 1, 1). It is easy to show that fM'(gl) consists

of the following three points: (1, 1, 1), (3, —1, 2), and (-1,3,2). From this

we find that degM (q') exists and equals —1.

Consider the point q2 = (0, 0, —1). Again, it is easy to show that

fTul (g2 ) consists of the following two points: (3, —1, —1) and (-1,3, —1).

From this we find that deg(q 2 ) exists and equals —2.

Since q l E H+ and q2 E H — , we conclude that M is a Q-matrix.

We will now perturb M and see what happens. Let M(d) be equal

to the matrix M except that m(S)33 = S. Notice that M = M(0). If
0 < 161 < 1, then M(5) is nondegenerate. Theorem 6.1.14 implies that

M(8) would then have a well-defined degree, but what would it be?

Consider q 1 and q2 as given above. Suppose qz E int(pos CM(a)) for

some i and some a. It is easy to show that if > 0 is small enough, then

q' E int(pos CM(b) (a)) and sgn(det M^ a) = sgn(det M(6) aa). Further-

more, assuming 1 5 > 0 is small enough, if pos Cm(a) is not strongly de-

generate and if q2 V pos CM(a), then by 6.1.23 we have qz V pos CM (b) (a).

Thus, the only possible difference between deg(q2 ) and degm(b) (gi ) is the

index of pos CM(6)( {3}). It may now happen that this index appears in the

degree calculation for q i .

Suppose Ö is small and positive. We find that q 1 pos CM(s) ( {3}).

Thus, degM(b) (gi ) = degm (q') = —1, and hence, degM(S) = —1. Yet,

deg(q2 ) = —2, so what happens now? As can be checked, pos CM(g)( {3 })

contains q2 . We must therefore add sgn(m(8)33) = sgn(6) = +1 to the local
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degree of q2 . Therefore, as should be the case, deg M(s) (q2 ) = — l. Geomet-

rically, we can imagine letting S equal an infinitesimally small positive quan-

tity. We find that the points in H+ are not contained in posCM(s)({3})

and, so, they retain their local degrees of —1. However, posCM(5)({3})

equals H — , if we think of S > 0 as being infinitesimally small, so the points

in H — have their local degrees increased (by +1) to the value —1.

Similarly, if we imagine S as being negative and S as being infinitesi-

mally small, then we find it is the points in H — which are not contained in

pos CM(b) ({3}). Thus, these points retain their local degrees of —2. Fur-

ther, we find pos CM(S) ({ 3}) equal to H+. Thus, the points in H+ have

their local degrees increased by sgn(m(S)33) = —1 to the value —2. Indeed,

for S < 0 with S small enough, we can easily check that degM(S) —2

using either q 1 or q2 .

6.2 Facets

In the previous section we turned our attention to degree theory and

complementary cones. In this section our chief objects of study will be the

facets of the complementary cones. Why do we make such a sudden change

in emphasis? The answer is that our emphasis is changing only superficially.

In the previous section, the union of the facets, lC(M), was shown to have

an important role in degree theory. We will study this role more deeply in

this section. In fact, we will develop the basic properties of degree using

just the facets. In this sense one might reverse the previous question and

ask why we are repeating ourselves. The answer to this question is that in

the previous section the basic concept of degree gave us a global view while

in this section the geometry of the facets will give us a local view. The two

views together offer more insight into the LCP than either one separately.

From 2.9.14 and 2.9.15(a), we know that for M E R < the dimension

of any facet of any complementary cone relative to M is no larger than n-1.

However, only those facets with dimension equal to n —1 will be of interest.

This is an important point and, shortly, we will explain why.

6.2.1 Notation. For q e R' and S > 0, let B(q, S) denote the open ball

of radius S around q. That is, B(q, S) = { q' E Rn : — q') 2 < S }. (See

Definition 2.1.7.)
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If H is a hyperplane containing q, then the connected components of

B(q, S) \ H are a pair of open hemiballs.

6.2.2 Definition. We recall from 2.1.15 that a path is a continuous func-

tion q(t) : [ 0, 1] —# Rn. We will often use qt to denote either the path itself

or the point q(t) for some t C [ 0, 1]. The meaning of qt will be clear from

context. A path qt is said to be between q° and q'.

Given two paths q t and pt where q 1 = p° , we say that the path r t is the

composition of the paths qt and pt if rs = q25 for s E [ 0, 1 ] and rs = p25 -1

forsE [,1].

Let x, y E Rh be given. Consider the path qt defined by qt = ( 1 —t)x+ty.

The image of this path is the line segment £ [ x, y ] . We will refer to qt as

the path of£[x,y].

The above is somewhat general in that it could easily appear in a book

not devoted to the LCP. The following, in contrast, is very specific to the

geometric view of the LCP.

6.2.3 Definition. Let M E R"l"n be given. If n> 2, consider those linear

subspaces of R  which satisfy at least one of the following two conditions:

(a) The subspace equals { CM (a).ßx : n E Rn -2 } for some index sets

a, ,3 c { 1, ... , n} with 13 = n - 2;

(b) The subspace equals the intersection of two geometrically distinct

subspaces each of the form { CM(a).,Qr : x E Rn -1 } where a and ß

are index sets in {1,. . .  , n} and 101 = n — 1.

We define £(M) to be the intersection of 1C(M) with the union of these

linear subspaces. If n = 1, we let £(M) _ 0 for all M. If n = 2, we let

G(M) = {0} for all M.

The description of ,C(M) is, admittedly, hard to take in at once. There-

fore, we make a few basic observations. The subspaces satisfying 6.2.3(a)

are the affine hulls of the n -2 (or less) dimensional faces of the complemen-

tary cones. The additional subspaces obtained from 6.2.3(b) are gotten

by first taking the affine hulls of all the facets of all the complementary

cones. These affine hulls are then intersected and any intersection which

has dimension n — 2 or less is used for C(M). Thus, C(M) is contained in
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a finite union of n — 2 (or less) dimensional subspaces. In fact, if n > 2,

then £(M) is never empty as it will always contain the nonnegative parts

of the coordinate axes.

It is now time to discuss why we have turned our attention to the set

.C(M). This will also explain why we will be interested only in those facets

which have dimension n — 1. We will begin our discussion by looking once

again at the set RTh \ K(M).

The set R \ IC(M) consists of those points which have a well-defined

local degree. From Theorem 6.1.12 we know that almost all of the points

in Rn are in this set. In fact, Theorem 6.1.17 implies that local degree

is an invariant within the connected components of Rn \ K(M). Thus, if

we imagine moving along a path qt : [ 0, 1] —^ Rn, while keeping track

of fl(qt) and degM (gt ), then the "really interesting" things happen only

when we move from one component of R \ K(M) to another. To do this,

the path must intersect K(M), i.e., the path must cross through a facet of

a complementary cone.

If we wish to analyze the changes that take place in fMl and in the local

degree as we move between different components of Rn \ K(M), then our

job will be easier if, when qt crosses through a facet, it does so in a simple

way. The question arises as to what "simple" means in this context. Part

of the answer to this question is given in the next result.

6.2.4 Theorem. Let M E Rn x fl be given. If q E K(M) \ G(M), then

there is an (n — 1)-dimensional subspace H and a S > 0 such that if F is

any facet of any complementary cone relative to M, and B(q, c5) f1 F 0,

then
B(q, 6) n F = B(q, S) n H = B(q, S) fl K(M) . (1)

Further, H is the affine hull of F, dim F = n — 1, and q E ri F.

Proof. If n = 1, then q = 0 and the theorem is trivial. If n = 2, then q

is a multiple of some column in (I, —M) and q 0. It is easy to see that

the theorem is true if we let H equal the subspace of all multiples of that

column. Thus, we assume that n > 2. (In the future, for results concerning

G(M), we assume the reader will verify the case when n G 2.)

Since q E K(M), then q E F where F is the facet of some comple-

mentary cone. As q V C(M), it follows from condition (a) of 6.2.3 that
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dim F = n —1 and that q E ri F. Let H be the (n —1)-dimensional subspace

which is the affine hull of F. As q E ri F, for all small enough S > 0 we

have B(q, S) n F = B(q, S) rl H. This implies B(q, S) f11C(M) 3 B(q, 6) n H.

Since there are finitely many facets of complementary cones, and they

are all closed sets, there exists a S > 0 such that any facet which intersects

B(q, S) must contain q. If it were true that all facets which contained q

were contained in H, then we could conclude from the above argument that

the theorem is true for S > 0 small enough. Thus, suppose q E F' where F'

is the facet of some complementary cone and F' is not contained in H. It

must be that the affine hulls of F and F' are geometrically distinct. Using

condition (b) of 6.2.3, we have q E Ff F' C 12 (M). This is a contradiction

and, hence, the theorem is valid. ❑

The previous theorem indicates that C(M) consists of points which are,

in some sense, degenerate. It would probably be best if the path q t did not

contain any of the points in L(M). Starting with this, we will now fully

answer the question of what it means for the path qt to intersect K(M) in

a simple (nondegenerate) manner.

6.2.5 Definition. Let M E Rnxn be given. Let qt : [0,1] — R' be a

path. Suppose for some s E (0, 1) that qs E )C(M). We then say that the

intersection of K(M) and the path qt at the point qs is nondegenerate if

qs ^ L(M) and if there exists an (n — 1)-dimensional subspace H and a

8> 0 such that the following hold.

(a) With q = q8 , the conclusion of Theorem 6.2.4 is valid.

(b) For alltE (s-6,s +6),ifg t EH, then t =s.

(c) The two open hemiballs which are the connected component s of

B(qs, S) \ H each contain points q t with t arbitrarily close to s.

6.2.6 Remark. Notice that we ignore the endpoints of a path when con-

sidering its intersections with 1C(M).

We can describe what happens in the vicinity of the nondegenerate in-

tersection qs using the conditions given in Definition 6.2.5. Within B(qs, 6)

the path q t starts on one side of H and crosses to the other side of H pre-

cisely when t = s. Any facet containing the point qs is (n — 1)-dimensional,

is contained in H, and contains qs in its relative interior.
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Now that we know what it means for a path to intersect K(M) in a

simple way, the question arises as to whether such intersections are the ex-

ception or the rule. More precisely, can any two points in R be connected

with a path all of whose intersections with K(M) are nondegenerate? The

answer to this question is that such a path always exists. We shall show

this in a moment. First we shall prove the following result which will be

needed as a lemma and which, on its own, is quite useful.

6.2.7 Theorem. Let M E RTh"n and q, q' E R' be given. For any e > 0,

there is a q" E B(q', E) \ (K(M) U {q}) such that all the intersections of

K (M) with the path of l [ q, q" ] are nondegenerate.

Proof. The set C(M) is contained in a finite union of subspaces of dimen-

sion n — 2 or less. Let S be one of these subspaces. The affine hull of the

subspace S and the point q is a subspace of dimension n — 1 or less. Let S

be the union of these affine hulls.

We will now expand S by adding to it the affine hulls of all the facets

of the complementary cones. It is still true that S is a finite union of

subspaces of dimension n — 1 or less. It then follows from 2.9.17, that

there is a point q" q such that q" E B(q', r) \ S.

It is clear from its construction that S contains K(M). Therefore,

q" V K(M). Let q t be the path off [ q, q" ] with, say, q° = q and q' = q".

Note, as q" 4 q, if s t, then qs -A qt .

Suppose for some s e (0, 1) that q8 E K(M). If q3 E C(M), then S

would contain the unique line through qs and q. This would imply that

q" E S which is false. Thus, q3 O C(M). We may now conclude that there

is an (n — l)-dimensional subspace H and a 6 > 0 such that the conclusion

of Theorem 6.2.4 holds for qs.

We know from 6.2.4 that H is the affine hull of some (n -1)-dimensional

facet of a complementary cone, thus H C S. If £ [ q°, q'] C H, then q" E S

which is false. Thus, the line segment P [q°, q 1 ] transversely intersects H

at the point qs• We may conclude that conditions (b) and (c) of Definition

6.2.5 are satisfied. The theorem follows. ❑

We now show that any two points can be joined by a path which has

only nondegenerate intersections with K(M).
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6.2.8 Theorem. Let M E Rn"n be given. For any q, q' E RTh, there exists

a path between q and q' such that all the intersections of JC(M) with the

path are nondegenerate.

Proof. Let S be the union of the affine hulls of all the facets of the

complementary cones. Clearly, IC(M) C S. Since there are only finitely

many facets, there is a b > 0 such that if the affine hull of a facet intersects

the open ball B(q, b), then that affine hull contains q. The set Rn \ S

is open and Proposition 2.9.17 implies it is also dense. Thus, there is a

q" E B(q, S) and an e > 0 such that B(q", e) C B(q, (5) and B(q", e) nS = 0.
Suppose, for some point q E B(q", r), that £ [ q, q ] f1 S contains a point

which is not q. It must be that this point is in one of the subspaces compris-

ing S and, as f [ q, q ] E B(q, ö), this subspace must contain q. Therefore,

£ [ q, q ] C S which is false as S. We conclude that £ [ q, q ] n S C {q }.

From Theorem 6.2.7, we know that there is some q E B(q", e) such that

all the intersections of K; (M) with the path of f [ q, q'] are nondegenerate.

As £ [ q, q] has no intersections with JE(M), it is vacuously true that all such

intersections are nondegenerate. Since IC(M), the composition of the

paths of [ q, q ] and f [ q, q' ] is the desired path between q and q'. ❑

Since we may "move" from any point in R to any other point via

a path which intersects lk(M) only nondegenerately, then we need only

study what happens when a path crosses through the relative interior of

an (n — 1)-dimensional facet of a complementary cone. Thus, as stated at

the beginning of this section, we will only be interested in such facets.

6.2.9 Definition. Given ME R" >< a C {1, ..., n}, and i E {1, ..., n},

we say that the complementary cones pos CM (n) and pos CM (a A {i}) are

adjacent. In addition, we refer to the facet pos CM (a).I as the common

facet between these two cones, and we consider it to be adjacent to both

cones. Notice, CM(a). I = CM(cti A {i})..

The geometry surrounding the common facet between two complemen-

tary cones depends to a great extent on the geometry of the two cones.

We will first assume that both complementary cones are full. This will be

relaxed later. With this assumption, it turns out there are only two cases

to consider.
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6.2.10 Definition. Given M E RT' >< , a C {1, .. . , n}, and i E {1, ... , n},

consider the product

(det M^a )(det Mßß) ,	 (2)

where ß = cti 0 {i}. We say that the common facet pos CM(cr). is proper

if (2) is positive. We say that the facet is reflecting if (2) is negative.

6.2.11 Remark. Notice, as det CM(a) = (1)kI det M, that (2) is

equal to

— (detCm(a))(detCM(ß)) .	 (3)

Hence, if (2) is nonzero, then both pos CM (a) and pos CM (ß) are full com-

plementary cones and, so; the facet pos,CM(a)., has dimension n — 1.

Let M E Rnxn cti C {1, ..., n}, and i E {1, ..., n} be given. Define

ß = c A {i}. Suppose that both pos Cm(a) and pos Cm(ß) are full comple-

mentary cones. Consider a path q t in which, for some s E (0, 1), the point

qs E pos CM(a). is a nondegenerate intersection of the path with K(M).

Let H and S be as described in Definition 6.2.5. Let B+ and B- be the

two open hemiballs which are the connected components of B(qs, S) \ H.

We now have the tools to describe what happens as the path qt crosses the

facet pos CM (a).I at q8 .

6.2.12 Theorem. Assume the conditions and notations in the preceding

paragraph. It follows that each of pos Cm (a) and pos CM (ß) contain ex-

actly one of B+ and B. Further, each of the two cones is disjoint from

the hemiball it does not contain. If the facet pos CM (o ). Z is reflecting,

then both complementary cones contain the same hemiball. If the facet

pos CM (a).2 is proper, then the complementary cones contain different

hemiballs. In either case, the total contribution to the local degree made

by the two complementary cones is constant for all points in B+ U B.

Proof. We know from (1) that the intersection of the facet pos C(a).2

with B(qs, S) equals B(qs, S) f1 H. This facet is part of the boundary of the

full cone pos C(a) and, again via (1), we know that no other part of the

boundary of pos C(a) intersects B(qs, Ö). Thus, pos C(c^) contains exactly

one of B+ and B. Further, pos C(a) is disjoint from the hemiball it does

not contain. A similar argument applies to pos C(ß).
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The columns of C(a).2 form a basis for the hyperplane H. Thus,

pos C(a) is entirely on one side of H, i.e., pos C(a) is entirely contained

in one of the two closed halfspaces for which H is the common boundary.

The same is true for pos C(3). From (3), we see that if pos C(a). z is re-

flecting, then the two complementary cones are on the same side of H and,

if pos C(a). z is proper, then the two complementary cones are on opposite

sides of H. From this, all but the last sentence of the theorem follows.

Since B+ U B— does not intersect K(M), all points in this union have a
well-defined local degree. If pos C(a). 1 is proper, then (2) implies that the

complementary cones have the same index. Since one contains B+ and the

other contains B— , the total contribution they make to the local degree

is the same over B+ U B. Similarly, if posC(a). is reflecting, then (2)

implies that the complementary cones have opposite indexes. Since they

both contain one of B+ and B— , the total contribution they make to the

local degree is the same over B+ U B. ❑

6.2.13 Remark. The invariance of the local degree (Theorem 6.1.14), for

the case when M is nondegenerate, now follows as a corollary to Theorems

6.2.8 and 6.2.12.

So far we have explored only the nondegenerate case. It is time to

begin introducing degeneracy into the picture. In the previous theorem we

described what took place as a path crossed the common facet between two

full cones. We now describe what would have taken place if one or both of

those cones had been degenerate.

6.2.14 Theorem. Assume the conditions and notations in the paragraph

preceding Theorem 6.2.12, except that we will now assume pos CM (a) is
a degenerate complementary cone. It follows that B(qs, S) n pos CM(a) _
B(qs, ä) n H.

If we assume pos CM (/3), like pos Cm(ci), is degenerate, it follows that

B(qs, S) n posCm(ß) = B(qs, S) n H. In addition the total contribution to

the local degree, made by pos CM (a) and pos CM (ß), is constant for all

points in B+ U B.
If we assume pos CM (ß) is a full cone, then pos CM (ß) contains exactly

one of B+ and B— and, further, is disjoint from the one it does not contain.

In addition, the total contribution to the local degree made by pos CM (a)
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and pos CM (ß) is constant for all points in B+ and for all points in B- ,
but differs by one between the two hemiballs.

Proof. We know from (1) that

B(qs, S) f1 H = B(qs, S) n pos C(ca).z C B(qs, S) l pos C(a).

Theorem 6.2.4 goes on to say that dim ( pos C(a).,) = n — 1 and that

H is the affine hull of this facet. Therefore, if the vector C(a).z does

not lie in H, then det C(a) 0 and pos C(cc) is nondegenerate. Thus,

C(ce). i lies in H and, hence, pos C(cv) C H. We may now conclude that

B(q8, S) n posCM(a) = B(qs, S) n H.

If pos C(ß) is degenerate, then B(qs, S) n posCM(ß) = B(qs, S) n H via

the above reasoning.

If pos C(3) is full, then the argument given at the beginning of the proof

of 6.2.12 shows that pos C(B) contains exactly one of B+ and B- and is

disjoint from the other.

Lastly, if both pos C(a) and pos C(ß) are degenerate, then neither one

intersects B+ U B- and, so, the total contribution of these cones to the

local degree of points in the union is zero. If pos C(ß) is full, then it will

contribute a +1 or a —1 to the local degree of points in either B+ or B- ,
whichever one it contains. It will contribute nothing to the local degree

in the hemiball it does not contain. As before, pos C(a) will contribute

nothing to the local degree of points in either hemiball. The last assertion

of the theorem now follows. ❑

The previous theorem is a good start, but we wish to take a closer look

at what happens when a path crosses the facet of a degenerate cone. As

might be expected, there is a difference between what happens when the

path crosses a weakly degenerate cone and what happens when it crosses

a strongly degenerate cone. As might be surprising, the case of strong

degeneracy is much simpler to analyze. For this reason, we will consider it

first. It turns out that strongly degenerate complementary cones share a

key property with full complementary cones which weakly degenerate cones

do not have. This property is given in the following lemma.

6.2.15 Lemma. Let M E Rnxn q E R, and cti C {1, ... , n} be given.

Suppose that pos CM (a) is a strongly degenerate complementary cone and
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that q E posCm(ce) \ C(M). It follows that q is contained in exactly one

facet of pos Cm(a).

Proof. Since pos C(a) is degenerate, the rank of C(a) is no bigger than

n — 1. If C(a) had a rank of n — 2 or less, then the affine hull of pos C(a)

could be generated by n — 2 or fewer column vectors of C(a). Condition

(a) of 6.2.3 would then imply that pos C(a) C C(M). Thus, for q to exist,

the rank of C(a) must equal n — 1.

Since q E pos C(ce), there is an r > 0 such that q = C(a)x. As C(a) has

rank n — 1, the null space of C(a) has dimension equal to one. Let y E Rn

be a basis for this null space. Let L - {x +Ay : A E R}. Thus, L is a line in

R, i.e., a 1-dimensional affine space. Further, L = {z E Rn : q = C(a)z}.

For i E {1, ... , n}, it is easy to see that q E pos C(a). if and only

if L intersects the facet pos L of R. As q 0 C(M), condition (a) of

6.2.3 implies that L can only intersect a facet of R+ in the facet's relative

interior, i.e., each point in L is contained in at most one facet of R+.
If the facet pos I. 2 contained two distinct points in L, then L is contained

in the affine hull of pos I. z . Since pos I.. contains no lines, L must intersect

the relative boundary of pos I. Z . This violates our previous conclusion that

L can intersect a facet of R+ only in the facet's relative interior. Hence,

each facet of R+ contains at most one point of L.
As L and R+ are convex, and as q E pos C(a), then L n R+ is nonempty

and convex. We know L can intersect a facet of R+ only in the facet's

relative interior, thus L f1 R+ is not a single point. Since R+ contains

no lines, we conclude that L n R+ is either an infinite ray with a single

endpoint or a finite line segment with two distinct endpoints.

As pos C(a) is strongly degenerate, then either y > 0 or y < 0. In

either case, L n R+ will be an infinite ray which intersects, at its single

endpoint, exactly one facet of R. The lemma now follows. ❑

6.2.16 Remark. If pos CM (a) had been full instead of strongly degener-

ate, it would still be true that if q E pos Cm(a).I \L(M), then q is contained

in exactly one facet of posCm(a). (It follows as CM(a) — 'q is well-defined

and would be zero in exactly one component.) This is the key property

that full and strongly degenerate complementary cones have in common:

points in a facet, but not in C(M), must be in a unique facet.

 



532	 6 GEOMETRY AND DEGREE THEORY

In the case where there are no weakly degenerate complementary cones

relative to M, Theorems 6.2.12 and 6.2.14 completely describe nondegen-

erate intersections of JC(M) with a path. For this case, suppose qt is a path

crossing 1C(M) at the point q 8 , and the intersection is nondegenerate. As

always, each facet containing qs is adjacent to exactly two complementary

cones containing q8 . From the key property (Remark 6.2.16), each com-

plementary cone containing qs has at most one facet containing q8 . Thus,

the situation at qs splits into several distinct cases (one for each facet),

with each case covered by either Theorem 6.2.12 or Theorem 6.2.14. One

can deduce that if qt has only nondegenerate intersections with JC(M), and

if deg(q°) and deg(q 1 ) are well-defined, then deg(q ° ) and deg(q') have the

same parity if and only if the path qt intersects an even number of strongly

degenerate complementary cones. In fact, later in the section, we will prove

this without the assumption that there are no weakly degenerate comple-

mentary cones relative to M. First, we must tackle the final case in which

a path crosses a weakly degenerate complementary cone. It turns out that

the weakly degenerate cones can be ignored, but it takes a little work to

show this. The following property is what makes weak degeneracy more

complicated.

6.2.17 Lemma. Let M E RT' X n, q E RTh, and ci C f 1, ..., 7a} be given.

Suppose that pos CM (ct) is a weakly degenerate complementary cone and

that q E pos Cm (a) \ £(M). It follows that q is contained in exactly two

facets of posCM(a).

Proof. The proof of this lemma is basically the same as the proof of

Lemma 6.2.15. The only difference is in the final paragraph. In this case,

since pos C(cti) is weakly degenerate, the vector y must have at least one

positive component and at least one negative component. Thus, L n R+

cannot be an infinite ray, so it must be a finite line segment with two

distinct endpoints. It follows that L intersects, at each endpoint, a distinct

facet of R+ and, further, these two facets are the only facets of R+ which

L intersects. The lemma now follows. ❑

Again, let qs be a nondegenerate intersection of the path qt with JC(M).

Before, when we assumed no weak degeneracy existed, we could analyze

the situation around qs on a facet-by-facet basis. Now, if qs is contained in
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a weakly degenerate complementary cone, then qs is in two facets of this

cone. Thus, we would count this cone twice if we analyzed things on a

facet-by-facet basis. This seems to present a problem in our approach to

studying what happens as a path crosses K(M).

This problem can be overcome and, in fact, more general definitions

of reflecting and proper can be given which apply to any facet of any

complementary cone. We will state these definitions after the following

proposition which justifies them.

6.2.18 Proposition. Let M E Rfl" "l and q E RTh be given. Suppose for

some ci C { 1, ... , n} and some i E {1,. . .  , n} that q E pos CM (ci). z \ .L(M).

It follows that there exists a sequence jo, ... ‚m E {i,. . .  , n} and a se-

quence i3o, ... , ß-„z+l C {1,. . .  , n}, for some m > 0, such that:

(a) ßA A ßk+i = {3k}, for k = 0, ... , m;

(b) 3k—i 3k, for k = 1, ... , m;

(c) pos CM (ßk) is weakly degenerate for k = 1, ... , m;

(d) dim(pos CM(ßk).) = n-1 and q E pos CM(ßk).^, , for k = 0,...,m;

(e) ci = ßk and i = jk for some k E {0, ... , m}.

Further, exactly one of the five following cases holds:

(1) (det Mßa ßo )(det M,ß„t +i ßm+i ) >0;

(2) (detMßo ao )(detMßm+r pm+i ) <0;

(3) one of pos CM (/30) and pos CM (/3m+1) is full and the other is strongly

degenerate;

(4) both pos CM (ßo) and pos CM ( /3m+1) are strongly degenerate;

(5) pos Cm(ßo) is weakly degenerate with ßo = ,ß,.,,,+i and jo ^ j,,.

In addition, for all the above cases, the index sets 30 ,... , ,+1 are all

distinct, with the single exception that in case (5) we have ,ßo =

Also, in cases (1)—(4), the m and the sequences of jA and ßk are unique. In

case (5), if we specify that ci = ßo and i = jo, then m and the sequences

of jk and ,ßk are unique.

Proof. For the moment, assume that pos C(ci) is full or strongly degen-

erate. Thus, by condition (e), we need to have ßo = a and jo = i. By

condition (a), we have X31 = A {jo}.
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If pos C(01) is full or strongly degenerate, then one of cases (1)—(4) has

occurred. Since 00 zh i3, the proposition follows in this simple case.

Suppose posC(ß1) is weakly degenerate. Lemma 6.2.17 implies that

there are exactly two possible values of j l which satisfy condition (d). We

already know one of these values, which is jo, but condition (b) forbids

having j i = jo. Thus, we must set j i to the (unique) value satisfying both

conditions (b) and (d). This forces /32 to equal ß i 0 {j}.

WeWe now repeat the above procedure in which, as long as we encounter

weakly degenerate cones, conditions (b) and (d) uniquely determine the

next jk and from jk condition (a) uniquely determines the next /3k+1. Since

there are only finitely many complementary cones, we will eventually either

encounter a cone which is not weakly degenerate or we will encounter the

same cone twice. We now consider, in turn, these two distinct possibilities.

Suppose, before repeating any complementary cone, we encounter 13 72+ 1

such that pos C (13m+ 1) is not weakly degenerate. From the construction

of the sequences of jk and ßk it is clear that the ßk are distinct, that

one of cases (1)—(4) has occurred, and that conditions (a)—(e) are satisfied.

Further, the construction shows the sequences are unique in this regard.

Thus, the proposition is valid in this case.

Suppose, instead, that we encounter a repeated cone. Specifically, sup-

pose we encounter ßm,+l which equals ßk where 0 < k < m. We may

assume that this is the first repetition and, so, 30 i ... , ,-3m are distinct.

If pos C(ß) is not weakly degenerate, then k = 0. Yet, by 6.2.15

and 6.2.16, only one facet of pos C(/3o) can contain q. As

C(^m)•7r = C(ßm+i).y = C(/3o). ,

it follows that j o = j,. Thus, /3m = ßl . Since we encountered our first

repetition with ß,,t+l , then we must have m = 1. However, this implies

that jo = jl which violates condition (b) and, so, we must have violated

the above procedure for constructing the sequence of jk . We conclude that

pos C(ß-,,,,+1) must be weakly degenerate.

Now, assuming pos C(i3, +1) is weakly degenerate, we know that k 0.

By 6.2.17, only two facets of pos C(/3k) can contain q. As

C(Om)•7,,, = C(ßm+1).y = C(/3k).y , ,

it follows that jm equals either jk or .]k_ 1 . Thus, either /3m = ßk+1 or
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ßm = ßk_ 1 . Since we encountered our first repetition with /3m+1 , then

we must have m = k + 1. However, this implies that j,,,, = gm-1 which

violates condition (b) and, so, we must have violated the above procedure

for constructing the sequence of jk . We conclude that the sequence of ßk

cannot repeat. This completes the proof for the case in which pos C(a) is
not weakly degenerate.

We now assume that pos C(ci) is weakly degenerate. We may still,

momentarily, let ßo = a and jo = i. The procedure for generating the

sequences of jk and ßk, as given above, is still valid and still produces

unique sequences.

Suppose, in producing these sequences, we encounter a cone twice.

Specifically, suppose we encounter ß,,,,+1 which equals ßA where 0 < k <m

and, as above, this is the first repetition we encounter. In this case, we

know that pos C(ßm+1 ) is weakly degenerate for otherwise it would not be

a repetition. If k 0, the argument given above is still valid and still leads

to a contradiction. Thus, if there is a repetition, then i o = /3m+1 and,

except for this, all the ßA are distinct. In addition, since ßl and /3m are

distinct, it must be that j o j. We see that case (5) has occurred and

that the proposition is valid in this case.

Suppose, before repeating any complementary cone, we encounter /9m+1

such that pos C(/m,+l) is not weakly degenerate. We may now repeat our

argument, for the case in which pos C(c) is not weakly degenerate, only

this time we will take a to equal /3m+1 and i to equal jm,. We will obtain for

these new values of cti and i the appropriate and unique sequences specified

in the proposition and, further, one of cases (1)—(4) will occur. By reversing

the order of the sequences obtained, we will have sequences as specified in

the proposition for the original values of a and i. ❑

6.2.19 Remark. There is a natural graph-theoretic way of viewing Propo-

sition 6.2.18. From this viewpoint, each complementary cone relative to

M corresponds to a vertex of a graph. In this graph, an edge exists between

two vertices if and only if the two corresponding complementary cones are

adjacent and their common facet contains q. It is not hard to see that if

a vertex of the graph is adjacent to an edge, then either it is adjacent to

exactly two edges and the corresponding cone is weakly degenerate, or it is

adjacent to exactly one edge and the corresponding cone is full or strongly

degenerate. The proposition can thus be deduced from the fact that if
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no vertex of a simple graph is adjacent to more than two edges, then the

connected components of the graph consist of cycles, paths, and isolated

vertices.

6.2.20 Definition. Let M E Rn"n, q E R', a C {1,. . .  , n}, and i E

{1 , . . .‚ n} be given such that q E pos CM(a). I \ £(M). There exist unique

sequences je, ... , j E {1, ..., n} and ßo ... , ß+1 C {1, . . . ‚ n} as de-

scribed in Proposition 6.2.18. We will refer to {pos CM (ßk ).^,k } o as the

family of facets around q which contains pos CM (a).,. There are five dis-

tinct classes into which each family falls: proper, reflecting, absorbing,

isolated, and cyclic. A family is said to be proper, reflecting, absorbing,

isolated, or cyclic, if case (1), (2), (3), (4), or (5), respectively, of Proposi-

tion 6.2.18 holds. At times we may refer to posCM(a). r as being proper,

reflecting, absorbing, isolated, or cyclic around a point q, by which we mean

that the family around q which contains pos CM (a). r is in that class.

6.2.21 Remark. If pos CM (ßk) is not weakly degenerate, then k = 0 or

k = m + 1. Thus, either pos CM (ßo ).tea or pos CM (ßm+ l ).^„ will be the

cone's only facet containing q. If posCM(ßk) is weakly degenerate, then

p05CM(ßk).^ k=1 and posCM(ßk).3- are the cone's only two facets contain-

ing q. (If the class is cyclic, interpret j_ 1 as j, and jrn+i as jo.) Thus,

no complementary cone is associated with more than one family around q.

Therefore, we say that {pos CM (ßk) } ö' are the cones associated with the

facet family.

With regards to our inquiries as to what happens as a path crosses

through a facet, it will turn out that facet families are the important objects

to study and that a family's class is the key fact we need to know.

Looking back on Definition 6.2.10 we see that it corresponds to the

special case in Proposition 6.2.18 where m = 0 and both pos C(ßo) and

posC(ß1) are full. A proper facet, as defined in 6.2.10, is just a proper

family consisting of a single facet. Similarly, a reflecting facet is a reflecting

family consisting of a single facet.

As the reader is asked to prove in Exercise 6.10.12, the fact that Defini-

tion 6.2.10 only deals with single facet families allows us to classify facets

without reference to a q. In general, a given facet may (depending on q)

belong to more than one facet family and, further, the different families to
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which the facet belongs do not all have to be in the same class. This is

demonstrated by the following example.

6.2.22 Example. Consider the matrix

-1 -2 1

M= -1 1 -2

3 0 0

It is not difficult to check that M has no strongly degenerate complemen-

tary cones. (The reader can also check that SOL(q, M) = 0 if we let

q = (0, 0, -1) and, hence, deg M = 0.)
Consider the facet pos C({1, 2, 3}).i. Letting q i = (1, 2, 0), we find

that q 1 E pos C({1, 2, 3}).1 \ L(M). It is simple to check that the fam-

ily of facets around q l containing pos C({1, 2, 3}).1, in order, consists of

pos C({1, 2, 3}).1, pos C({2, 3}).2, and pos C( {3}).. Thus, as ßo = { 1, 2, 3}

and /3m+ 1 = /33 = 0, we conclude that the facet pos C({1, 2, 3}).q is proper

around q'.

Letting q2 = (- 1,3,0), we find that q2 E pos C({1, 2, 3}).t \(M). One

can check that the family of facets around q2 containing pos C({1, 2, 3}).1,

in order, consists of pos C({1, 2, 3}).t, pos C({2, 3}).2, and pos C( {3}).1.

Thus, as ß0 = { 1, 2, 3} and ,3.m+ 1 = ß3 = { 1, 3}, we conclude that the facet

pos C({1, 2, 3}).1 is reflecting around q2 .

The following is another example the reader may find useful in thinking

about the different classes of facet families.

6.2.23 Example. Consider the matrix

-1 -2 -1 1

M= -2 -1 1

0 0 0

As in Example 6.2.22, M has no strongly degenerate complementary cones,

SOL(q, M) = 0 for q = (0,0,-i), and deg M = 0.
Letting q = (2,-i 3 O), we find that q E pos C({1, 2, 3}).1 \ L(M). One

may check that the family of facets around q containing pos C({1, 2, 3}).i,

in order, consists of pos C({1, 2, 3}).1 i pos C({2, 3}).2, pos C({3}).1, and
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pos C({1, 3 }).2. Thus, as ßo = ß4 = /3m+ 1 = { 1, 2, 3}, we conclude that the

facet pos C({1, 2, 3}).i is cyclic around q.

Example 6.2.23 has another interesting property. Since K(M) is closed,

it is always true that K(M) D cl (intK(M)). Exercise 6.10.9 asks the

reader to show K(M) = cl (intK(M)) if M is nondegenerate. Yet, both

Example 6.2.23 and any solution to Exercise 6.10.13 give a matrix M

for which K(M) cl (int K(M)) . In addition, any solution to Exercise

6.10.13 gives an example of an isolated facet.

In Definition 6.2.20 we finally reach a classification scheme for facets

which does not restrict the type of complementary cones that M may have.

We can now usefully describe the facet structure of the complementary

cones for any matrix M. As one might expect, the facet structure of the

complementary cones is invariant under principal pivoting. We make this

statement precise in the following theorem, which is left to the reader as

Exercise 6.10.14.

6.2.24 Theorem. Let cm, /3 C {1,. . ., n}, i E {1,. . .,n}, Me Rn""', and

q E RTh be given. Suppose det Ma ,,	 0 and let (q', M') be the pivotal

transform of (q, M) with pivot M. as given by (2.3.10) and (2.3.11).

(a) If the complementary cone pos CM (ß) is full, weakly degenerate, or

strongly degenerate, then the complementary cone pos CM' (n 0 3)

is, respectively, full, weakly degenerate, or strongly degenerate.

(b) If q E K(M), then q' E JC(M'). If q e G(M), then q' e £(M').

(c) If the facet posCM(3). I is proper, reflecting, absorbing, isolated, or

cyclic, around q, then the facet pos CM, (cm Aß). ß will be, respectively,

proper, reflecting, absorbing, isolated, or cyclic, around q'. ❑

For this classification scheme to be useful in understanding what hap-

pens as a path crosses a facet, we must extend Theorems 6.2.12 and 6.2.14

to deal explicitly with the facet classes of Definition 6.2.20. This is done

in the next result.

6.2.25 Theorem. Let M E R"' >< cm C {1, ... , n}, and i e {1, ... , n}

be given. Consider a path qt : [ 0,1]  —+ Rn in which, for some s e (0, 1),

the point qs E pos CM (cm)., is a nondegenerate intersection of the path with
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K(M). Let H and 8 be as described in Definition 6.2.5. Let B+ and B — be

the two open hemiballs which are the connected components of B(qs, 8) \ H.

Using the notation in Proposition 6.2.18, let {pos CM(ßk). k̂ }k o be the

family around qs containing pos CM (a).,. The following hold.

(a) For k = 0 or k = m + 1, if posCM(ßk) is a full cone, then it will

contain exactly one of B+ and B. Further, the full cone will be

disjoint from the hemiball it does not contain.

(b) For k E {0, . .. , m + 1}, if pos CM (/3k) is a degenerate cone, then

B(qs, 6) n posCM (ßk ) = B(qs, 6) n H.

(c) If pos Cm(a). I is proper around qs, then each of B+ and B — is con-

tained by one of the full cones pos CM(ßo) and pos Cm(ß +l).

(d) If pos Cm (c1).I is reflecting around q8 , then the full cones pos Cm (ßo )
and posCM(ß,,,,+1) either both contain B+ or both contain B.

(e) If pos CM (a). z is not absorbing, then the total contribution to the

local degree made by {pos Cm(ßk) }k ö is constant for all points in

B+ U B.

(f) If pos Cm(a). z is absorbing, then the total contribution to the local

degree made by {pos CM(ßk) }k öl is constant for all points in B+ and

for all points in B— , but differs by one between the two hemiballs.

Proof. As the facets pos C(ßo). ô and pos C(/3m+1). contain q 8, part

(a) can be shown by using the argument at the beginning of the proof of

Theorem 6.2.12. Likewise, part (b) can be shown by using the argument

at the beginning of the proof of Theorem 6.2.14.

Suppose that pos C(ßo) is full. For k = 0,... , m, define C k E RT"Th as

follows: C ̂ k = C(ßk). and C ̂ k = C(ß0).^0 . We claim

sgn ((det C(ßo))(det C k )) = ( -1) k for k = 0, ..., m. (4)

This is obvious for k = 0 as C° = C(ßo). For k = 1, ... , m, we will show

that (det C' -1 )(det C k ) < 0. By induction, the claim will follow.

From 6.2.5(a), we know posC(ßo). ô C H. Thus, as detC(ßo) 0,

we have C(ßo).3 0 0 H. As posC(ßk) is degenerate, we deduce from part

(b) that pos C(/3) C H. (Also, see the beginning of the proof of Theorem

6.2.14.) This implies that pos C(ßk).^ k_l and pos C(i3 ).^, are contained in
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H. Let y = {j _ l , jk} and note that C(ßk_1).!y = C(ßk). ry = C' = C

and that C(ßk_1).^, 1 = C(ßk). j . Thus, if we let H' be the subspace

which is the affine hull of pos CJ'  and L be the subspace which is the

affine hull of posC(ßk). ry , then we may conclude that dimL = n — 2,

dimH'=n-1, andL=HfH'.

As q8 .C(M), we see that qs 0 L. Since qs is in both pos C(ßk).y _ ,
and posC(ßk).N , and since C(ßk_1).j k = C(ßk). Jk and posC(ßk). y C L,

then C(ßk). jk _ 1 and C(3k_1).j k must both be in the component (open

halfplane) of H \ L containing q 8 . Thus, C(ßk).j k  and C(ßk_1).j,k must

be in the same component (open halfspace) of R' \ H'. Therefore, the

sign of the determinant of C k— ' does not change if we replace column 1k,

which is currently C(ßk_i).j k , with the column C(ßk).j k _ l . However, the

matrix we would get after this replacement would simply be the matrix C k

with columns jk_ 1 and jA switched. Thus, (det C' -1 )(det Ck ) < 0, which

proves our original claim that (4) is valid.

Remark 6.2.11, condition (a) of Proposition 6.2.18, and (4), imply

sgn ((det Mpo ßa )(det MO.+1 ß-+j)

= (-1)m+ 1 sgn ((det C(ßo))(det C(ßß,,.+1))) 	 (5)

= — sgn ((det Cm')(det C(ß i))) .

Note that C = C(ßm).jm = C(ß +i).m̂ . If posC(cti).1 is proper,

then (5) implies (det Cm) (det C(ßr,,,+ i)) < 0. This means C(ß0). 0 and

C(ß,n+1).ßm are in different components of R \ H; thus, so are pos C(00)

and pos C(ßr,,,+l ). Hence, part (c) is valid. If pos C(). is reflecting,

then (5) implies (det Cm) (det C(/3,,,,+i)) > 0. This means C(ßo).^ o and

C(/3,,,,+ i ). are in the same component of R \H and, thus, so are pos C(ßo)

and posC(ß,,,,,+ i). Hence, part (d) is valid.

For parts (e) and (f) notice that none of the points in B+ U B — are

in K(M). Hence, local degree is well-defined throughout B+ U B. Also,

all the cones {pos C(ßk)}k i are degenerate, so they contribute nothing to

the local degree of any point in Rn.

If pos C(a).2 is cyclic or isolated, then pos C(ßo) and pos C(ß.,,,,+1) are

degenerate. Thus, they contribute nothing to the local degree of any point

in R"'. It follows that part (e) is true in this case.
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If pos C(ci ).z is proper, then using part (c) we find that each point of

B+ U B — is in exactly one of pos C(ßo ) and pos C(ß-m+1). Since we have

(Mßoßo) (Mßm+lam+l) > 0, then the two complementary cones have the

same index. It follows that part (e) is true if pos C(a). r is proper.

If pos C(ce).r is reflecting, then using part (d) we find that each point of

B+ U B — is either in both pos C(ßo ) and pos C(/3m+ 1) or in neither. Since

we have (Mpo po ) (M,a_+ , )3_+ ,) < 0, then the two complementary cones have

opposite indexes. It follows that part (e) is true if pos C(a). z is reflecting.

Thus, part (e) is true entirely.

If pos C(a).1 is absorbing, one of pos C(ßo) and pos C(/3-,,,,+1 ) is full and

the other degenerate. The degenerate cone contributes nothing to the local

degree of any point in R. The full cone contributes ±1 to all points in the

hemiball it contains and nothing to all points in the other hemiball. Part

(f) now follows. ❑

6.2.26 Remark. Notice that H and S (and, hence, B+ and B — ) are ob-

tained via Theorem 6.2.4 and Definition 6.2.5 and, thus, they are deter-

mined only by the point q8 . Therefore, the same H, &, B+, and B — may

be used for any facet containing q3 , not just pos CM (a). 2 .

Theorem 6.2.25 is, at last, the basic tool we need to examine what

happens at the nondegenerate intersection of a path and a facet. As an

appropriate end to this section, we will now prove two theorems which are

important in understanding the geometric nature of the LCP and both may

be considered corollaries of Theorem 6.2.25. The first theorem, to which

we have been alluding throughout this section, concerns the parity of the

set SOL(q ; M) as q varies. The second theorem is a stronger version of

Theorem 6.1.17.

6.2.27 Theorem. Let M E R"lxf be given. Let qt be a path such that

all the intersections of q t with K(M) are nondegenerate. Suppose q0, ql

.(M) and, so, deg m (q° ) and degm (q') are well-defined. The following are

then equivalent:

(a) degm (q°) and deg(q 1 ) have the same parity,

(b) SOL(q°, M) and SOL(q', M) have the same parity,

(c) There are an even number of pairs (s, C), where s E (0, 1), C is a

strongly degenerate complementary cone relative to M, and qs E C.
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(d) There are an even number of pairs (s, F), where s E (0, 1) and F is
an absorbing facet family around qs.

Proof. (a) (b). By 6.1.4, deg(q° ) is the sum of the indexes of all

(w, z) which solve (q°, M). Since I ind(w, z) = 1 for any solution, then

deg(q°) and SOL(q°, M) have the same parity. Similarly, deg(q 1 ) and

SOL(q', M) have the same parity.

(c) (d). By Corollary 6.1.9 and Lemma 6.2.15, if qs is in a strongly

degenerate cone, then it must be in a unique facet of the cone. By Propo-

sition 6.2.18, every facet containing qs belongs to a unique facet family

around q 8 . If the family is absorbing, then exactly one of the facets in the

family is part of a strongly degenerate cone. If the family is isolated, then

exactly two of the facets in the family are part of a strongly degenerate

cone and, from 6.2.18 these two strongly degenerate cones are distinct. In

all other cases, no facets of the family are from strongly degenerate cones.

Thus, for each s E (0, 1), the number of strongly degenerate cones contain-

ing q3 has the same parity as the number of absorbing families containing

q5 . In the next paragraph we will show that qs is contained in K(M) for

only finitely many values of s E (0, 1). Thus, (c) and (d) are equivalent.

(a) (d). From 6.2.5, if q8 E K(M), then there exists an open in-

terval around s such that if qt E K(M) for t in the interval, then t = s.

Because K(M) is closed, if qs (M), then there exists an open interval

around s such that q t V K(M) for t in the interval. Thus, by virtue of

its compactness, the interval [ 0, 1] may be covered by finitely many open

intervals each of which contains at most one point s for which qs E K(M).

Hence, there are finitely many such points. Let {qsk}k 1 be the points

of the path qt which intersect K(M). It is not restrictive to assume that

0<51<•••<s?-' < 1.

Fix k E {2, ... , m} and consider those points of the path qt for which

t E (sk_1 i sk). None of the points are in K(M). By continuity, all of the

points are in the same set of complementary cones. Thus, all of the points

have the same well-defined local degree. A similar statement is true if we

had taken t E [ 0, si) or t E (sm , 1]. We must now take a look at what

happens to the local degree in the neighborhood of a q.

Fix k E {1, . .. , m}. Every facet containing qsk is in a unique facet

family around qsk. In light of Remark 6.2.26, consider the hemiballs B+

and B- associated with q81'. Let pos C(a) be a complementary cone.
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If pos C(n) contains all of B+ U B- , or none of B+ U B- , then the

contribution to the local degree made by posC(a) is constant over all

points in B+ U B.

If pos C(cv) contains some, but not all of the points in B+ U B - , then

Theorem 6.2.4 implies that posC(cti) has a facet containing qsk. Thus,

pos C(ci) is associated with a facet family around qsk. Therefore, we deduce

from parts (e) and (f) of Theorem 6.2.25 that the local degree is constant

for all points in B+ and for all points in B- and, further, the parity of the

local degree is the same for the two hemiballs if and only if there are an

even number of absorbing facet families around qSk . In light of everything

we now know, the theorem follows. ❑

6.2.28 Theorem. Let M E Rf"Th be given. Let S be the set of all points

q (M) for which there exists, relative to M, a family of facets absorbing

around q. We then have deg(q) = degm (q') for any q, q' e Rn \ K(M)

that belong to the same connected component of Rn \ cl S.

Proof. Suppose there were a path qt in RTh\clS between q and q' such that

all intersections of the path and K(M) were nondegenerate. The theorem

would then follow by using the proof of (a) (d) in Theorem 6.2.27. The

only change needed is in the last paragraph of that proof. Since no facet

family could be absorbing around qsk, only part (e) of Theorem 6.2.25 is

needed. We would deduce that the local degree is constant for all points in

B+ U B- and, so, Theorem 6.2.28 would follow. Therefore, we now show

that such a path exists.

Since Rn \ cl S is open, the connected components are path connected.

Thus, a path qt between q and q' does exist within Rn \ cl S. However, it

might be that not all the intersections of the path with K(M) are nonde-

generate. However, we can find an acceptable path using q t .
The path q t is compact, thus there exists a finite collection of open balls

within R' \ cl S such that the union of these open balls contains the path.

It is not hard to see that, within this collection, there exists a sequence of

open balls, B1, ..., B,,,,, such that q E B1, q' E B,,,,,, and Bk_1 n Bk ^ 0
for all k = 2, ... , m. Invoking Theorem 6.1.12, we may assume that for

each k E {l, ..., m} there is a pk E Bk \ K(M). In fact, we will let p i = q

and p R = q'. We will now show that for each k E {2, ..., m} there exists

a path in Rh \ clS between pk -1 and pk such that all intersections of the
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path and K(M) are nondegenerate. It follows that if we sequentially take

the composition of all these paths we will arrive at a path between q and

q' with the properties we desire.

Fix k E {2, ..., m}. We may find an r E Rn and an E > 0 such

that B(r, z) C (Bk_ 1 f1 Bk) \ K(M). By Theorem 6.2.7, there exists

r', r" E B(r, e) such that all the intersections of the paths associated with

£ [ pc —i, r' ] C Bk_ i and [ r", pk ] C Bk are nondegenerate. As £ [ r', r" ]

is contained in B(r, e), its path does not intersect K(M). Thus, if we se-

quentially take the composition of the paths of £ [ pk-1 r' ], L [ r', r" ], and

t' [ r", pk ], we obtain a path from pk-1 to pk in which all intersections with

K(M) are nondegenerate. ❑

If there exists a family of facets absorbing around q, then q is contained

in a strongly degenerate cone. Since complementary cones are closed, the

set cl S given in Theorem 6.2.28 is contained in the union of the strongly

degenerate complementary cones. Thus, Theorem 6.2.28 is a stronger

version of Theorem 6.1.17.

An important point to notice is that, aside from the definitions, we have

not used any of the results from degree theory to prove Theorem 6.2.28. In

fact, we have not used any degree-theoretic results in this section. Yet, we

have come full circle and shown a key degree-theoretic result via a different

path.

6.3 The Geometric Side of Lemke's Method

In Section 4.4 we studied Lemke's method for solving the LCP. In that

section, the method was presented from the point of view of pivotal algebra.

In this section, we will look at the geometric side of Lemke's method.

Suppose we wish to use Lemke's method to solve the LCP (q, M). Look-

ing back at Section 4.4, we see that the essential idea was to select a fixed

vector d such that for some suitably large value of z0 the vector q + dz0

is nonnegative. This gives us the trivial solution (w, z) = (q + dz0, 0) for

the LCP (q + dzo, M). The object of the method is to reduce zo to zero

while, at all times, keeping track of a solution to the LCP (q + dz0, M).

Of course, we would wish this process of keeping track of a solution to be

relatively simple and quick. The process used is basic pivotal algebra but,
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as nothing is free, the corresponding penalty for simplicity and quickness is

that we cannot guarantee that zo will decrease monotonically or even that

the method, in general, will find a solution if one exists. Thus, as seen in

Section 4.4, we will do well to study the behavior of Lemke's method.

From the above description, one is immediately struck by the similarity

of Lemke's method to homotopy and path-following methods. In these

latter methods, one works with a mathematical problem which has the key

property that if the parameters of the problem change only slightly, then

a solution to the problem before the change will be close to a solution of

the problem after the change. One can therefore start with the parameters

set to values for which a solution is known and then gradually change

the parameters to the values desired. If the parameters are changed in

small increments, it should be possible to keep track of a solution since, by

the aforementioned key property, after each change of parameters a new

solution will be close to the old solution. In this way we start with a simple

version of the problem and continuously (homotopically) change it to the

version we wish to solve. At the same time, the solution continuously

(homotopically) changes. If there is only a single parameter, then the

continuously changing sequences of problems and solutions each form a

path and, so, the term path-following is often applied to these methods.

In Lemke's method, the path of problems which we follow is particularly

simple. If we consider the ray {q + dz0 : zo > 0}, then the path is just

those linear complementarity problems (q', M) with q' somewhere along

the ray. On the other hand, we do not uniformly move along the ray in

one direction since the parameter z0 is not guaranteed to monotonically

decrease. In this sense, Lemke's method is not a path-following method.

Yet, while the sequence of problems which Lemke's method follows may

repeat, the corresponding sequence of solutions it follows does not repeat.

That is, under appropriate nondegeneracy assumptions, if Lemke's method

backtracks and repeats a value of z0 , then the current solution for the LCP

(q + dzo , M) will be different from any previous solution encountered for

that value of zo . In this sense, Lemke's method does follow a path, but it

is the path of solutions, not the path of problems.

We will now describe, using geometry, a procedure for solving the LCP

(q, M) which we will later show is actually Lemke's method. To develop
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this procedure we will use the previously mentioned ideas which underlie

homotopy methods. Since the homotopy paradigm is inherently a para-

metric approach, the following development can be seen to parallel and

extend the subsection on the parametric form of Lemke's method in Sec-

tion 4.5. Indeed, the algorithm we will develop (6.3.1) is just a geometric

way of describing Algorithm 4.5.4. Of course, both of these algorithms are

equivalent to Lemke's method (4.4.5).

Geometrically, we solve the LCP (q, M) by determining a complemen-

tary cone relative to M which contains q. We do not initially know of such

a cone but, following the paradigm of the homotopy methods, we will start

with a q such that a complementary cone containing q will be obvious. If we

take d E R' to be any fixed positive vector, it is clear that the nonnegative

orthant will contain q + dz0 if z0 > 0 is large enough. Thus, letting z0 take

on some appropriate large positive value, the vector q + dz0 E pos C(0) can

be used as q.

We will now designate the nonnegative orthant as the distinguished

complementary cone and attempt to decrease z0 until it becomes zero. If

we can decrease z0 to zero without causing q + dz0 to leave the nonnegative

orthant, then we have solved the LCP (q, M). Otherwise, we stop decreas-

ing z0 at the point where q + dzo would leave the nonnegative orthant if zo

were decreased any further.

We have now reached the boundary of the distinguished complementary

cone. As in Section 4.4, we assume nondegeneracy. In our current context,

this means that q + dzo is never in G(M) for any z0 > 0. Thus, as q + dzo

is now in the boundary of the distinguished cone, it must be in a unique

facet of the cone.

Any further change in z0 will cause q + dz0 to leave the distinguished

cone. Following the paradigm of the homotopy methods, we wish always to

know of a complementary cone containing q + dzo. Therefore, a convenient

way of continuing is to realize that the (distinguished) facet containing

q + dzo must be common to the distinguished cone and some other com-

plementary cone. This other complementary cone is unique and easily

determined. We will now let this other cone be the new distinguished cone.

Assuming, for the moment, that the new distinguished cone is full, there is

some direction (increasing or decreasing) in which we can slightly change

zo and have q + dzo remain in the new distinguished cone. We now move
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z0 as far as we can in this direction under the constraint that q + dz0 must

not leave the new distinguished cone. If z0 can be decreased to zero, then

the new distinguished cone contains q and we have solved the LCP (q, M).

If zo can be increased indefinitely, then our procedure terminates without

finding a solution to the LCP (q, M). Otherwise, zo reaches some finite

positive value such that any further change in z0 would cause q + dz0 to

leave the distinguished cone. We have now reached the position we were in

at the beginning of this paragraph and the whole procedure repeats.

We have now described the essential step in the geometric procedure

for solving the LCP (q, M). Although we made the assumption that the

new distinguished complementary cone was nondegenerate, this was only

for ease of exposition and allowed us to concentrate on the key ideas. We

now formally describe the procedure without making this restriction.

6.3.1 Algorithm. (Lemke)

Step 0. Initialization. Given the LCP (q, M), we select d > 0 so that

all the intersections of )((M) with the open ray {q + dzo :

zo > 0} are nondegenerate. If q > 0, then stop: z = 0 solves

(q, M). Otherwise, set z0 equal to the unique (positive) value

for which q + dzo is in a facet of the nonnegative orthant. Sup-

pose pos C(o). is the (unique) facet containing  q + dz0. Set the

distinguished cone to be pos C({r }) and set the distinguished

facet to be posC( {r}).r .

Step 1. Moving through the distinguished cone. There is a distinguished

cone pos C(cti). This cone has a distinguished facet pos C(a).z .

This facet contains the point q + dzo for the current value of z0.

• If the distinguished cone is strongly degenerate, then stop.

The procedure ends on a secondary ray without yielding a

solution.

• If the distinguished cone is weakly degenerate, then there

is a unique j i such that pos C(oti). contains q + dz0

for the current value of z0. (See Lemma 6.2.17.) Set

the distinguished cone to be posC(cti A {j }) and set the

distinguished facet to be pos C(a A { j }).j. Return to the

beginning of Step 1.

 



548	 6 GEOMETRY AND DEGREE THEORY

• If the distinguished cone is full, then there is a unique

direction (either increasing or decreasing) in which we can

slightly change z0 and have q + dz0 remain in the cone. Set

the value of zo as far as possible in this direction with the

constraint that q + dz0 must remain in the distinguished

cone.

Step 2. Changing cones. The only thing which has changed since the

beginning of Step 1 is the value of zo.

• If z0 = oo, then stop. The procedure ends on a secondary

ray without yielding a solution.

• If zo < 0, then the distinguished cone contains q. Thus, a

solution to (q, M) has been found.

• If 0 < zo < oo, then q + dz0 is currently in a facet of

the distinguished cone. Suppose this facet is pos C(a).^.

Notice that we must have j i. Set the distinguished

cone to be posC(cti A {j}) and set the distinguished facet

to be pos C(cti A {j}).^. Return to the beginning of Step 1.

As it happens, for each almost complementary basis generated by Al-

gorithm 4.4.5 we can associate a complementary cone and a facet of that

cone. First, for i = 1, ... , n, associate the variable zi with the vector —M.i,

and associate the variable wi with the vector I.i. Now, given an almost

complementary basis generated by Algorithm 4.4.5, consider the n —1 ba-

sic variables other than zo. The columns associated with these variables

generate a facet. Now consider the column associated with the driving

variable. This column, together with the columns of the facet, generates a

complementary cone. We will associate this cone and facet with the basis.

In this way, Algorithm 4.4.5 can be thought of as generating a sequence of

cones and facets as it generates almost complementary bases. The following

shows that Algorithm 6.3.1 is just a geometric description of Algorithm

4.4.5.

6.3.2 Theorem. Given an LCP (q, M) and a d> 0 as specified in Step 0

of Algorithm 6.3.1, the sequence of distinguished cones and facets gen-

erated by Algorithm 6.3.1 will be identical to the sequence of cones and
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facets generated (as specified above) by Algorithm 4.4.5. In addition, the

sequence of values taken by zo is the same in both algorithms.

Proof. Each tableau generated by Algorithm 4.4.5 represents the system

w = q + dz0 + Mz. Also, the nondegeneracy assumption on d, made in

Step 0 of 6.3.1, implies that a distinguished facet will contain q + dz0 for

exactly one value of zo . Thus, the value given to z0 by setting to zero all

the nonbasic variables of a tableau must be the unique value of zo for which

the facet associated with the tableau contains q + dz0 . The last assertion

of the theorem will now follow from the rest of the theorem.

If q > 0, then both algorithms stop in Step 0 with the solution z = 0. If

q 0, let zo be the smallest value of zo for which q +dzo is nonnegative. We

have zo > 0 and a unique index r such that (q + do) r = 0. In Algorithm

6.3.1, in Step 0, we set the distinguished cone and facet to be pos C({r })

and pos C({r}). r , respectively. Analogously, in Algorithm 4.4.5, the first

pivot will be (zo , wr). The basis is now w 1 , ... , Wr_ 1 i z0 , Wr+l , ... , wn and

the driving variable is zr.. Thus, both algorithms start in the same fashion.

We now proceed inductively. Suppose the cone and facet associated

with the current tableau of 4.4.5 is also the current distinguished cone

and facet of 6.3.1. We must show that both algorithms, at the end of

the current iteration, either stop in the same fashion or produce the same

cone and facet for the next iteration. We will go through the possible

ways in which Algorithm 4.4.5 can end the current iteration and, for each

one, see what the corresponding action of Algorithm 6.3.1 would be. For

notation, let the current distinguished cone and facet be pos C(c) and

pos C(a).1 , respectively. We may assume the current value of z o is positive.

Without loss of generality, we may assume the driving variable is z z . Let

rnoi represent the element in the current tableau in the row of z0 and the

column of zz .

Suppose zi is unblocked in Step 1 of 4.4.5 and suppose moz = 0. In this

case, as we increase z2 to infinity, we obtain from the tableau an infinite ray

of solutions to the LCP (q + dz0 , M), where the value of z0 remains fixed.

As q + dzo E pos C(ci) for this value of zo , Theorem 6.1.27 implies that

pos C(cti) is strongly degenerate. We see that both algorithms end with a

secondary ray.

Suppose zz is unblocked in Step 1 of 4.4.5 and suppose no > 0. In this

case, by increasing zi , we may obtain from the tableau a solution to the
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LCP (q + dz0, M) for arbitrarily large zo. These solutions are contained in

pos C(a). Thus, we may make zo arbitrarily large and q+dz0 will remain in

pos C(a). The nondegeneracy assumption on d implies that no two points

of the ray {q + dz0 : z0 > 0} can be in the same facet of pos C(cr), thus

increasing zo must move q+dzo into the interior of pos C(a) and, hence, the

cone must be full. Therefore, 6.3.1 will terminate in Step 2 with zo = oo.

In this case, we see that both algorithms end with a secondary ray.

Suppose zi is blocked in Step 1 of 4.4.5 by zo. Thus, z0 starts out

positive and decreases to zero as we increase z. Therefore, starting with

q + dz0 contained in pos C(cr).Z , we may decrease zQ slightly and remain

in posC(a). As before, we can show that posC(a) must be full. Thus, in

Step 1 of 6.3.1, we would end up decreasing zo. Further, we will find that

z0 can be decreased to a nonpositive value and still have q + dzo remain in

pos C(a). Therefore, 6.3.1 will terminate in Step 2 with z0 < 0. In this

case, we see that both algorithms end with a solution to (q, M).

Suppose z2 is blocked in Step 1 of 4.4.5 by a variable other than z0.

We may assume without loss of generality that this other variable is w3 .

It follows that the ray {q + dzo : zo > 0} intersects pos C(a) not only in

the facet posC(u). Z but also in the facet pos C(o). and, moreover, the

value of za for which pos C(ce)., contains q + dz0 is positive. By convexity

and by the nondegeneracy assumption on d, the ray {q + dzo : zo > 0}

intersects only these two facets of pos C(o). Furthermore, the intersection

of the ray and pos C(c) must be a (possibly degenerate) line segment with

one endpoint in pos C(oti).1 and the other endpoint in pos C(a).3 . Clearly,

the value of zo is always positive along this line segment.

Keeping this geometry in mind, we examine the behavior of Algorithm

6.3.1. If no 0, then the intersection of pos C(c) and {q+dzo : zo > 0} is

a line segment of positive length. As before, we may conclude that pos C(o )

is full. Thus, in Step 1 of 6.3.1, we would move zo in some direction. If

rnoi > 0, then we would increase zQ until q + dz0 was in pos C(a).3_ If

nnoi < 0, then we would decrease zo until q + dzo was in pos C(a).j . In

both cases we reach Step 2 of 6.3.1 with 0 < z0 < oc. In addition, the

distinguished cone and facet become pos C(a A {j}) and pos C(a A {j}).^,

respectively.

If moi = 0, then the point q + dz0 does not change as we increase zi.

Therefore, this point is contained in both pos C(cti).1 and pos C(o ).1 and, by
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the nondegeneracy assumption on d, this point is in the relative interior of

each facet. We conclude, that pos C(a) must be degenerate and, by Lemma

6.2.15, it is weakly degenerate. Thus, in Step 1 of 6.3.1 we would set the

distinguished cone and facet to be posC(cti A {j}) and posC(a A {j}).1 ,

respectively.

In Algorithm 4.4.5, in all cases, we would pivot on (zi, w^) to obtain

posC(cti A {j}) as the new cone and posC(a 0 {j }).^ as the new facet.

Hence, we have shown that Algorithms 4.4.5 and 6.3.1 follow the same

sequence of cones and facets. ❑

Earlier in this section it was mentioned that Lemke's method follows

a path of solutions. This path can be seen within the proof of Theorem

6.3.2, but we will now explicitly describe it.

In Algorithm 4.4.5, we view Step 0 as follows. We start with z0 = o0

and all other nonbasic variables equal to zero. Clearly, all basic variables

acquire the value of infinity. We drive down the value of zo until it is

blocked, i.e., until zo or a basic variable reaches zero. As we decrease

z0, for each value of zo, the basic variables give us a solution to the LCP

(q +dzo, M). In this initial tableau the solution given for each zo is (w, z) =
(q+dzo, 0), and this ray of solutions is the beginning of the path of solutions.

As we discussed earlier in this section, we view Step 0 in Algorithm

6.3.1 as follows. The nonnegative orthant is the initial distinguished cone,

and we start by decreasing z0 from infinity. In this way the algorithm

follows the solutions of the LCP (q + dz0, M) corresponding to the non-

negative orthant. This is analogous to the way in which we just described

Step 0 of 4.4.5. We see that the path of solutions starts out with the same

primary ray of solutions in both 4.4.5 and 6.3.1.

In general, for Algorithm 4.4.5, we have a tableau and a driving vari-

able. As we increase the driving variable from zero, for each value it takes

on, the values acquired by the basic variables (including  ZO) and the value

of the driving variable give a solution to the LCP (q + dzo, M). From

the relationship between tableaus and distinguished cones, this solution

corresponds to the distinguished cone associated with the tableau. Thus,

Lemke's method follows a path of solutions; not surprisingly, Algorithms

4.4.5 and 6.3.1 follow the same path.
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6.3.3 Example. Consider

M= [	
] , q= I	 , and d

—4 2	
—1 	 I 1 J .

The complementary cones and the ray {q+dzo : zo > 0} are given in Figure

6.1. As in Section 1.3, we label the (column) vectors 1.1, 1.2, —M. 1 , and

as 1, 2, 1, and 2, respectively. Again, the complementary cones are

indicated by arcs around the origin. The path of solutions which Lemke's

method follows is shown in Figure 6.2. Each point along the path represents

the vector w — z where (w, z) is a solution to (q + dz0 , M) for some value

of z0 > 0. In both algorithms we imagine that z o starts at positive infinity.

When Algorithm 4.4.5 processes the LCP (q, M) it starts with the

initial pivot (z0 , w 1). We find that zo = 3, z = (0, 0), and w = (0, 2).

We are now at point s in Figures 6.1 and 6.2. The next pivot is (z1 , w2 ).

We find that zo = 5, z = (1, 0), and w = (0, 0). We are now at point r

in Figures 6.1 and 6.2. The final pivot, which brings us to a solution, is

(zo , z2 ). We find that zo = 0, z = ( 6, 6), and w = (0, 0). We are now at

point q in Figures 6.1 and 6.2.

When Algorithm 6.3.1 processes the LCP (q, M), it starts by setting

z0 = 3. We are at the point s in Figures 6.1 and 6.2. The distinguished cone

is pos C({1}) and the distinguished facet is pos C({1 }).1. We next find the

largest value of z0 such that q+dzo remains in pos C({1}). This occurs when

z0 = 5. We are at the point r in Figures 6.1 and 6.2. The distinguished cone

is pos C({1, 2}) and the distinguished facet is pos C({1, 2}).z. We next find

the smallest value of zo such that q + dzo remains in pos C({1, 2}). This

occurs when zo = —1, thus we set zo = 0. We are at the point q in Figures

6.1 and 6.2. We have found that the complementary cone pos C({1, 2})

contains q and from this we may obtain a solution to (q, M).

6.3.4 Example. Consider

1 —2	 r-21	 r1l
M=
	

q— I 
	

and d=
—1	 1	

1 	 1 1 J .
The complementary cones and the ray {q + dzo : z0 > 0} are given in

Figure 6.3. The path of solutions which Lemke's method follows is shown

in Figure 6.4. (Figures 6.1 thru 6.6 are not scaled identically.)
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When Algorithm 4.4.5 processes the LCP (q, M) it starts with the

initial pivot (zo, w i ). We find that zo = 2, z = (0, 0), and w = (0, 1). We

are now at point s in Figures 6.3 and 6.4. The next pivot is (z 1 , w2 ). We find

that zo = 2 , z (2 , 0), and w = (0, 0). We are now at point r in Figures

6.3 and 6.4. The driving variable is now z2 and it is unblocked. Lemke's

method terminates without producing a solution. (In this example, the

LCP has no solution.)

When Algorithm 6.3.1 processes the LCP (q, M) it starts by setting

zo = 2. We are at the point s in Figures 6.1 and 6.2. The distinguished

cone is posC({1}) and the distinguished facet is posC({1}).. We next

find the smallest value of zo such that q + dz0 remains in pos C({1}).

This occurs when zo = 2. We are at the point r in Figures 6.1 and

6.2. The distinguished cone is pos C({1, 2}) and the distinguished facet

is pos C({1, 2 }).2. We next find the largest value of z0 such that q + dz0
remains in pos C({1, 2}). There is no largest value, i.e., zo = co. Thus, as

seen in Figure 6.4, the algorithm ends with a secondary ray.

6.3.5 Example. Consider

M= q= I  , and d
—1 1 

1  I 1 .

The complementary cones and the ray {q + dz0 : z0 > 0} are given in

Figure 6.5. The path of solutions which Lemke's method follows is shown

in Figure 6.6.

The description of what happens when Algorithm 4.4.5 processes this

LCP (q, M) is exactly the same as in Example 6.3.4.

The description of what happens when Algorithm 6.3.1 processes this

LCP (q, M) is the same as in Example 6.3.4 except for the very end.

When the point r is reached we find that the new distinguished cone,

pos C({1, 2}), is strongly degenerate. As before, Algorithm 6.3.1 halts on a

secondary ray. This ray cannot be seen in Figure 6.5 as the value of zo does

not change once the strongly degenerate cone is reached. However, for this

particular value of z0 , we see in Figure 6.6 the ray of solutions to (q+dzo, M)

that are associated with the strongly degenerate cone pos C({1, 2}).

In Section 4.4 we introduced the almost complementary path of feasible

solutions that Lemke's method follows as it processes the LCP (q, M). The
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path of solutions discussed here is just a different geometric realization of

the almost complementary path. For example, in Figures 6.2, 6.4, and 6.6,

each point x along the path corresponds to the solution (w, z) = (x +, x - )

of the LCP (q + dz0, M) for some value of z0. As such, we may map x onto

the point (x+, zo, x- ) of the almost complementary path. This mapping is

a bijection between the path of solutions and the almost complementary

path. Assuming d is selected as in Step 0 of 6.3.1, the reader may verify

that this mapping is a continuous bijection for any LCP (q, M).

In the proof of Theorem 4.4.4, we noted that the almost complementary

path never encounters the same point twice. Thus, the same must be true

for the path of solutions. This means that the geometry seen in Figures 6.1,

6.3, and 6.5 is quite different from the geometry seen in Figures 6.2, 6.4, and

6.6. For example, in Figure 6.1, as Lemke's algorithm processes the LCP,

z0 takes on every value in the open interval (3, 5) three times. In Figure

6.2 there is no repetition. Each time z0 attains a given value, the current

solution to (q + dz0, M) is different. The geometry in Figure 6.1 depicts

the linear complementarity problems (q + dz0, M) which are encountered

during Lemke's algorithm. These may repeat. The geometry in Figure

6.2 depicts solutions to the linear complementarity problems (q + dzo, M)
which are encountered during Lemke's algorithm. These do not repeat.

Notice that Figures 6.4 and 6.6 are almost identical. Both figures show

Algorithm 6.3.1 terminating with a secondary ray. Yet, Figures 6.3 and

6.5 are quite different. In Figure 6.3 we have z0 increasing without bound

as q + dzo moves to infinity along a ray within the full cone pos C({1, 2 }).

In Figure 6.5 we have z0 staying fixed at the value 2. In some sense

q + dzo is "absorbed" by the strongly degenerate cone pos C ({ 1, 2 }). Thus,

Algorithm 6.3.1 makes the distinction of whether a terminating secondary

ray is associated with a full cone or a strongly degenerate cone. This is not

a distinction made by Algorithm 4.4.5.

In Step 0 of Algorithm 6.3.1 we impose a nondegeneracy requirement

on d. This implies the nondegeneracy of all basic solutions of (4.4.5) having

zo > 0. Thus, if we require Lemke's method to select zo as the blocking

variable when that is possible, then all the results in Section 4.4 concerning

4.4.1 and 4.4.5 will still hold under the nondegeneracy requirement of

6.3.1. In theory, this nondegeneracy assumption is not at all restrictive.
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6.3.6 Proposition. Given an LCP (q, M), a vector d> 0, and a e > 0,

there exists a d > 0, with d — d < e, such that all the intersections of

K(M) with the open ray {q + dzo : zo > 0} are nondegenerate.

Proof. The affine hull of any facet of any complementary cone has dimen-

sion at most n-1 (Proposition 2.9.14). Thus, the complement of the union

of all such affine hulls is an open and dense set in Rn (Proposition 2.9.17).

Hence, there is a closed ball B in this complement such that B C R++ and

— d( < r for all d E B. Since B is in the complement, for any d E B,

the ray {q + dzo : z0 > 0} intersects each facet in at most one point.

It now follows that for some zo > 0 the set S - {q+dzo : z0 > zo , d E B}

does not intersect any facet of any complementary cone. Clearly, the set

S has a nonempty interior and, so, Theorem 6.2.7 implies there is a point

q E S such that all intersections of the line segment t [ q, q ] with K(M)

are nondegenerate. If we take d to be the point in B for which the ray

{q + dzo : z0 > 0} contains q, then all the intersections of this ray with

K(M) are nondegenerate. ❑

In practice, one would not know in advance whether a particular d satis-

fied the nondegeneracy requirement of Step 0. However, Proposition 6.3.6

indicates that degeneracy can be resolved using techniques that perturb d.

Algorithm 6.3.1 and Theorem 6.3.2 may give the reader a sense of

déjà vu. This is because several of the concepts involved have already

been used in the material of the previous section when we were discussing

the classification and properties of the different types of facets. In fact,

historically, the behavior of Lemke's method has been an impetus and a

guide in much of the work on the classification of facets.

The next result describes the connection between Lemke's method and

the classification of facets. The reader should find that the statement and

proof of the following theorem follow quite naturally from the material in

Section 6.2 and our discussions here.

6.3.7 Theorem. Let the LCP (q, M) be given along with a positive vector

d satisfying the nondegeneracy condition of Step 0 in Algorithm 6.3.1.

Suppose we process this LCP using Algorithm 6.3.1 and that at some

point the full cone pos C(a) is the current distinguished complementary

cone at the beginning of Step 1. We will find:
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(a) Step 1 decreases zo if ind(pos C(a)) = 1, and Step 1 increases zo if

ind(pos C(a)) = —1.

Let zo be the value zo is set to in Step 1. Suppose that 0 < zo < oc. Let

pos C(a).1 be the next distinguished facet obtained in Step 2. We will find:

(b) The facet pos C(a). 2 is proper, reflecting, or absorbing around q +dzo.

(c) If pos C(a). 1 is absorbing around q + dzo, then the value zo remains

fixed at zo throughout the rest of the algorithm and, further, the

algorithm eventually encounters a strongly degenerate cone and ter-

minates with a secondary ray.

(d) If pos C(a). z is proper around q + dzo, then the value of zo will be

changed at least once more by the algorithm. If, in Step 1, zo in-

creased (decreased), then the next time zo is changed it will again be

an increase (decrease).

(e) If pos C(a). z is reflecting around q + dzo, then the value of zo will

be changed at least once more by the algorithm. If, in Step 1, zo

increased (decreased), then the next time zo is changed it will instead

be a decrease (increase).

Proof. From the nondegeneracy assumption, we know q + dzo is not in

L(ltI). Thus, with q + dzo taking the place of q, there exist sequences

^o, ... , jm, and 3o, ... , /3m+i , as described in Proposition 6.2.18. In addi-

tion, from Remark 6.2.21, we know a = ßo and i = jo.

Using properties (a) —(e) of Proposition 6.2.18, we make the key ob

-servation that Algorithm 6.3.1 will generate at least m + 1 additional

distinguished complementary cones after posC(a) and these cones will be

pos C(131 ),... ' pos C(31) in exactly that order. We will now see that the

theorem is a simple consequence of this key observation.

Since pos C(ßl), ... , pos C(13m) are weakly degenerate, we note that

Algorithm 6.3.1 will keep zo = zo while it moves along this sequence of

distinguished cones. Thus, the next possible time for when the algorithm

will change the value of zo is when pos C(ßm+ l) is the distinguished com-

plernentary cone.

Since pos C(a) is full, pos C(a).1 cannot be isolated or cyclic around

q + dzo. If pos C(a).2 is absorbing, then pos C(,+1 ) must be strongly
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degenerate. Hence, Algorithm 6.3.1 keeps z0 = zo until pos C(ßm+l) be-

comes the distinguished cone. At this point the algorithm terminates with

a secondary ray.

If pos C(a).z is proper (reflecting), then pos C(a) and pos C(O,,,+i) lie

on opposite sides (the same side) of pos C(a).^. Thus, for q + dzo to remain

in pos C(ß-,,,,+1), zo must move in the same direction (the opposite direction)

as it had been moved when pos C(a) was the distinguished cone. All parts

of the theorem have now been shown except for part (a).

As mentioned previously in this section, the nonnegative orthant is the

initial distinguished cone and we start by decreasing z0 from infinity. Note,

ind(pos C(o)) = 1. By definition, if pos C(cti).z is proper (reflecting), then

pos C(c) and pos C(ßm,+i) will have the same index (opposite indexes).

Thus, using parts (d) and (e), part (a) follows by induction. ❑

6.3.8 Remark. Considering the behavior of Lemke's method, as described

in Theorem 6.3.7, the reader should now understand the meaning behind

the terminology of proper, reflecting, and absorbing facets.

6.3.9 Corollary. Let the LCP (q, M) be given along with a positive vector

d satisfying the nondegeneracy condition of Step 0 in Algorithm 6.3.1.

Suppose we process this LCP using Algorithm 6.3.1. If M E Pa , then the

value of zo is never increased by the algorithm.

Proof. In 6.3.1, if the current distinguished cone is degenerate, then the

value of z0 does not change. If the index of the current distinguished cone

is 1, then part (a) of Theorem 6.3.7 implies that Algorithm 6.3.1 will

decrease zo in Step 1. These are the only two possibilities if M E P0 . ❑

As can be seen from Theorem 6.3.7, there are strong ties between Al-

gorithm 6.3.1 and the material presented in Sections 6.1 and 6.2. Theorem

6.3.2 shows that Lemke's method provides a strong connection between the

algebraic and geometric aspects of the LCP. We will now use some of the

ideas we have developed to obtain some further results and generalizations

concerning Lemke's method.

A natural question to ask is when may one be certain that a solution

to the LCP will be found by Lemke's method. Indeed, this question is

addressed in Section 4.4. Looking at the problem geometrically, a fairly

obvious answer would be that if there were no strongly degenerate cones
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and if the nonnegative orthant were the only complementary cone which

contained q + dzo for arbitrarily large values of z0 , then Lemke's method

must find a solution to the LCP (q, M). This leads us to the next result.

6.3.10 Theorem. If M E Rn x n is d-regular for some d> 0, then for any

q E RTh there is a d > 0 arbitrarily close to d such that Algorithm 6.3.1,

using d, will find a solution to the LCP (q, M).

Proof. Any regular matrix is in R0 . Thus, M has no strongly degenerate

complementary cones. Hence, if Algorithm 6.3.1 does not find a solution,

it must be that at some point we have z o = oo and the algorithm terminates

on a secondary ray in Step 2. If zo is set to infinity, then Theorem 6.3.7

implies that the index of the current distinguished complementary cone

is —1. In addition, in order to have z0 = oo, this current distinguished

complementary cone must contain q + dzö for arbitrarily large values of

z0 . Since ind(pos C(0)) = 1, the theorem will follow if we can show that

pos C(o), i.e., the nonnegative orthant, is the only full complementary cone

which contains q + dzo for zo arbitrarily large.

By Proposition 6.3.6, we may select d > 0 arbitrarily close to d such

that d satisfies the nondegeneracy assumption in Step 0 of 6.3.1. In ad-

dition, as complementary cones are closed, if we select d close enough to

d, then d V pos C(ci) will imply d V pos C(c) for any complementary cone

pos C(cti). Since M is d-regular, pos C(o) is the only complementary cone

containing d. Thus, pos C(0) is the only complementary cone containing

d. Therefore, suppose some full complementary cone, pos C(a), contains

q + dzo for arbitrarily large z0 . This means C(a) -1 (q + dzo ) >_ 0 for ar-

bitrarily large z0 , hence C(a) -1 d > 0. Thus, d E pos C(cti) and, hence,

cti =0. ❑

An obvious corollary of the previous theorem is that R C Q. This

result is already known to us, see (3.9.9). It is interesting that it came up

again as a natural consequence of the geometry of Lemke's method.

In examining the proof of Theorem 6.3.10 we find that the requirement

that M be d-regular was not fully utilized. What we actually used was

the fact that M was pseudo-regular and that d was not contained in any

complementary cone with index —1. Thus, we can immediately state a

slight extension of 6.3.10.
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6.3.11 Corollary. Let M E Ro f1R x n be given. Suppose there is a d > 0

such that no complementary cone containing d has index —1. It follows that

for any q E Rn there is a c1>  0 arbitrarily close to d such that Algorithm

6.3.1, using d, will find a solution to the LCP (q, M). ❑

We can observe that if M and d satisfy the hypotheses of Corollary

6.3.11 then M E Q. Notice, we do not have to use the corollary itself

to make this observation as it is easy to see that such an M must have a

well-defined positive degree.

There is a further generalization of Theorem 6.3.10 that we can make.

So far, we have required the covering vector d to be positive. In essence, this

was to insure that q + dz0 would be contained in the nonnegative orthant

for all z0 large enough. This, in turn, was to insure that we would have

a distinguished complementary cone with which to start Algorithm 6.3.1.

However, both Algorithms 4.4.5 and 6.3.1 may be used with a covering

vector d which is not positive, so long as we know of a full complementary

cone which contains d in its interior. We would then only have to slightly

change the way we initialize the algorithms.

To be specific, suppose we have a (not necessarily positive) vector

d which satisfies the nondegeneracy assumption in Step 0 of 6.3.1. If

pos C(a) is a full complementary cone and if d E int(pos C(cv)), then by

an argument similar to the one given near the end of the proof of Theo-

rem 6.3.10 we know that q + dz0 is contained in pos C(c) for all zo large

enough. Thus, we could make pos C(a) the initial distinguished cone with

zo = cc and begin in Step 1 of 6.3.1 by decreasing z0.

The corresponding change in Algorithm 4.4.5 is to begin by block piv-

oting on M. We now use this new tableau as the initial tableau and

begin with Step 0 of 4.4.5. (Of course, we must remember that if 4.4.5

refers to variable z2, for some i E ce, then we must substitute variable wi,

and vice versa.)

Henceforth, if we refer to using Algorithms 4.4.5 or 6.3.1 with d 0

as a covering vector, then we shall implicitly mean that the algorithms be

amended in the manner just described.

By using a more general covering vector in the manner described above,

we have not changed any essential part of Lemke's method. All the results
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in this section still hold. The only change to note is that part (a) of

Theorem 6.3.7 should read that zo is decreasing (increasing) in Step 1 if

the index of the current distinguished cone is the same as (different from)

the index of the initial distinguished cone. When we assumed d > 0, the

initial distinguished cone was pos C( ®), and ind(pos C(0)) = 1.

Since we now know how to use Lemke's method with a more general

covering vector, we may extend Corollary 6.3.11.

6.3.12 Corollary. Let M E Ro f1 Rn"n be given. Suppose there is a d

such that d E int(pos C(a)) for some full complementary cone pos C(a)

and, further, no complementary cone with index equal to — ind(pos C(cti))

contains d. It follows that for any q E RTh there is a d E int(pos C(a))

arbitrarily close to d such that Algorithm 6.3.1, using d, will find a solution

to the LCP (q, M). ❑

It is natural to ask if, given a pseudo-regular matrix M, it is always

possible to find a vector d satisfying the hypothesis of Corollary 6.3.12.

The answer is no because, if such a d existed, the corollary would then

imply that M E Q. However, a pseudo-regular matrix need not be in Q.

(For example, —I E Ro \ Q.)

We can also determine that the answer is no by using degree theory

and, as this will lead to some additional insights, we will now do so. From

the proof of Theorem 6.3.10 we see that if d satisfies the hypothesis of

Corollary 6.3.12, then any vector d close enough to d will also satisfy the

hypothesis. Thus, as Rn \ JC(M) is dense (see 6.1.12), we may assume

that d V 1C(M) and, so, deg(d) is well-defined (see 6.1.8). Therefore, our

question concerning the existence of a vector d satisfying the hypothesis of

Corollary 6.3.12 can be stated succinctly as: Given M E R0 , does there

exist a d K (M) such that I deg(d) = I SOL(d, M) I > 0 ? Clearly, if

deg M = 0, the answer must be no. As we have seen, such matrices exist

as any matrix in Ro \ Q must have degree equal to zero.

In some sense the above discussion is not satisfying. We are asking

whether a d V K(M) exists such that, one, deg(d) = I SOL(d, M) and,

two, deg(d) y4 0. Naturally, the second condition fails if deg M = 0. Yet,

the first condition is the more interesting condition. If we restrict our at-

tention to matrices with nonzero degree, then we need only worry about the

first condition. Since, clearly, we have I deg M = ^ deg(d) I < SOL(d, M) ^
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for all d V JC(M), we are led to the question: Given M E Ro , is it true

that for all d V IC(M) we have I degMj < SOL(d, M) ? If the answer to

this question is yes, we say that the matrix M is superfluous.

At this point, the reader may wish to consider several simple examples of

pseudo-regular matrices to see if any are superfluous. In this way, the reader

will be convinced that it is not at all obvious that superfluous matrices exist.

One might hope that there are no superfluous matrices as then Corollary

6.3.12 would imply that for every matrix M with nonzero degree there is

some covering vector d which can be used with Lemke's method to find

a solution to the LCP (q, M) for any q E R. However, as we shall see

in Section 6.7, superfluous matrices exist and examples can be found with

arbitrarily large degrees. After all our investigation, it seems that in a

very real sense it is not always possible to find a vector d satisfying the

hypothesis of Corollary 6.3.12.

The common assumption in Theorem 6.3.10 and its corollaries is that

M E R0 . This seems to be a necessary assumption because otherwise

strongly degenerate cones would exist, and there would likely be a q for

which Lemke's method would terminate with a strongly degenerate cone

before zo reaches zero. However, this problem is serious only if there is a

solution to the LCP (q, M). If we knew that Lemke's method terminates on

a secondary ray only for those q in which the LCP (q, M) has no solution,

then we could still claim that Lemke's method properly processes (q, M)

for all vectors q. With this in mind, we may extend Corollary 6.3.12 as

follows.

6.3.13 Theorem. Let M E Qo n Rf"fl be given. Suppose there is a d

such that d E int(pos C(cti)) for some full complementary cone pos C(cti)

and, further, no complementary cone with index equal to — ind(pos C(c))

contains d. If, in addition, no point in the interior of K(M) is in a strongly

degenerate cone, then for any q E RTh there is a d E int(pos C(c)) arbitrarily

close to d such that Algorithm 6.3.1, using d, will find a solution to the

LCP (q, M), if a solution exists.

Proof. By an argument similar to the one given in the proof of Theorem

6.3.10, we may select d arbitrarily close to d such that d satisfies the

nondegeneracy assumption in Step 0 of Algorithm 6.3.1 and also satisfies,
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like d itself, the conditions in the hypothesis of this theorem. Further, as

in the proof of Theorem 6.3.10, it follows that Algorithm 6.3.1, using d

as covering vector, cannot terminate on a secondary ray in Step 2. Thus,

if the algorithm does not find a solution to (q, M), then it must encounter

a strongly degenerate distinguished cone and terminate on a secondary ray

in Step 1. Suppose this occurs.

If zo > 0 is the value of z when the algorithm terminates, then Theorem

6.3.7 implies that q + dzo is contained in an absorbing facet. As the ray

{q + dz0 : zo > 0} has only nondegenerate intersections with K(M), there

is a hyperplane H and an open ball B(q+dzo, 5) as described in Definition

6.2.5. As usual, let B+ and B — represent the two open hemiballs which

are the connected components of B(q + dzo, S) \ H. The argument at the

beginning of the proof of Theorem 6.2.12 shows that if B+ intersects a full

complementary cone then it must be contained in the full cone. A similar

statement is true for B.

If both B+ and B — were contained in full cones, then q + dz0 would

be in the interior of K(M). This is not possible as q + dzo is in a strongly

degenerate cone. Thus, as q +dzo is in an absorbing facet, 6.2.25(f) implies

that exactly one of the hemiballs is contained in K(M). We may assume

B+ C K(M) and B — f1 K(M) = 0.
From 6.2.5(b), we know that q + dzo is the only point on the ray

{q + dzo : z0 > 0} contained in H. Thus, by slightly increasing zo from zo,

or slightly decreasing z0, we will cause q + dz0 to be contained in B. As

M e Q0 , it follows from 3.2.1 that either {q +dzo : zo > zo}nK(M) = 0 or

{q+dzo : zo < zo}nK(M) _ 0. It clearly cannot be the former because, as

in the proof of Theorem 6.3.10, we know q +dzo E pos C(a) for arbitrarily

large z0. Thus, f q + dzo : z0 < zo} fl K(M) _ 0. Hence, SOL(q, M) = 0. ❑
We will end this section by proving that any L-matrix satisfies the

hypothesis of Theorem 6.3.13 with d = e. Hence, the L-matrices can be

processed by Lemke's method without ambiguity in the outcome. We first

need to prove a lemma which is interesting enough to be given as a separate

theorem. We will find additional use for this next result in Section 6.4.

6.3.14 Theorem. Let M E Rn"Th be an L-matrix. If q is in a strongly

degenerate complementary cone, then q is in the boundary of K(M).
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Proof. Let pos C(a) be a strongly degenerate complementary cone con-

taining q. Since pos C(a) is strongly degenerate, there is a v E R' such that

0 v E SOL(0, M) with va = 0 and (Mv), = 0. Since q E pos C(a), there

is a z E SOL(q, M) with za = 0 and (Mz + q), = 0. Clearly, q E K(M) as

it is in a complementary cone. We must show q int K(M).

As M E L, we have v > x > 0 and Mv > —MTx > 0 for some

x 0. (Using Definition 3.9.18, let x = D2v and notice we may assume

that Dl and D2 have been scaled so that no element is larger than one.)

Immediately we see x a = 0 and (MTx), = 0. Now, as Mv + MTx > 0 and

z > 0, we have zTMv + xTMz > 0. However, zTMv = 0, so x TMz >_ 0.

Yet, as z >_ 0 and —MTx >_ 0, we have xTMz <_ 0, so xTMz = 0. Thus, as

we must have xT(Mz + q) = 0, it follows that xTq = 0.

Suppose SOL(q, M) 0. Thus, there is a z > 0 such that Mz + q > 0.

As x >_ 0, we have xTMz+x q > 0. We see that xTMz < 0, hence xTq > 0.

Therefore, xT(q — q) > 0. As x 0, this cannot be true for all q in an open

ball around q. Thus, q int K(M). ❑

6.3.15 Corollary. If M E R' >< is an L-matrix, then M satisfies the

hypothesis of Theorem 6.3.13 with d = e and a = 0.

Proof. We know L C Q0 from Corollary 3.9.19. Clearly, e is in the

interior of pos C(0) and, as L C E0 , we know SOL(e, M) I = 1 so no

other complementary cone contains e (see 3.9.3). Theorem 6.3.14 now

completes the proof. ❑

6.4 LCP Existence Theorems

In this section, we will highlight and illustrate the material we have so

far developed in this chapter. To this end we will show that the augmented

LCP, given in (3.7.1) and (3.7.2), and the bimatrix game LCP, given in

(4.4.16) and (4.4.17), always have solutions. In addition, we will prove an

existence result which will be used in Chapter 7.

Given any LCP (q, M) of order n, and given any d E Rn and ,\ E R with

d> 0 and A > 0, we can construct the augmented LCP (q, M) as indicated

in (3.7.1) and (3.7.2). Theorem 3.7.3 guarantees that this augmented LCP

will have a solution. (See also Theorem 4.4.4.) Our next task will be to

prove Theorem 3.7.3 using geometric techniques.
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First, let us pictorially understand what it is that Theorem 3.7.3 says.

To do this, notice that if A < 0, then the augmented LCP (4, M) can-

not have a solution as the last row of 1UI is nonpositive. Thus, K(M) is
contained in the closed halfspace

H+ = {xeRr +l :x„+l >0}.

Theorem 3.7.3 goes on to say that K(117) = H.

6.4.1 Theorem. The augmented LCP (q, M), as given in (3.7.1) and

(3.7.2), has a solution. (K(M) = H+ .)

Proof. We will start by giving a geometric description of the ideas be-

hind the proof. The first thing to note is that the complementary cone

pos C({n + 1 }) is simply the hyperplane

Hp = {x E R"" +1 : xn+l = 0} ,

which is the boundary of H. Clearly, this complementary cone is strongly

degenerate. A key observation is that none of the other complementary

cones are strongly degenerate. To see this, note that (I, —M) has no zero

column. Theorem 6.1.19 then implies that a complementary cone will be

strongly degenerate if and only if it contains a line. Yet, as K(M) C H+ ,
if a complementary cone contains a line, then that line must lie in Ho. We

now note that C({n + 1}). 2 has rank n for all i = 1, ... , n + 1. Therefore,

as all the column vectors of the complementary matrix C({1, ..., n}) lie in

the interior of H+ , it follows that no complementary cone with any of these

columns as generators can contain a line in Ho. Thus, pos C({n + 1 }) is
the only strongly degenerate complementary cone.

We can now imagine keeping track of the parity of the number of so-

lutions to the LCP (q, M) as q moves into H+ from the outside. Initially,

when 4 is outside H+ , the LCP has no solution and, hence, the parity is

even. The parity changes to odd when Ho, the boundary of H+ , is crossed.

This happens because q passes through exactly one strongly degenerate

complementary cone (see Theorem 6.2.27). The point 4 can now move

anywhere within H+ without crossing Ho again. Thus, it can move any-

where within H+ without intersecting a strongly degenerate cone, and so

the parity of the number of solutions will remain odd. We conclude that

at least one solution must exist for any q in H+.
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Now that the ideas behind the proof have been discussed, we can fill in

the details. The complementary cone pos C({n+1}) is strongly degenerate

as, letting xz = dz for i = 1, ..., n, and xn, + i = 1, we have C({n+l})x = 0

and x > 0.

Next, consider some a {n + 1} such that there is an x E R 1 with

C(a)x = 0 and x > 0. Since the last row of C(a) is nonnegative, x2 must

be zero for all i such that C(a) + i, > 0. Thus, letting ß = a \ {n+ 1}, we

must have xß = 0. If n + 1 cr, then ß = a and, as C(a).a = I.^, we must

havex=0. Ifn+lea, thenieaforsomei=1,...,n,asa^{n+l}.

Thus, the only nonzero element in row i of C(oz).6 is C(a)2,+1 = —di < 0.

Hence, x., + l = 0. As before, since we know x,,, = 0, we conclude x = 0 from

the fact that C(a).a = I.,. We have shown that, except for pos C({n+ 1}),

no complementary cone is strongly degenerate.

For 6 E R, we define the matrix M(6) E R(n+1) x (n+1) as

M(S) = M + 6en+ie i

By Theorem 6.1.25, we know that for all 6> 0 small enough, none of the

complementary cones of M(S), except for (possibly) pos C({n + 1}), will

be strongly degenerate. As for pos C({n+ 1}), it is nondegenerate when

6 > 0 as det C({n + 1}) = —6. Thus, M(6) has no strongly degenerate

complementary cones, hence it has a well-defined degree. We will now

calculate this degree.

Let a be any index set not equal to {n+1}. As pos CM (a) is not strongly

degenerate, and as it does not contain —e,z+ l, then by Theorem 6.1.23 we

know that —ei pos CM (8) (a) for all small enough S > 0. However,

letting x,z+ l = 1/6 and letting xi = d2/6 for i = 1, ..., n, we have x> 0 and

CM (b) ({n + 1})x = —en+l. Thus, —en+ l is in exactly one complementary

cone. Furthermore, that one cone is full and —e, z+l is in its interior. Thus,

for all 6 > 0 small enough, deg 1[(S) = sgn(det M(6)n+l,n+l) = 1•
Consider q E R'+' with qn, +l > 0. Clearly, q ^ posCM (b) ({n+ 1}) for

6> 0. Thus, as deg M(6) = 1 for S > 0 small enough, q must be contained

in at least one of the other complementary cones. In fact, since there are

only finitely many complementary cones, there is some a {n + 1} such

that q E pos CM (8) (a) for arbitrarily small 6 > 0. As pos CM (a) is not

strongly degenerate, Theorem 6.1.23 implies q E pos C(a). Therefore,

intH+ C K(M) and so, being closed, K(M) must contain H. ❑
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We now turn our attention to proving that the bimatrix game LCP has

a solution. (See also Theorem 4.4.22.)

6.4.2 Theorem. For any positive m x n matrices A and B, the bimatrix

game LCP, as given in (4.4.16) and (4.4.17), has a solution.

Proof. The first thing we must do is determine which complementary

cones are strongly degenerate. Let q E R'+'' and M E R(m)>K (m)

be defined as in (4.4.17). It will be convenient to define the index sets

ß = f l, ..., m} and ß = {m+ 1, ..., m + n}. Consider an index set

cti C {1, . .. , m + n}. If cti = 0, then pos C(a) is, of course, not strongly

degenerate. Suppose 0 cti C ,ß. Define x E R +n' by letting xa = c,

x,ß\a = 0, and xß = (B )e. We have 0 x > 0 and C(n)x = 0. Thus,

pos C(c) is strongly degenerate. A similar argument shows that pos C(c)

is strongly degenerate if 0 zA ce C ß.

We now assume a rl ß 0 and cti n ß zA 0. Suppose C(a)x = 0 for

some x > 0. If i E a fl ß, then C(cti) <0 if j E cr n ß and C(ce)  0

if j cti n ß. Thus, xanß = 0. Similarly, if i E a n ß, then C(cti) <0 if

j E cti n ß and C(c) = 0 if j cr n ß. Thus, xanß = 0, hence x, = 0.
Since C(ci).a = I.^, this implies x = 0. Therefore, pos C(a) is not strongly

degenerate. We have now determined exactly which complementary cones

are strongly degenerate.

For 6 > 0, define M(S) E R(m+n) x (m.+n) as

8I A
M(6) = BT SI

For all 6 > 0 small enough, Theorem 6.1.25 implies that pos CM(6) (a) is

not strongly degenerate if cti = 0 or if cr f1 ß	 0	 a n ß. If 0	 cti C /3,

or if 0 cti C ß, then det M(S),, = S > 0, so pos CM(6) (cti) is not

strongly degenerate. Thus, for all 5> 0 small enough, M(S) has no strongly

degenerate complementary cones. Therefore, deg M(6) is well-defined.

It turns out that this degree is easy to calculate. Since M(6) > 0, the

LCP (e, M(5)) has exactly one solution. This solution is (w, z) = (e, 0) and

it corresponds to the complementary cone pos CM (b) (0). Since q = e is in

the interior of this cone, deg M(S) = sgn(det CM() (0)) = sgn(det I) = 1.
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The question arises as to which complementary cones of M(6) contain

—e. We will show that, for all 6 > 0 small enough, —e E pos CM(a) (ß).

Define x E R"''+' by

— 1/6 ifiEß,
xi 

1 + (BT e)z_,,, /6 if i E ß.

One can easily check that CM() (/3)x = —e, and that x > 0 for all 6 > 0

small enough. Thus, —e is in the interior of pos CM(b) (ß) for all 6 > 0

small enough. By a similar argument, it can be shown that —e is in the

interior of pos CM(6) (ß) for all 6 > 0 small enough.

If a C ß, then —e V pos CM(b) (a). This can be seen from the fact that

CM(6) (a) z. > 0 for any i E ß \ a. By similar reasoning, if a C ß, then

—e pos CM(s) (a)
If the only complementary cones containing —e were pos CM(5) (ß) and

pos CM(b) (ß), then

deg M(6) = sgn(det M(6)ßß) + sgn(det M(6)ßß) = 2.

However, deg M(6) = 1. Thus, for each 6 > 0 small enough, there exists

an a such that a fl ß 0 a f1 ß and, in addition, —e E pos CM(b) (a).

As in the proof of Theorem 6.4.1, since there are only finitely many

complementary cones, there is some a, where a fl ß $ 0 a n ß, such

that —e E posCM(b)(a) for arbitrarily small 6 > 0. As posCM(a) is not

strongly degenerate, Theorem 6.1.23 implies —e EposCM(a). Thus, the

bimatrix game LCP has a solution. ❑

We will now prove a general perturbation theorem concerning local

degree. Afterwards we will specialize this to the case of L-matrices. The

same result will also be used in Section 7.5.

6.4.3 Theorem. Let M E Rn"n be given. Let S be the set of all points

q E Rn for which degM (q) is well-defined and nonzero. If q E cl S and if q

is not in any strongly degenerate complementary cone, then there exists an

E > 0 such that SOL(q', M') 0 for all M' E Rn' X n and all q' E Rn such

that JIM — M'II +IIq — q'II <s.

Proof. We will assume throughout that q' E RTh and M' E Rn X n with

IIq—q'II +JIM—M'II <—e.
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Consider the collection of index sets a for which q E pos CM (a). De-

note this collection as {az }L 1 . By assumption, for all i = 1, ..., k, the

complementary cone pos CM (az) is not strongly degenerate. Let

k
D = int( U pos CI (a i ))

Z–i

Suppose, for some x E Rn , that fM(x) = q. If posCI(a) is any of the

orthants containing x, then q E pos CM (a) and, so, a = a2 for some

i = 1, ... , k. It follows that x E D. Hence, f' (q) C D.

We claim there is an s > 0 which guarantees that q' fM' (bd D). If

our claim is false, then there is a sequence of matrices, {Mz }, with limit M,

and two sequences of vectors, {qi } and {r i }, with lim n_,,, qz = q, such that

x 2 E bd D and fMz (x z ) = q2 for all i. There are two possibilities depending

on whether or not the sequence {a;z} has a bounded subsequence.

Suppose {x i } has a bounded subsequence. Thus, {x i } will have a con-

vergent subsequence. Hence, we may assume that lim z _ xz = x for some

x 0 Rn. It follows that fM (x) = q (see Exercise 6.10.6). However, like

all boundaries, bd D is closed. Thus, x E bd D which contradicts the fact

that f' (q) C D = int D.

Suppose {x i } has no bounded subsequence. We may then assume that

lim e—^ IIx'jI = oc and that limn —c xi/II xZ( = x where ) xII = 1. Notice,

since x i E c1D, that xz/x E clD and, so, x 0 cl D. As fM^(.x 2 /)xzt^) _

qz/jjx i , we take limits and obtain fM(x) = 0. Since 0 54 x E c1D, this

would imply that one of the complementary cones containing q is strongly

degenerate. This is a contradiction and it follows that our above claim is

true.

We now define the maps gm, gm, : cl D — R' to be the restrictions,

respectively, of fM and fM' to cl D. From Theorem 6.1.25 we may deduce

that if e > 0 is small enough, then pos CM, (a2) is not strongly degenerate,

for any i = 1, ... , k. Our previous claim showed that e can be selected so

that q' gM , (bd D). We may now invoke Theorem 6.1.21 to show that

if q' has a well-defined local degree under both gM and gM , , then the two

local degrees have the same value.

Since complementary cones are closed, we may take E > 0 to be so

small that any complementary cone (relative to M) containing q' must

contain q. This implies that q' is not contained in any strongly degenerate

complementary cone relative to M. Thus, we may use Theorem 6.1.17
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to show that degM (q'), if it exists, does not depend on the specific q' we

select, as long as we have I I q — q' I I < E. Furthermore, since q E cl S, we

then know degM (q') 0, if it exists.

In addition to the above, by taking s > 0 small enough to guarantee

that any complementary cone (relative to M) containing q' must contain

q, we have f' (q') = g' (q'). This, means that, if they exist, the local

degree of gM at q' equals degM (q').

Using Proposition 2.9.17 as in Theorem 6.1.12, we find that the com-

plement of the union 1C(M)UIC(M9 is dense in Rh. This is the set of points

that have a well-defined local degree for both fM and fM'.  These points

also have a well-defined local degree for both, gM and 9M,. (From Defini-

tion 2.9.4 it is clear that if fM and fM' have well-defined local degrees at

a point, so do the restrictions gM and gm , .)

We can now bring things together to finish the proof. We know that if

e > 0 is small enough, then the local degrees, if they exist, of fM, gM, and

gM , at q' are all equal and nonzero. We know that the set of q' for which

these degrees exist is dense among all q' for which I I q — q' I I < E. If the local

degree of gM, at q' exists and is not zero, then gM,(q') 0, so q' E K(M').

Since K(M') is closed, we conclude that q' E K(M') for all q' such that

Iq - q'II <E. ❑

To conclude this section, we will apply 6.4.3 to the class L.

6.4.4 Theorem. Let M E Rf X n and q E RTh be given. If M E L and if

SOL(q, M) is nonempty and bounded, then there exists an e > 0 such that

for all M' e Rn"n and all q' E R for which I I M — M' I I + I q - q'(( < , we
have SOL(q', M') 0.

Proof. In light of Corollary 3.9.19, we know that K(M) = pos (I, —M)

is a closed convex cone. We know, from Theorem 6.3.14, all strongly

degenerate complementary cones are contained in the boundary of K(M).

Thus, if C is the union of the strongly degenerate complementary cones,

then int K(M) is contained in a connected component of R' \ C. It now

follows from Theorem 6.1.17 that the local degree is invariant over all

points in int K(M) for which a local degree is defined.

Since e E int R+ C K(M), we have e E int K(M). We will now show

that deg(e) = 1 and, hence, that the local degree is nonzero at all points in

 



6.5 LOCAL ANALYSIS	 571

int K(M) where it is defined. Since L C Eo , it follows from Theorem 3.9.3

that (w, z) = (e, 0) is the only solution of the LCP (e, M). We conclude

that deg(e) = 1.

We now know the local degree is nonzero at all points in int K(M)

where it is defined. Since local degree is well-defined on a dense set (see

6.1.12), any point in int K(M) is in the closure of the set of all points with

a well-defined nonzero local degree. Since K(M) is convex, all of K(M) is

in this closure.

As SOL(q, M) is nonempty, we have q E K(M). In addition SOL(q, M)

is bounded, so Theorem 6.1.27 implies that q is not in any strongly de-

generate complementary cone relative to M. We can now invoke Theorem

6.4.3 to finish the proof. ❑

6.4.5 Remark. Within the above proof we showed that if M C L and if

q C K(M) \ JC(M), then deg(q) = 1. Since L C Q0 , we know that K(M)

will be convex. Thus, Theorem 6.1.17 can be used to show that every

point in the boundary of K(M) is in a strongly degenerate complementary

cone. Therefore, if M E L and if q E bdK(M), then SOL(q, M) must be

unbounded; as a matter of fact, the latter solution set must contain a ray,

which is called a solution ray. A proof of this last statement is not difficult;

we refer the reader to Section 7.5 under the heading "Solution rays" for

further discussion on this subject.

6.5 Local Analysis

In previous sections we used degree theory to obtain several results

which show that, under various conditions, the LCP (q, M) has a solution.

If q )C(M), we can even say something about exactly how many solu-

tions (q, M) has. It would be nice if we could drop the assumption that

q (M). One might argue that, since almost all q E Rh satisfy this

assumption, it is relatively mild. Still, we have made heavy use of this

assumption and, perhaps, we can find some way around it. Furthermore,

we really do not have much to say about q c K(M). In general, since the

complementary cones are closed, if we know that SOL(q, M) 0 for all

q 7C(M), then we know that SOL(q, M) 0 for all q E Rh. It is this one

fact which allows us to include those q in K(M) into some of our previous

results. One wonders if better results can be had.
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To get around the requirement that q JC(M), we must ask what it

is doing for us. In essence, it is a nondegeneracy assumption. It enables

us to assume that q has a well-defined local degree and, thus, allows us to

use degree theory to analyze the LCP (q, M). Difficulties arising from de-

generacy in mathematical programming can frequently be circumvented if

one may work within a smaller, but nondegenerate, subspace of the original

problem. If q E 1C(M), perhaps there is an LCP related to (q, M), but with

a smaller dimension, such that degree-theoretic information from this re-

lated LCP will apply to (q, M). It turns out that such a related LCP exists

and, if it is nondegenerate, will provide us with the required information

concerning (q, M). To prove all this, we will need to study what happens

in the local neighborhood around points in fMl (q). The purpose of this

section is to perform this local analysis. Incidentally, the analysis touches

on the issue of sensitivity in the LCP. A more comprehensive treatment of

the latter subject is given in Chapter 7.

We now introduce some additional definitions and notations that will

be used in the rest of this section.

6.5.1 Notation. Let x E RTh and a C {l, ..., n} be given. Define xä to be

that element of R for which (xä) a = xa and (x°) = 0. In other words,

x° is obtained by expanding xa out to be an n-vector using zeroes. Notice

that it is not necessary for x a to be defined in order to define xä.

6.5.2 Notations. For x E Rn, we define the following subsets of Rn.

Sx ={yeR:xzy2 >0foralli= 1,...,n},

Q x ={yeSx :y2= 0 for all i suppx},

Vx ={yERn :yz= 0 for alliEsuppx}.

In other words, Sx is the union of all orthants containing r, Q x is the

intersection of all orthants containing x, and VV is the lineality space of S.

The set Sx is called a semiorthant and the set VV is called the spine of S.

6.5.3 Remark. We note the following facts which are immediate conse-

quences of the above.

(a) x E ri Qx C int Sx .
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(b) Sx = {q +v:gEQ.andveVx }.

(c) Sx , Qx , and VV are closed and convex cones.

(d) VV is the orthogonal subspace to the affine hull of  Q.

We begin our discussion with the following somewhat technical lemma.

6.5.4 Lemma. Let M E R"' and q E Rn be given. Let ce = supp q and

let ß = ce. If q > 0 and if Mßß is nondegenerate, then:

(a) for all x E Sq , we have (fM(x)) IX = xa + (fM(xß)) a and (fM(x))ß =

fMPp (xß);

(b) for all u in the affine hull of Q q , for all v E Vq , and for all A > 0 we

have f fl (u + Av) f1 Sq I C I fM1, ( vß )

(c) for all u E ri Q q and for all v e Vq there is a A > 0 such that if

0 < A < A, then fM'(u+ Av) n S,, _ ^ fMlpp(vß)^

Proof. As q > 0, we have xa > 0 for all x E Sq . Thus, given x E Sq ,

there is some y C ß, for which x E posCi(y). Hence, fM(x) = CM( -y)x.
Noting that C_M(y). a = I.a , we may deduce part (a).

Suppose x E f,' (u + w) n Sq . Using part (a), we have

fMßß (xß) = (fM(x ))ß = (u + w)ß = wß.

Hence,	 lxß E fM' (vß). In addition, using part (a), we have xa =

(u +Av) a — (fM(x^)) a . Therefore, if y is in f '(u +Av) lSq and y x,

then yß xß. We may now deduce part (b).
As Mßß is nondegenerate, we know fM1 (v < 2 1 ß < oo. Thus, there

is a .l > 0 such that if 0 < A < A and if xß E fopp (vp), then we will have

u +A(xa — (fM(x^))°) E Sq . Letting y = u +A(x — (fM(xß))ä), and using

part (a), gives us (fM (y))ß = fMßA (Axß) = wß and

(fM(y))ce = u — A(fM(xß))a + (fM(Axß))a = U.

Thus, y E f ' (u + w). As pp = Axß, a different xp implies a different yß.

Part (c) of the lemma now follows. O

The above lemma gives a relationship between solutions to an LCP

with matrix M and solutions to an LCP with matrix Mßß. If q > 0,
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then (w, z) _ (q, 0) is a nondegenerate solution to (q, M). In this case,

ß = 0, VQ = {0}, Q q = Sq = R+, and the lemma is trivially true with Moo

taken to be the identity matrix. If q > 0 contains zero components, then

(w, z) = (q, 0) is a degenerate solution to (q, M). In this case, the lemma

allows us to investigate the behavior of fM in the vicinity of q by studying

the behavior of a lower dimensional LCP. This is just the approach outlined

at the beginning of this section. Note that the assumptions q > 0 and Mßß

is nondegenerate imply that z = 0 is a locally unique solution of the LCP

(q, M) (see Theorem 3.6.5). The next result is basic to the local analysis

we are developing, and it follows almost as a corollary to the lemma.

6.5.5 Theorem. Let M E Rn"n and q E Rn be given. Let a = supp q

and let ß = c . If q> 0 and if M,Q,Q is nondegenerate, then fm(Sq ) covers

a neighborhood of q if and only if M,ß,ß E Q. Hence, if deg Map 0, then

fr(S9 ) covers a neighborhood of q.

Proof. Necessity. Suppose Mpp O Q. We may then find a vector vo such

that fM50 (vß) _ 0. Clearly , Vß 0. As vß E Vq , Lemma 6.5.4(b) implies

that for A > 0 we have f '(q + AvOO) n Sq = 0. Thus, fM(Sq ) does not

contain a neighborhood of q.

Sufficiency. As MoQ is nondegenerate, there exists a S E (0, 1) such that

for all x E RTh and for ally C ß we have I JC-M('y)xII > ö(xll. As q E int Sq ,

there exists an e > 0 for which IIyII < a implies q + y e Sq .
Given x E Sq , there is a -y C ß such that for all t > 0, if q+t(x-q) E Sq ,

then q + t(x q) E pos C1('y) and, so,

fvt(q+t(x - q)) = C-M('Y)(q+t(x - q)) = q+tC-M('Y)(x - q). (1 )

In addition, II fM(q+t(x—q)) —qll = lltC-M(^')(x—q)II > bllt(x—q). We

further note that q + t(x - q) E Sq if II t(x - q) < E. From this and from

(1) we may conclude that if f '(q + v) n Sq 0 and if 0 < t < 8e/II v11,
then ff1 (q+tv)nSq ^0.

If fM (Sq ) does not cover a neighborhood of q, then there is some v E R^''

such that lvIJ < ba/2, and f ' (q + v) n Sq _ 0. Let q = (q + v)ä and

v = (q + v)0. = vß. Thus, q > 0 and supp q = cti. The above discussion

then holds true if q is replaced with q and e is replaced with e/2. As

f fl (q + v) fl Sq = &'(q + v) fl Sq = 0 and as Iv II <a/2, the end of the

 



6.5 LOCAL ANALYSIS	 575

previous paragraph implies that f'  + Ai) n Sq = 0 for all A> 0. Thus,

by Lemma 6.5.4(c), fM1 (vß) _ 0 and, so, Mß Q. ❑

6.5.6 Corollary. Let M E Rn X n and q E R' be given. Let cti = supp q

and let ß = i. If q > 0 and if Moo is a nondegenerate Q-matrix, then for

every a> 0 the set fM(B(q, e)) contains an open ball around q.

Proof. We may assume a is small enough so that the open ball B(q, a) is

contained in Sq . Let 6 = min{q— fM(q+x) : IIX11 = a} and notice that

since fM is continuous the minimum is well-defined and will be attained at

some vector x. If 6 = 0, then fM (q + x) = q. However, as q + t E Sq , some

orthant in Sq contains both q+ t and q. Since Mßß is nondegenerate, fM is

injective on any orthant contained in Sq . But fj(q) = q, a contradiction.

It must be that 6 > 0.
From the beginning of the sufficiency part of the proof of 6.5.5, we

see that (1) holds here. Thus, for any x E Sq , fM maps the line segment

between x and q to the line segment between fM(x) and q. Using this

fact we conclude that if < S and if f ' (q + y) f1 B(q, a) = 0, then

&I (q + y) n Sq = 0. Theorem 6.5.5 implies that if we take 6' > 0 small

enough, then f '  (q + y) n Sq ^ 0 if <6'. As we may select S' less than

S, the corollary follows. ❑

The conclusion of the above corollary has two implications: first, the

LCP (q', M) is solvable for all q' sufficiently close to q; and second,

inf{)z : z E SOL(q', M)} 0 as q' -^ q.

The former consequence is a solvability property for an LCP which is a.

slight perturbation (in the constant vector) of the given one, whereas the

latter is a kind of continuity of the solutions of the perturbed problems

(recall that 0 E SOL(q, M)). Generalizations of these results are given in

Section 7.3.

Theorem 6.5.5 characterizes when fM is surjective around q. Building

on this, the next theorem gives a condition for when fM is bijective around

q. Since fM is bijective on Rn' if and only if M E P, it should not come as

a surprise that the condition given below for fM to be bijective around q

is that a certain principal submatrix of M must be a P-matrix.
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6.5.7 Theorem. Let M E Rfl x n and q E R be given. Let a = supp q

and let ß = a. If q > 0 and if Mßß E P, then fM is injective on Sq . That

is, if X, y E Sq and if fM(x) = fM(y), then x = y.

Proof. Select x E Sq . Notice fM(x)IX is in the affine hull of Qq and fm(x)00

is in Vq . Lemma 6.5.4(b) implies f '(fM(x)) f1 Sq  G ^ fMpp (f,^,l(x)ß)^.

Since Mßß E P, we know from Theorem 3.3.7 that fMap (fM(x)ß)^ = 1.

Thus, if p E Sq and if fM(y) = fM(x), then y = x. ❑ .

The above theorem is related to a strong stability property of an LCP

at a given solution; see the subsection under the heading "Strong stability"

in Section 7.3.

We now have a reasonable understanding of the behavior of fM in the

vicinity of a point q > 0, even if indM (q) does not exist. However, the

requirement that q be nonnegative seems too restrictive. Fortunately, it

turns out that this requirement is not an obstacle. The reason is that by

using an appropriate principal pivotal transform of (q, M) we may assume

that q is nonnegative. This technique is demonstrated in the proof of the

next two results.

6.5.8 Lemma. Let M E Rnxn and a C {1, ..., n} be given. Suppose

Maw is nonsingular and let M be the principal pivotal transform of M with

respect to a. It then follows that for all x E R"` we have fM(CI(a)x) =

CM(a)fM(x).

Proof. Select x e R"'' and suppose q = fM(x). Thus, x+ = q + Mx - .

Let ß = {1,. . .  , n} \ a. We may write the last equation as (x, xß ) _

q + M(x^ , x3) where we have represented some of the vectors in a con-

venient partitioned manner. From (2.3.8), (2.3.9), (2.3.10), and (2.3.11),

if we let q= CM(cv)q, then (xIX , xß) = q + M(xä , x^ ). This means that

fM(CI(a)x) = q and, so, the lemma follows. ❑

6.5.9 Remark. In the above lemma, notice that CI(a)x is just the vector

x with the signs of the entries indexed by a reversed. Also, notice that the

two complementary matrices used in the lemma are nonsingular. This is

clear for CI(a). For CM(a), we note that detCM(a) = (-1)ßa 1 detMßä.
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6.5.10 Theorem. Let M E Rn"n q E Rn, and x E RTh be given. If

fM (x) = q and if the indexes of all the orthants in Sx exist and are identical,

then fM is injective on Sx and, for all e > 0, the set fM(B(x, e)) contains

an open ball around q.

Proof. As fM(x) = q, then x+ = q + Mx - . Let 'y = suppx- . Since

every orthant containing x has a well-defined index, and as x E pos CI (-y),

it must be that M.,„y is nonsingular. Let (q, M) be the principal pivotal

transform of (q, M) with respect to y. It is clear, from (2.3.8) and (2.3.9),

that q= x+ +x- >0.

Let cti = supp q. As usual, let ß = {1, ... , n}\a. Notice, ci = supp x and

ß n -y = 0. Now, the orthant pos CI (^) will contain q if and only if C ß.

By Theorem 4.1.2, if C ß, then det M^ = det MMu ,y ,g u .y / det M.y7 . Yet,

for all C ß, the orthant pos CI ( U -y) contains x. Thus, by the hypothesis

of the theorem, det MM must be nonzero and must have the same sign for

all contained in /3. Since det Moo = 1, we see that Mn E P.

We may now apply the results of this section to fM. Corollary 6.5.6

and Theorem 6.5.7 show that fM is injective on Sq and that, for all e > 0,

the set f q(B(q, e)) contains an open ball around q. We must now examine

what this implies about fM.

By Lemma 6.5.8, fj(Ci("y)y) = CM(7)fM(y) for all y E R. Notice

that both of the complementary matrices are nonsingular and also notice

that Ci( -y) is its own inverse. Thus, as fM(B(q,e)) contains an open ball

around q for alle > 0, then fM(B(CI(7)q, a)) contains an open ball around

C 1 (y)q for all e > 0. In other words, fM(B(x,e)) contains an open ball

around q. We have now proven part of the theorem.

To prove the rest of the theorem, we recall that fy is injective on S.

Thus, fM is injective on {CI(-y)y : y E Sq }. However, it is easy to see that

this latter set is just S. ❑

6.5.11 Corollary. Let M E Rn >< q E Rn, and x E RTh be given. If

IM (x) = q and if the indexes of all the orthants in S,, exist and are identical,

then for all e > 0 small enough fM bijectively maps the open ball B(x, e)

onto a neighborhood of q.

Proof. Pick e > 0 small enough that B(x, e) C S. By Theorem 6.5.10,

IM is injective on B(x, e). Since f Al (x) = q, to finish proving the corollary

we must show that fM (B(x, a)) is an open set.
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Select y E B(x, e). As y e int Sx , it is easy to see that Sy C S. Invok-

ing Theorem 6.5.10 with y, we see that, for all 8> 0, the set fM(B(y, S))

contains an open ball around fM(y). Selecting S > 0 small enough so that

B(y, S) C B(x, E), we find that fM(B(x, r)) contains an open ball around

fM(y). Since this is true for all y E B(x, e), it follows that fM(B(x, e)) is

open. ❑

We finish this section with an important result which will be used later

in this chapter. This result will follow easily from the above material.

6.5.12 Theorem. Let M E R"' and q E R' be given. Consider comple-

mentary cones relative to M and their facets. Suppose that any comple-

mentary cone containing q is full and suppose that any facet containing q

is proper. It follows that there is an r> 0 and an integer k > 0 such that

for all q' E B(q, r) we have SOL(q, M) I = k.

Proof. Suppose x E f1 (q). Since every complementary cone containing

q is full, and since fM maps the orthants onto the complementary cones,

we conclude that the complementary cones associated with the orthants of

Sx are all full. Thus, all the orthants of Sx have a well-defined index.

Suppose posCj(cti) and posCj(a A {i}) are two adjacent orthants in

S. Thus,

XE posCi(eti) nposCI(a A {i}) = posCi(c ). 1 .

Therefore, the facet fM (pos CI(c ).z) = pos CM (cr). z contains q and, so,

must be proper. Hence, ind(posCi(a)) = ind(posCi(a A {i})). We con-

clude that any two adjacent orthants in S have the same index.

Suppose pos Cl (a) and pos C1 (/3) are two orthants in S. By Theo-

rem 6.2.7, we may select a q E int(posCj(a)) and a q' E int(posCi(ß))

such that all intersections of the line segment £ [ q, q'] with 1C(I) are non-

degenerate. Clearly, SS is convex and, thus, E [ q, q'] C S. The orthants

which intersect £ [ q, q'], if considered in the sequence encountered as the

path of £ [ q, q'] is followed from q to q', give a sequence of orthants in SS

from pos CI(c) to pos Cr (ß) such that any two consective orthants in the

sequence are adjacent. We conclude that ind(pos Cj (a)) = ind(pos C1(/3)).
We may now invoke Theorem 6.5.10 and Corollary 6.5.11 to show that

fM is injective on Sx and that, for all S > 0 small enough, fM bijectively

maps B(x, 8) onto a neighborhood of q.
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For each x E fMl (q) select a b. > 0 such that fM bijectively maps

B(x, Sx ) onto a neighborhood of q. We may assume each c5x is small enough

to ensure that B(x, S te ) C S. Since no degenerate cone contains q, we have

SOL(q, M) < oo and, thus, fM' (q) < oo. Therefore, we may select each

S small enough so that if x y, then B(x, 5) l B(y, Sy ) _ 0. We may

now select 6 > 0 small enough to ensure that B(q, e) C fM (B(x, S,,)) for

each x E JJ'(q). We may also select e > 0 small enough to ensure that

the only complementary cones intersecting B(q, e) are those which contain

q. Thus, as fM is injective on Sx for each x E fM'(q), we conclude that

if fM (y) E B(q, e), then y E B(x,) for some x E fM1 (q). Hence, letting

k = f '(q)^, we have l ffl (q') = k for all q' E B(q,e). As fM'(q _
SOL(q M), the theorem follows. ❑

6.6 Matrix Classes Revisited

In Chapter 3 we defined several matrix classes and discussed their prop-

erties within the context of the LCP. Some properties were geometric in

nature. For example: M E Q if and only if K(M) is all of space, M E Q0

if and only if K(M) is convex, and M is column sufficient if and only if

SOL(q, M) is convex for each vector q. However, in Chapter 3 we did not

emphasize the geometric aspect of the properties we established.

In earlier sections of this chapter, we uncovered some further geometric

properties of different matrix classes. For example: M E Ro \ Q implies

deg M = 0, M E R implies deg M = 1, and M E L implies the strongly de-

generate complementary cones relative to M are in the boundary of K(M).
However, this time our emphasis was on the underlying LCP geometry and

not on examining the properties of specific matrix classes.

In this section we will bring these lines of inquiry together. Specifically,

a close examination of the geometry we have developed suggests that it

would be fruitful to define and examine certain matrix classes. It is in this

direction that we will now turn our attention.

From the standpoint of the linear complementarity problem, a partic-

ularly simple and familiar matrix class is the P-matrices. We have not

explicitly considered the geometry of this class and so we will do well to

begin this section by examining it. Theorem 3.3.7 characterizes the class
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P as those matrices M E Rn xn for which SOL(q, M) = 1 for all vectors

q C R. This implies that the interior of any full complementary cone

intersects no other complementary cone. In addition, we see that every

complementary cone is full and (from 6.2.10) that every facet is proper.

Obviously, we must have K(M) = R. Thus, geometrically, a matrix is

in P if every complementary cone is nondegenerate and if the complemen-

tary cones partition R. Therefore, both algebraically and geometrically,

the P-matrices provide us with a simple and intuitive structure. Using

the P-matrices as a starting point, we will now investigate some possible

generalizations to see what further patterns we can uncover.

In a first attempt at developing a generalization of the class P, it would

be natural to investigate those matrices M E Rf' X Th for which there exists

a fixed positive integer k such that SOL(q, M) = k for all q E RTh. The

first thing to notice is that we must have k < oo. To see this, note that

Corollary 6.1.9 and Theorem 6.1.12 imply that the set of q C Rn which

are not contained in any degenerate complementary cone is dense in R.

For any q in this set we have SOL(q, M) <2 as each full complementary

cone can contribute at most one solution to the LCP (q, M). Therefore, in

any nonempty open set in R7 , there is a q for which SOL(q, M) < oo.

Unfortunately, we now quickly deduce that if I SOL(q, M) = k for all

q E R, then k = 1 and, so, we have not gotten away from the class P.

All we need do is observe that SOL(0, M) is a cone. Therefore, either

SOL(0, M) = {0} or SOL(0, M)I = oo. The latter case we have ruled out

and the former case implies k = 1.

The reader may feel it is somewhat unfair to use the special case where

q = 0 to dismiss what might otherwise prove to be a useful extension of

the class P. As it happens, this line of generalization still fails to provide

more than the P-matrices even when only nonzero q are considered.

6.6.1 Theorem. Let M E Rn"n be given. If there is a positive integer k

such that SOL(q, M)J = k for all nonzero q E R, then k = 1 and M e P.

Proof. The case for n = 1 is trivial, so we will assume n> 1.

Theorem 6.1.27 states that SOL(q, M)I = no for any q in the relative

interior of a degenerate complementary cone. If any degenerate cones exist,

then degenerate cones with dimension n — 1 exist (see Exercise 6.10.18).
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Such a degenerate cone would have nonzero points in its relative interior.

Yet we must have k < oc since, as noted earlier, in any nonempty open set

in RTh there exists a q for which SOL(q, M) < oo. Hence, there can be no

degenerate complementary cones relative to M.

Since all complementary cones are full, all facets must be either proper

or reflecting. Suppose pos C(ce).1 is a reflecting facet. Since pos C(o).
is (n — 1) -dimensional and since C(M) is contained in the finite union of

(n — 2)-dimensional subspaces, then pos C(cti). Z \ G(M) is nonempty.

Select q E pos C(a).r \ C(M). Clearly, q 0. Let H and S be as

described in Theorem 6.2.4, where pos C(a).z takes the place of F. Let

B+ and B — be the two open hemiballs which are the connected components

of B(q, 5) \ H. As pos C(uti).r is assumed to be reflecting, Theorem 6.2.12

implies that one of these hemiballs, say B+, is contained in both pos C(u )

and pos C(cti A {i }).

Select q' E B+ with q' y4 0. We claim that any complementary cone

containing q must contain q'. To see this, suppose pos C(ß) contains q
but not q'. The boundary of pos C(/3) must intersect B(q, 5) and, thus,

Theorem 6.2.4 implies that H is a supporting hyperplane to pos C(ß). In

addition, Theorem 6.2.12 implies that pos C(ß) contains exactly one of

B+ and B. As q' 0 pos C(/3), we have B — C pos C(13). Yet, as both

pos C(a) and pos C(cti A {i }) contain B+, it follows that the vectors I. i and

are contained in the open halfspace on the opposite side of H from

pos C(ß). This is not possible as one of these vectors is a generator for

pos C(/3). Therefore, pos C(/3) cannot exist and our claim is shown.

As q' E B+, Theorem 6.2.4 implies that if it is contained in a comple-

mentary cone, then it is contained in the interior of the cone. Therefore,

each complementary cone containing q' is associated with a distinct solu-

tion to (q', M). Also, we know that each solution to (q, M) is associated

with some complementary cone containing q, and that each complementary

cone is associated with at most one solution to (q, M). Thus, each com-

plementary cone containing q must be associated with a distinct solution

to (q, M) otherwise SOL(q, M) < SOL(q', M) which would be a contra-

diction. However, pos C(cr) and pos C(ci A {i}) contain q in their common

facet and, hence, they are associated with the same solution to (q, M). We

conclude that pos C(a).1 cannot exist; there can be no reflecting facets.
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We now know that all the facets of all the complementary cones relative

to M are proper. By an argument similar to the one given in the proof

of Theorem 6.5.12, we conclude that every complementary cone of M has

the same index. Since the nonnegative orthant always has an index of +1,

it follows that M E P. ❑

The previous theorem shows that the LCP is a bit less flexible than one

might have imagined. We have failed in our first attempt to uncover a new

and interesting matrix class using the P-matrices as a foundation on which

to generalize. However, we have learned something about the geometry of

the LCP, which is our primary goal.

In our next attempt to generalize beyond the class P, we will work

directly from the definition. In essence, a matrix is in P if it is nondegen-

erate and if every complementary cone has the same index. Suppose we

allow exactly one complementary cone to have an index opposite to all the

others. With this in mind, we are lead to the following.

6.6.2 Definition. A matrix M E Rn x fl is said to belong to the class N if
all its principal minors (other than det Moo) are negative. Members of this

class are called N-matrices.

The class N seems reasonably similar to the class P in definition. One

would hope that the geometry associated with the N-matrices is not too

complex and illuminates the structure of the LCP. As we will now demon-

strate, this turns out to be the case. As it happens, there are two distinct

types of N-matrices. This, by itself, is interesting and provides insight into

the geometry of the LCP.

6.6.3 Theorem. Given M E N n RnXT if M < 0, then deg M = 0 and

(a) SOL(q, M)) = 0, if q 0,

(b) SOL(q, M) = 2, if q > 0,

(c) SOL(q,M) = 1,ifq>0andq 0.

Proof. If qz < 0, then (Mz + q)i <0 for any z > 0. Thus, if q 0, then

the LCP (q, M) is not feasible. This proves part (a). In addition, if M has

a well-defined degree, then deg M = 0. However, it is clear that N C R0 ,

thus M has a well-defined degree.
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Suppose q> 0 and q 1C(M). We must have deg(q) = 0. Yet, deg(q)

is the sum of the indexes of the complementary cones containing q. The

nonnegative orthant contains q and contributes an index of +1 to its degree.

All the other complementary cones have an index of —1. Hence, exactly

one other complementary cone contains q. Thus, SOL(q, M) = 2.

Suppose q> 0. Clearly, any complementary cone containing q is full as

there are no degenerate complementary cones. Also, any facet containing

q is proper. This follows as the only complementary cone with a positive

index is the nonnegative orthant and, thus, the only reflecting facets are

the facets of the nonnegative orthant. All other facets are proper. We may

now invoke Theorem 6.5.12 to conclude that there is some e > 0 such

that for all q' E B(q, c) we have I SOL(q', M) = I SOL(q, M) ^. By Theorem
6.1.12, for any e > 0, there must exist some q' E B(q, e) with q' > 0 and

q' K(M). Therefore, SOL(q, M) = 2.

Suppose q > 0 and q 0. Clearly, (w, z) = (q, 0) is a solution to the

LCP (q, M). If M < 0, then no other solution is possible. The reason is

that qj = 0 for some i E {1, .. .‚n}.  Given M < 0, if any element of z > 0
was positive, then (Mz + q); < 0. We will now show that M < 0 and this

will complete the proof.

As M E N, no element of M can be zero. To see this, note that the

diagonal elements must be negative. Given this, if i j and mzj = 0,

then det M. > 0 where a = {i, j }. Thus, M has no zero elements and, as

M < 0, we conclude that M < 0. ❑

6.6.4 Theorem. Given M e N fl RT', if M 0, then deg M = —1 and

(a) SOL(q, M) = 1, if q 0,

(b) SOL(q, M) = 3, if q > 0,

(c) SOL(q, M) = 1, if q > 0, q 0, and Mca 0 where cti = supp q,

(d) SOL(q, M) = 2, if q > 0, q 0, and Mac, < 0 where a = supp q.

Proof. Again, as M E N, all complementary cones are full and deg M
exists. Since M 0, some complementary cone contains a point outside of

R. Therefore, part of the interior of that complementary cone is outside

of R+. By Theorem 6.1.12, this complementary cone contains a point q
which is in neither R nor K(M). As q K(M), deg(q) exists. As q V R+,
all complementary cones containing q have a negative index. Since at least
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one complementary cone does contain q, we conclude that deg(q) < 0.

Hence, deg M <0 and, thus, M E Q.
As M E Q, Proposition 3.1.5 implies the existence of an x E RTh

where x > 0 and Mx > 0. Consider the LCP (—Mx, M). Obviously,

(w, z) = (0, x) is a solution to this LCP. Suppose (w, z) is another solution

to the LCP (—Mx, M). As —Mx < 0, we cannot have z 0. Thus, for

some iE {1, ...,n}, wehave wz=0. Consider S={xER':x2 <0}. We

see that S is a semiorthant which does not contain the nonnegative orthant.

Thus, all orthants in S have the same index. We may now invoke Theorem

6.5.10 to show that fM is injective on S. As —x and w — z are both in

S, we cannot have that both (0, x) and (w, z) are solutions of the LCP

(—Mx, M). We may conclude that SOL(—Mx, M) = 1. By Theorem

6.1.12 and the fact that M is nonsingular, we may assume —Mx

Therefore, it must be that deg(—Mx) = —1 and, hence, deg M = —1.

Suppose q 0 and q 1C(M). We must have deg(q) = —1. As q V R+,

any complementary cone containing q must have an index of —1. Thus,

exactly one complementary cone contains q and, so, SOL(q, M) = 1.

Suppose q > 0 and q /(M). Again, we must have deg(q) = —1.

Notice, q E R+ and the index of the nonnegative orthant is +1. Also, any

other complementary cone containing q will have an index of —1. Thus,

exactly three complementary cones contain q and, so, SOL(q, M) I = 3.

Suppose q 0. As mentioned in the proof of Theorem 6.6.3, the only

reflecting facets are the facets of the nonnegative orthant. All other facets

are proper. Thus, all complementary cones containing q are nondegener-

ate and all facets containing q are proper. Hence, by Theorem 6.5.12,

there is some e > 0 such that for all q' E B(q, e) we have SOL(q', M) =

SOL(q, M) ^. By 6.1.12, there must exist some q' E B(q, e) with q' 0

and q' K(M). Therefore, SOL(q, M) = 1. An argument similar to the

one given in this paragraph will show that q >0 implies SOL(q, M) = 3.

Suppose q > 0 and q 0. We know (w, z) = (q, 0) is one solution of the

LCP (q, M). Suppose (w', z') is another solution. We must have z' 0.

Thus, using the notation of 6.5.2, the semiorthant Sr ', with x' = w' — z',
does not contain the nonnegative orthant. Hence, all orthants within S,, ,

have the same index. By Theorem 6.5.10, fM is injective on Si '. Further,

for any E > 0, the set fM(B(x', e)) contains an open ball around q.
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Suppose there is a third solution to (q, M), say (w", z"). An argument

similar to the above would show that, for any S > 0, the set fM (B(x", 6)),

with x" = w" — z", contains an open ball around q. Since fM is injective

on 5x , , we have x" Sr '. Thus, we may assume B(x', e) n B(x", 6) = 0.
However, all this implies that SOL(q, M) > 2 for some point q 0 close

to q. This cannot happen, so the LCP (q, M) cannot have a third solution.

Let a = supp q and suppose MIXE 0. Clearly, M IX E N as M E N.

From what we have so far shown, Maa E Q. Thus, Corollary 6.5.6 implies

that for every S > 0 the set fM (B(q, 6)) contains an open ball around q.

Since fM is injective on S. , , we have q and, thus, we may assume

B(x', s) f1 B(q, 6) = 0. As before, this implies that I SOL(q, M) I > 2 for

some point q 0 close to q. This cannot happen, so (w', z') cannot exist if

M IX 0. Part (c) now follows.

The only thing left to prove is part (d). Suppose MIXE < 0. By Theorem

6.6.3, M Q. Hence, by Theorem 6.5.5, fM (Sq) does not cover a

neighborhood of q. Therefore, we can find a sequence of points {qi } such

that limn — ,, qi = q and q fM(Sq ) for all i. As M E Q, there exists

an x 2 for each qi such that fM(xz) = q'. We may assume the sequence

{q'} is bounded and, as M is nondegenerate, this implies the sequence

{x'} is bounded. Therefore, let x be a limit point of {x i }. By continuity,

fM (x) q. Yet x q as q E int SQ and x Sq for all i. This implies that

(x+, x — ) is a solution to the LCP (q, M) which is different from (q, 0). Part

(d) now follows. ❑

Just before we introduced Definition 6.6.2, we had intended to study

nondegenerate matrices in which every complementary cone had the same

index except for exactly one such cone. (This was in an attempt to gener-

alize beyond the class P.) The N-matrices certainly fall into this category,

but it would seem that other matrices do as well. Suppose we had a matrix

M which was nondegenerate and all the complementary cones relative to

M had the same index except for pos C(cti). By Theorem 4.1.2, if we pivot

on the matrix Maa , the resulting matrix we get would be an N-matrix.

Thus, in a real sense, the N-matrices tell us all we need to know about

nondegenerate matrices in which every complementary cone, but one, has

the same index.
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We should stop for a moment and consider the use we have just made

of the concept of principal pivotal transforms. If M is the principal pivotal

transform of M gotten by pivoting on Maa , then the material in Sections

2.3 and 4.1 indicates that for each ß C {1, ... , n} the complementary cones

pos CM (ß) and pos CM (a Aß) have a strong correspondence. In some sense,

we rearrange the complementary cones so that posCm(a) now acts as the

nonnegative orthant, but the underlying geometry of the complementary

cones is very much the same. We made heavy use of this idea in the

previous section, particularly in Lemma 6.5.8 and Theorem 6.5.10. We

first did our local analysis for a point in the nonnegative orthant and used

the correspondence between a matrix and its principal pivotal transforms

to extend our results to a point in any full complementary cone. The basic

procedure was to consider the full complementary cone pos CM (a), then

pivot on Maa to obtain the pivotal transform M, and finally interpret the

results we previously obtained for pos CM(0) in the context of pos CM(a).
At this point, one begins to wonder about the matrix classes we have

so far encountered. Which of them are closed under the process of taking

principal pivotal transformations? While considering this question, it will

be convenient to give this distinction a name.

6.6.5 Definition. Let Y denote a (fixed) class of square matrices. Let

M E Rn x fl be given. Suppose for all a C {1, ..., n} for which det MMa 0,

including a = 0, the pivotal transform of M with pivot Maa is a Y-matrix.

We then say that M is fully-Y. The class of fully-Y matrices is denoted

Yf• If Y = Yf, then the matrix class Y is said to be full.

Using Theorem 4.1.2, it is clear that the class of P-matrices is full and

the class of N-matrices is not full. In fact, given this distinction, the way in

which we have approached the study of these matrix classes seems typical.

If a matrix class is full, we often use this fact when deriving properties of

the class. If a matrix class is not full, we can often extend the results we

prove about the class to matrices which are principal pivotal transforms of

members of the class. For example, the matrix class R is not full as the

matrix
12

M =

	

	 (1)
21

is d-regular, for any d > 0, but M — ' R. The result given in Theorem
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6.3.10 concerns R-matrices. In essence, Corollary 6.3.11 extends this

result to include a more general class of matrices which, as (1) shows, is

also not full. Finally, Corollary 6.3.12 extends these results to include the

principal pivotal transforms of the (generalized) R-matrices.

The notion of a full matrix class gives us a direction in which to search

for new matrix classes and geometric insight. What if we took a matrix

class Y, which is not full, and considered the class Yf? Would the added

restriction produce anything interesting? The answer depends, of course,

on the matrix class Y which is used. However, of the classes we have

studied which are not full, there is a particularly good candidate to use as

the matrix class Y. This is the class of semimonotone matrices which, as

(1) shows, is not full. Part (b) of Theorem 3.9.3 characterizes the class

Eo as those matrices for which no (other) complementary cone intersects

the interior of the nonnegative orthant. Since, intuitively, a matrix class

is full if anything true for one full complementary cone is true for all full

complementary cones, it would seem that a fully-semimonotone matrix

would be characterized by having no (other) complementary cone intersect

the interior of any given full complementary cone. Geometrically, this

would be an interesting property for a matrix class to have and, indeed,

this characterization holds.

6.6.6 Theorem. Let M E Rn X n be given. The matrix M is fully-semi-

monotone (M e Eö) if and only if for each full complementary cone

posCm(a) no other complementary cone intersects int(posCM(a)).

Proof. The cone pos CM (a) is full if and only if det Maa 0. Let M be

the principal pivotal transform of M with pivot block M. From Theorem

3.9.3(b), M E Eo if and only if no (other) complementary cone relative

to M intersects int(pos C(0)). In other words, M E Eo if and only if

If '(q)^ =1 forall q>0.
It is easy to check that CI(a) = (CI(a)) — ' and CM(a) = (CM(a)) -1

Thus, by Lemma 6.5.8, f (x) = (CM(a)) — ' fM(CI(cr)x). Hence, M E Eo

if and only if fMl (CM (a)q) = 1 for all q > 0. In other words, M E Eo

if and only if no (other) complementary cone relative to M intersects the

interior of pos CM (n). The theorem now follows. ❑

6.6.7 Corollary. Let M E Rfl X n be given. If M E Po , then M E Eö.
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Proof. Part (b) of Theorem 3.4.2 shows that P0 C E0 . Using Theorem

4.1.2 we deduce that P0 is a full class. The corollary now follows. ❑

Although we did not explicitly set out to do so, our characterization in

Theorem 6.6.6 made the class Eö look like an extension of the class P. A

matrix M is in P if and only if the LCP (q, M) has a unique solution for

every q. A matrix M is in Eö if and only if the LCP (q, M) has a unique

solution for every q contained in the interior of a full complementary cone.

This way of thinking about P and Eö should bring to mind the ma-

trix class U. According to Definition 4.1.12, a matrix M is in U if and

only if the LCP (q, M) has a unique solution for every q contained in

int K(M). Clearly, the interior of any full complementary cone is contained

in int K(M). Thus, we have the inclusions P C U C E. The example

given in Remark 4.1.14 shows that the second inclusion is proper. The

zero matrix shows that the first inclusion is proper.

One might wonder if there are any other interesting matrix classes

within this line of inclusions. For example, consider the class of matrices

M for which the LCP (q, M) has a unique solution for every q contained

in K(M). Clearly, this class contains the P-matrices and is contained by

the U-matrices. Unfortunately, as the reader is essentially asked to show

in Exercise 6.10.23, this class is precisely the P-matrices. Thus, we will

not obtain a new matrix class with this approach. However, there does

exist an interesting matrix class strictly between the P-matrices and the

U-matrices.

6.6.8 Definition. A matrix M E Rn"n is said to belong to the class W if,

for any index set a C { 1, ... , n}, the complementary cones pos CM (o) and

pos CM (ca) intersect only at the origin. Members of this class are called

W-matrices.

It is not hard to show that P C W, and the reader is asked to do so

in Exercise 6.10.24. To show that W C U is a bit more involved. We

first need to prove that the matrix class W is both full and complete. The

reader is asked to show that W is full in Exercise 6.10.25. We will now

show that W is complete.

6.6.9 Theorem. The matrix class W is complete.
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Proof. Let M E W n RT"n. Clearly, all principal submatrices of M

are in W if n = 1. Assume, by induction, that the theorem holds for all

(n — 1) x (n — 1) real matrices. It is easy to see that the induction will

be complete, and the theorem will follow, if we can show that Mn,n, E W

given that M E W.

Let a C {1,. ..,n— 1} and let ät _ {l,. ..,n— 1} \ a. Suppose we

have q E (pos CM,^n (oz)) n (pos CMnn (a)). This implies the existence of

w, z, w, z E R ' such that

q = w —Mnnz = w —Mnnz, (2)

where wa = za = 0 and w IX = = 0. We must show that q = 0.

Let A = M,,,, n (z — z). Notice that A is a scalar. Let A+ = max(O, A)

and let A — = max(0, —A). Thus, A — — Mn , n z = A+ — M,,,, nz. Using this

and (2) gives

(w, A — ) M(z, 0) = (w, A+) — M(z, 0) , (3)

where we have written the n-vectors out in a convenient partitioned form.

Equation (3) shows that the n-vector (w, ) —) — M(z, 0) is contained in

(posCm(ß)) n (posCM(0)), where /3 = a if A — > 0, and ß = a U {n} if
A — = 0. Since M E W, this n-vector is zero. This implies, using (2) and

(3), that q = 0. The theorem now follows. ❑

It is now relatively easy to show W C Eo. This brings us closer to our

goal of showing W C U.

6.6.10 Theorem. Let M E RnXn be given. If M E W, then M E Eö.

Proof. Since W is a full matrix class, we need only show that M E W

implies M E E0 . Suppose M E0. By Theorem 3.9.3, there is an index

set a C {1, . .. , n} and a vector ua > 0 such that MMa xa < 0. This means

(pos CMaa (0)) n (pos CM. a (a)) {0}. Thus, M,, V W. Theorem 6.6.9
now implies M W. This completes the proof. ❑

According to Theorem 6.1.27, if q is in the relative interior of a de-

generate complementary cone, then SOL(q, M) = co. Thus, if M E U,

then no degenerate complementary cone intersects int K(M). The next

two theorems show that this is the case for M E W.
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6.6.11 Theorem. Let M e R"" ' be given. If M E W, then no comple-

mentary cone relative to M is weakly degenerate.

Proof. Suppose that pos C(cv) is weakly degenerate. There is then an

x E R such that C(cti)x = 0 and C(a)x+ 0. This implies C(cti)x+ _

C(c)x- .

Let ß = cti A supp x+. We then have

C(ß)x = C(a)x— = C(c^)x + = C(ß)x+

Hence, pos C(ß) and pos C(ß) intersect at a point other than the origin.

This contradicts the fact that M E W. The theorem follows. ❑

6.6.12 Theorem. Let M E R"L x n be given. If M E W, then no strongly

degenerate complementary cone relative to M intersects int K(M).

Proof. Suppose q E int K(M) and q E pos C(a) where pos C(a) is strongly

degenerate. Let s = dim(pos C(c)). Since pos C(c) is degenerate, Propo-

sition 2.9.14 implies s <n.

Since q E int K(M), we may select an e > 0 small enough so that

B(q, a) C int K(M). As the complementary cones are closed, we may select

e > 0 small enough so that the only complementary cones intersecting

B(q, e) are the ones which contain q. As the relative interior of pos C(a)

intersects B(q, s), Proposition 2.9.14 shows that pos C(a) f1 B(q, a) has

dimension equal to s.

Consider the union of the nondegenerate complementary cones. It is

easy to show this union contains int K(M) and, thus, contains B(q, e).

Hence, the intersection of this union with pos C(c) is a set of dimension

s. Proposition 2.9.16 now implies that there is a nondegenerate com-

plementary cone, say pos C(ß), such that q E pos C(o) fl pos C(ß) and

dim(pos C(ce) f1 pos C(ß)) = S.

We know from Theorem 6.6.10 that M E Ei'. Thus Theorem 6.6.6

implies that

pos C(a) f1 pos C(ß) C bd(pos C(ß)).

As the intersection is convex, there must be an i E {1, .. ., n} such that

pos C(c) n pos C(ß) c pos C(ß).ß.
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Let H equal the affine hull of the facet pos C(3). 1 . Note, dim(H) = n — 1.

As pos C(a) fl pos C(ß) has the same dimension as pos C(a), we conclude

that posC(a) C H. Thus, C(a).2 E H. Therefore, C(a). 2 C(8). 2 .

Hence, pos C(ß A {i}) is a degenerate cone and is contained in H. By

Theorem 6.6.11, pos C(ß A {i}) must be strongly degenerate. As the facet

pos C(ß)., must contain q, and as the facet is contained in pos C(ß 0 {i }),

we lose no generality in assuming a = ß A {i}.

Since dim(pos C( 13). 1) = n — 1 and since L(M) is contained in the finite

union of subspaces with dimension not exceeding n — 2, we may assume

q E pos C(ß). 1 \L (M). We may invoke Theorem 6.2.4 with H as given here

and with e > 0 assumed small enough to be used for S. Let B+ and B- be

the two open hemiballs which are the connected components of B(q, e) \ H.

The cone pos C(ß) will contain exactly one of the hemiballs, say B+, and

will be disjoint from the other. Since B(q, a) is in the union of the full

complementary cones, some full complementary cone, say pos C(^Y), must

contain B. Yet, Theorem 6.6.6 implies that pos C(y) cannot contain

B. Thus, the boundary of pos C(y) intersects B(q, s) and we deduce

from Theorem 6.2.4 that some facet, say pos C('y).5 is contained in H.

Notice, if we consider the open halfspaces defined by H, then C('y). is in

the halfspace containing B. Also, C(ß).% is in the halfspace containing

B. Since C(a).2 and C(a). are both in H, we conclude that i ; j and

{i,j}CßA -y.

As q £(M), we have q e ri(pos C(ß). 1) n ri(pos C(y). j). Thus, there

exist positive vectors uz and v5 such that q = C(ß). 1u2 = C(y).^v^. As

pos 0(a) is strongly degenerate there is an x e R' such that 0 x > 0 and

C(a)x = 0. As C(a).1 = C(ß).^, these columns are linearly independent

and, thus, we may assume x2 = 1. Thus, C(a). = —C(a).1x2. Since

{i, j} C ß A y, we know C(a). i = C('y).i. Hence, letting _ {i, j }, we

have

C(a).1u1 = C(ß)•ruz = C('Y). v = C('Y).^v + vzC('Y).

= C('Y).^v + vzC(a).2 = C('Y).^v — vzC(a).zx z

Therefore, C(a).r (ur + vix z) = C(y). v^, which gives us

	C(a).1 (ur + vzxz) + C(ß).i = C(7).^v, + C(ß).z . 	 (4)

Since C(a).1 = C(ß).z , and since u1 + v1x1 > 0, the left side of (4) is a
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point in the interior of pos C(/3). As i E ß A y, the right side of (4) is a

point in pos C(y A {i}). Since i 0 j and j E ß 0 y, we know ß ^ y A {i }.
Thus, a point in the interior of a full complementary cone is contained in

another complementary cone. As M E Eö, this violates 6.6.6. Thus, q

and pos C(c) cannot exist and the theorem holds. ❑

We can now finally prove our main result concerning W-matrices.

6.6.13 Theorem. Let M E Rn X n be given. If M E W, then M E U.

Proof. Consider any q E int K(M). By Theorems 6.6.11 and 6.6.12, we

know that q is not contained in any degenerate complementary cones. Part

(d) of Theorem 6.2.25 indicates that if there are any reflecting facets, then

there exists a point contained in the interiors of two full complementary

cones. However, Theorems 6.6.6 and 6.6.10 forbid this. Hence, all the

cones containing q must be full and all the facets containing q must be

proper. Thus, Theorem 6.5.12 implies that, for some r > 0 small enough,

if q' E B(q, r), then SOL(q', M)) = ^ SOL(q, M)^.

From Theorem 6.1.12 we deduce that there are points in K(M) \ 1C(M)

within B(q, e). Since any such point, q', is in the interior of a full comple-

mentary cone, Theorems 6.6.6 and 6.6.10 imply that q' is in no other com-

plementary cone and, hence, SOL(q', M) = 1. Thus, SOL(q, M) = 1.

Therefore, M E U. ❑

After all the work we did to obtain the preliminary results (Theorems

6.6.9 through 6.6.12), the proof of Theorem 6.6.13 seems rather short.

Perhaps this is a consequence of our preliminary work. In any case, we

should spend a moment considering exactly what the proof of Theorem

6.6.13 is doing. In essence, the proof points out that if the interior of K(M)

does not intersect any degenerate cone or any reflecting facet, then Theorem

6.5.12 can be used to show that the LCP (q, M) has the same number of

solutions around any q E int K(M). This property seems distinctive enough

to be given a name.

6.6.14 Definition. Let M E Rn"n be given. The cone K(M) is said to

be regular if no degenerate cone relative to M intersects int K(M) and if

no reflecting facet relative to M intersects int K(M).
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6.6.15 Remark. The reader should be aware that the notion of regular,

as given in Definition 6.6.14, should not be confused with the notion of

a regular matrix, as given in Definition 3.9.20. Whether or not M is a

regular matrix does not imply or prevent K(M) from being regular.

As we shall see in a moment, the preceding definition of regular inspires

the definition of the following matrix class.

6.6.16 Definition. Let k be a positive integer. A matrix M E R"'' is

said to belong to the class INSk if SOL(q, M) = k for all q E int K(M).

We define the matrix class INS to be the union of the matrix classes

INSk over all positive integers k. Members of the class INSk are called

INS matrices. Members of the class INS are called INS-matrices.

6.6.17 Remark. The notation INS is an acronym for the phrase: Invari-

ant Number of Solutions.

6.6.18 Remark. It follows by definition that INS, = U. Therefore, we

may view the INS-matrices as just a generalization of the U-matrices.

We now have the definitions needed to exploit the ideas in the proof of

Theorem 6.6.13. The following results show that the class INS is closely

connected with the geometric notion of K(M) being regular.

6.6.19 Lemma. The matrix class INS is empty.

Proof. Let M E Rn"n be given. Just before Theorem 6.6.1 we noted that

every nonempty open set in Rn contains a q such that SOL(q, M) < oo.

Thus, as int K(M) is open and nonempty, it contains such a q. Therefore,

NI V INS and the proof is complete. ❑

6.6.20 Theorem. Let M E R" ' be given. If M E INS, then K(M) is

regular.

Proof. Assume M E INS. Suppose pos C(a) is a degenerate com-

plementary cone. Since intK(M) is open, if pos C(cti) (1 intK(M)	 0,
then ri(pos C(cti)) f1 int K(M)	 0. Hence, by Theorem 6.1.27, there is a

q E int K(M) for which SOL(q, M) = co. Invoking Lemma 6.6.19, we

conclude that no degenerate cone can intersect int K(M).
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Suppose q E int K(M) 1pos C(cr).r where pos C(a). r is a reflecting facet.

Note that, as no complementary cone containing q is degenerate, we have

dim(pos C(c ).2) = n — 1. Since £(M) is contained in the finite union of

(n — 2)-dimensional subspaces, we may use Proposition 2.9.17 to show

pos C(ci ). z \ L (M) is dense in pos C(a). z . Thus, as int K(M) is open, we

may assume that q

We may now use the same argument given in the proof of Theorem

6.6.1 to show there is a point q' arbitrarily close to q for which we have

SOL(q, M) < I SOL(q', M) ^. Since we may take q' to be in the interior

of K(M), we have a contradiction. Thus, no reflecting facet can intersect

int K(M). Therefore, K(M) is regular. ❑

6.6.21 Theorem. Let M e Rnxn be given and suppose K(M) is regular.

If S is a connected component of int K(M), then there is a positive integer

k such that SOL(q, M) = k for all q e S.

Proof. Let q° and q l be two points in S. We know there exists a path qt
between q° and q 1 that is contained in S. Let

s sup{ t E [0, 1 ] :1 SOL( g t, M) I = I SOL(q°, M)1 } .

As K(M) is regular, qs is contained in no degenerate complementary cones

and no reflecting facets. Thus, Theorem 6.5.12 implies that, for some

E > 0 small enough, if q' e B(q^, e), then SOL(q', M) = ^ SOL(gs, M).

We may conclude that s = 1 and SOL(q', M) = ^ SOL(q°, M) I.

We have shown there is some integer k such that SOL(q, M) = k for

all q E S. As S C K(M), we must have k > 0. As S is nonempty and

open, an argument similar to the one given in the proof of Lemma 6.6.19

shows that k < co. ❑

6.6.22 Corollary. Let M C R" be given and suppose int K(M) is con-

nected. It follows that M e INS if and only if K(M) is regular. o

The INS-matrices bring us back to the beginning of this section. In

our first attempt to define a matrix class which is in some sense a natural

extension of the P-matrices we suggested using what we now realize to

be the matrix class INS fl Q. However, Theorem 6.6.1 showed us that

INS n Q = P and, so, we continued our investigation in other directions.
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Thus, we have returned to our starting point with the matrix class INS,
which is a natural extension of the P-matrices in the direction which we

initially tried investigating.

Before we end this section, there is a question concerning matrix classes

and the geometry of the LCP which we should address. In fact, it is a

question which should have arisen well before now. A key concept we

introduced in this chapter is that of the degree of a matrix. Another key

concept used throughout this book is that of a principal pivotal transform

of a matrix. It seems obvious to ask how the process of taking a principal

pivotal transform affects the degree of a matrix. We will now answer this

question in the final result of this section.

6.6.23 Theorem. Let M E Ro fl RnXTh be given. Suppose det M,a 0,
for some a C {1, ... , n}, and let M be the principal pivotal transform of

M with Maa as pivot block. It follows that M C R0 . Furthermore, we

have deg M = deg M x sgn(det Maa ). In particular, deg M = ^ deg M.

Proof. As M E R0 , we know that f 1 (0) = {0}. By Lemma 6.5.8, we

have fM(CI (a)x) = CM(a)fM(x) for all x E Rn. We know CI(a) and

CM(a) are nonsingular (see Remark 6.5.9). From this we may conclude

that f f' (0) _ {0}. In other words, M E R0 .
Select q K(M). From (2.3.8), (2.3.9), (2.3.10), (2.3.11) and Proposi-

tion 2.3.3, we see that (w, z) solves the LCP (q, M) if and only if (w, z)
solves the LCP (q, M) where (wa , wa , za , z^) = (zu , wa , wa , za ) and q =
CM(a)q. Since q 0 IC(M), if (w, z) solves the LCP (q, M), then w + z>
0. Furthermore, letting ß = supp z, we have q C pos CM (ß) and, so,

det M,ßß 0. Therefore, using Theorem 4.1.2 and letting y = a A ß, we

may deduce that w + z > 0 and that det 1t[  det Miß / det Maa 0,
where -y = supp z. We conclude that q 1C(M).

As det ]I = det Mßß/ det Maa , it is apparent that

indM (w, z) = indM (w, z) x sgn(det Maa)

Since this is true for each corresponding pair of solutions to (q, M) and

(q, M), we finally derive that

deg M = deg M x sgn(det Maa). ❑
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6.7 Superfluous Matrices

In the previous section we discussed several matrix classes which have

strong ties with the geometry of the linear complementarity problem. There

is one particular matrix class which we failed to mention in the previous

section but which is quite interesting from the standpoint of LCP geometry.

This is the class of superfluous matrices. We briefly mentioned this class

in Section 6.3. We also stated that superfluous matrices of arbitrarily large

degree existed. The main goal of this section is to prove that if there exists

a matrix with degree k, then there exists a superfluous matrix with degree

k. In doing so we will gain more insight into the geometry of the LCP.

First, we formally define the class of superfluous matrices.

6.7.1 Definition. A matrix M E Ro fl R"` x n is said to be superfluous if

for all q 0 1C(M) we have I SOL(q, M)j > deg M.

By attempting to construct a superfluous matrix, the reader should

become convinced that the existence of superfluous matrices is not at all

obvious. They do exist, but constructing one takes a little work.

6.7.2 Theorem. If

—4 3 3 6

3 —4 3 6
M—

3 3 —4 6

6 6 6 —4

then M E Q fl Ro and deg M = 0. Therefore, M is superfluous.

Proof. It is easy to check that M is nondegenerate. Thus, M E Ro and

deg M is well-defined. If q = (-28, 28, —28, 28), then the LCP (q, M) has

exactly two solutions. One solution is w = (0, 0, 0, 112) and z = (2, 10, 2, 0).

This solution is nondegenerate and has an index of +1. The other solution

is w = (14, 70, 14, 0) and z = (0, 0, 0, 7). This solution is nondegenerate

and has an index of —1. Thus, deg(q) = 0 and, hence, deg M = 0. We

must now show M E Q.

Consider the matrix M44 which, since it is a principal submatrix of M,

must be nondegenerate. If qA = (2, —2, 2), then the LCP (q4 i M44) has
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exactly one solution. This solution is w4 = (0, 10, 0) and z4 = (2, 0, 2).

This solution is nondegenerate and has an index of +1. Thus, deg M44 = 1

and, hence, M44 E Q.

Suppose q E R4 and q4 > 0. Let (w4 i z4) be a solution to the LCP

(q4 M44), which must exist as M44 E Q. Set z4 = 0. As M4 ,4 > 0, we

conclude that z provides us with a solution to the LCP (q, M).

Consider the matrix M11 which, since it is a principal submatrix of

M, must be nondegenerate. If qi = (4, —4, 4), then the LCP (qi, M11) has

exactly one solution. This solution is wi = (10, 2, 0) and zi = (0, 0, 1). This

solution is nondegenerate and has an index of —1. Thus, deg M11 = —1

and, hence, M11 E Q.

Suppose q E R4 and ql > 0. Let (wl, zi) be a solution to the LCP

(qi, Mn), which must exist as Mll E Q. Set zl = 0. As M1 , 1 > 0,
we conclude that z provides us with a solution to the LCP (q, M). As

Mll = M22 = M33, we may also conclude that the LCP (q, M) will have a

solution if q2 > 0 or q3 > 0.

To complete the proof, we must show that the LCP (q, M) has a solution

if q < 0. Let cti = {1, 2, 3} and let ß = { 3, 4}. Some calculation gives us

	—1 —3 —3	 0

1	 —3 —1 —3	 0
(CM(CO) -1 = -

14	 —3 —3 —1	 0

	

—42 —42 —42	 14 j

and

10	 0 —24 —21

1 I 	0	 10 —24 —21
(Cvr(ß)) 1 = 10 	I.

0	 0 —2 —3

0	 0 —3 —2

Suppose q < 0 and q pos C(a). This implies q4 < 3(qi + q2 + q3). If

q pos C(/3), then min{10gl,10q2} < 24g3+21q4. Thus, min{10g1, 10g2} <

87q3 + 63(gl + q2), which is impossible as q < 0. Therefore, if q < 0, then

q E pos C(o) U pos C(/3) and, so, the LCP (q, M) has a solution. ❑
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Our original interest in superfluous matrices had to do with Lemke's

method. Given a matrix M, Corollary 6.3.12 suggests that d would be

a good covering vector to use with Lemke's method if d E K(M) \ 1C(M)
and if all the complementary cones containing d have the same index. For

such a d, the artificial variable z0 can never increase without bound. Thus,

this is one less way in which Lemke's method could terminate without

providing a solution to the LCP. As our discussion after Corollary 6.3.12

indicated, no such d can exist for a superfluous matrix. However, our

discussion also indicated that no such d can exist for a matrix M E Ro if

deg M = 0. Therefore, Theorem 6.7.2 does not really answer the question

we raised in Section 6.3. We were really interested in whether there were

any superfluous matrices with a nonzero degree. In Section 6.3 we indicated

that such matrices do exist. We will now prove this is the case.

6.7.3 Theorem. If

—4 3 3 6 6

3 —4 3 6 6

M= 3 3 —4 6 6

6 6 6 —4 6

6 6 6 6 —4

then M is superfluous and deg M = —1.

Proof. It is easy to check that M is nondegenerate. Thus, M E Ro

and deg M is well-defined. If q = (4,-4,4,-4,4), then the LCP (q, M)

has exactly three solutions. One solution is w = (0, 20, 0, 44, 52) and

z = (4, 0, 4, 0, 0). This solution is nondegenerate and has an index of +1.

Another solution is w = (22, 0, 22, 0, 28) and z = (0, 2, 0, 2, 0). This solu-

tion is nondegenerate and has an index of —1. The remaining solution is

w = (10,2, 10, 2, 0) and z = (0, 0, 0, 0, 1). This solution is nondegenerate

and has an index of —1. Thus, deg(q) = —1 and, hence, deg M = —1.

To show that M is superfluous we must show that SOL(q, M) > 1

for every q 0 K(M). Since deg(q) = —1 for every q 0 K(M), if q is in a

complementary cone with index equal to +1, then q must be contained in at

least two additional complementary cones each with index —1. Therefore,

one way to prove SOL(q, M) > 1 for a given q K(M) is to show that q
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is contained in a complementary cone with index equal to +1. We will use

this approach later.

Consider the matrix M. This is the matrix given in Theorem 6.7.2.

Thus, deg M5g = 0 and M55 E Q. This implies that if qg V 1C(M55),

then q5 must be contained in at least two complementary cones relative to

M. Using Theorem 6.1.12 and the fact that complementary cones are

closed, we may conclude that every q5 E R4 is contained in at least two

complementary cones.

Suppose q E R5 and q5 > 0. If (w5 i z5) is a solution to the LCP

(q6, M65), then as M5 ,1 > 0 we may obtain a solution to the LCP (q, M)

by setting z5 = 0 and w = q + Mz. From this we may deduce that as qg

is contained in at least two complementary cones relative to M55, then q is

contained in at least two complementary cones relative to M. In addition,

as M44 = MSS, we may conclude that if q E R5 and q4 > 0, then q is

contained in at least two complementary cones relative to M.

Consider the matrix M11 which, since it is a principal submatrix of M,

must be nondegenerate. If ql = (4, —4, 4, —4), then the LCP (ql, M11) has

exactly two solutions. One solution is wi = (10, 2, 0, 2) and zi = (0, 0, 1, 0).
This solution is nondegenerate and has an index of —1. The other solution is

wi = (22, 0, 28, 0) and zi = (0, 2, 0, 2). This solution is nondegenerate and

has an index of —1. Thus, deg Mil = — 2. It follows that if ql V K(Mi1),

then ql must be contained in at least two complementary cones relative to

M11. Using Theorem 6.1.12 and the fact that complementary cones are

closed, we may conclude that every ql E R4 is contained in at least two

complementary cones.

Suppose q E R5 and ql > 0. If (wl, zi) is a solution to the LCP

(qi, MM1), then as M11 > 0 we may obtain a solution to the LCP (q, M)

by setting z l = 0 and w = q + Mz. From this we may deduce that as qq

is contained in at least two complementary cones relative to M11, then q is

contained in at least two complementary cones relative to M. In addition,

as Mii = M22 = M33, we may conclude that if q E R5 and if either q2 > 0

or q3 > 0, then q is contained in at least two complementary cones relative

to M.

To complete the proof, we must show that the LCP (q, M) has at least

two solutions if q 0 1C(M) and q < 0. Let ci = {1, 2, 3} and let ß = {3, 4}.
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Some calculation gives us

1 —3 —3	 0	 0

	

—3 —1 —3	 0	 0

(CM(a)) i _ 1
	14	

—3 —3 —1	 0	 0

	

—42 —42 —42	 14	 0

	L —42 —42 —42	 0	 14

and

10	 0 —24 —21	 0

0	 10 —24 —21	 0

	(CM(ß))—i = 1 	0 
10

0	 0 —3 —2	 0

0	 0 —30 —30	 10

Suppose q V IC(M) and q < 0. If q E pos C(ci ), then as ind(pos C(c)) = +1

we may conclude that SOL(q, M) > 1. Therefore, let us now make the

additional assumption that q pos C(cti). As q < 0, this assumption is

equivalent to the requirement that min{q4 i q5} < 3(ql + q2 + q3).

Suppose q4 < q5 . If q pos C(ß), then we must have min{10gl, 10g2} <

24q3 +21q4. Thus, min{10g1, 10g2} < 87g3+63(q1+q2), which is impossible

as q < 0. Therefore, q E pos C(ß). It now follows from the symmetry in

the matrix M that q will also be contained in the cones pos C({1, 4}) and

pos C({2, 4}). Hence, SOL(q, M) > 1. If at the start of this paragraph

we had supposed that q4 > q5, instead of q4 < q5 , then from the symmetry

in the matrix M we see that the arguments given here would lead us to

conclude that q was contained in the cones pos C({1, 5}), pos C({2, 5}),

and pos C({3, 5}). Hence, SOL(q, M) > 1. This completes the proof. ❑

At the beginning of this section we stated that our goal was to prove

that if matrices of degree k exist, then superfluous matrices of degree k

exist. This will follow as a corollary after we prove a few simple results.

6.7.4 Theorem. Let M E Ro n Rn"n, q E RTh and cti C { 1, ... , n} be

given. Let ß = ä = {1,. . . , n} \ ci . Suppose Maß = 0 and MQa = 0. That
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is, after an appropriate principal rearrangement,

M_rM^a 
0

IL 0	 Mßß

We then have SOL(q, M)I = ^ SOL(q,, M ) x SOL(q, M00)^. (Note,

oox0 = 0 and ooxk = ocifk>0.) In addition, M,,,,, M,3,3 ERo and

deg M = (deg MIX ,,) (deg Mpj).

Proof. If M. Ro , then there is a za 0 which solves the LCP (0, Maa).

Thus, if we set zß = 0, we obtain a z 0 which solves the LCP (0, M).

This contradicts that M E Ro , thus MMa E Ro . Similarly, Mpp E Ro .

We now make some simple observations. First, (w, z) solves (q, M) if

and only if (wa , z,) solves (q,, MMa ) and (wß, zß) solves (qß, MOO). Clearly,

(w, z) is nondegenerate if and only if both (wa , za ) and (wß, zß) are nonde-

generate. In addition, it is easy to see that ind(w, z) is well-defined if and

only if both ind(w, z,) and ind(wp, zf) are well-defined. Further, if the

indexes are well-defined, then ind(w, z) = ind(w, za ) x ind(wß, zß). The

conclusions of the theorem are now straightforward consequences of these

observations.

6.7.5 Lemma. For any integer k, if there exists an R0-matrix with degree

equal to k, then there exists an R0-matrix with degree equal to —k.

Proof. We have already seen examples of matrices with degrees +1 and —1.

Thus, suppose M E Ro and deg M 1. If M has a principal submatrix

with negative determinant, then we could pivot on this submatrix to obtain

a matrix with degree equal to — deg M (see Theorem 6.6.23). Otherwise,

we have M E P0. Corollary 6.6.7 implies that M e E. Theorem 6.6.6

states that the interior of each full complementary cone intersects no other

complementary cone. Therefore, we must have deg M = 1. This is not

allowed, and the lemma follows. ❑

6.7.6 Remark. Notice, if k 1, then the proof of Lemma 6.7.5 shows

that if there is an n x n R0-matrix of degree k, then there is an n x n

R0-matrix of degree —k.

We can now move on to the main result of this section.
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6.7.7 Corollary. For any integer k, if there exists an R0-matrix with de-

gree equal to k, then there exists a superfluous matrix with degree equal

to k.

Proof. Suppose there exists an R0-matrix with degree equal to k. By

Lemma 6.7.5, we may assume the existence of M E Ro n Rn"n where

deg M = —k. We will define a matrix M E R(n+5) x (n+5) as follows. Let

cti = {1, ... , 5} and ß = {6, ... , n + 5}. Set Maß = 0 and Mßa = 0. Take

Mßß to be M and take JOaa to be the matrix given in Theorem 6.7.3. We

conclude that M E Ro and, from Theorem 6.7.4, that deg(M) = k.

Let q E Rh+ 5 \ K(M) be given. We may assume k 0 as the case

of k = 0 is covered by Theorem 6.7.2. From the proof of Theorem 6.7.4

we see that q (M) if and only if q, K(M) and qß 1C(Mßp).

From Theorem 6.7.3 we have I deg 1\[ < I SOL(q, Maa) Clearly,

I deg MOO I < I SOL(gß, Mßß)1. Thus, using Theorem 6.7.4, we have

deg M = deg Ma x I deg Mßß

< I SOL( q , Maä)I x I SOL(go, Maa)1 = I SOL(q, M)1.

We conclude that M is superfluous. The corollary follows. ❑

Before ending this section, there is a very interesting superfluous matrix

we wish to mention. This matrix partially answers a question which we

have not yet addressed. This is the question of whether or not the set

Q n R' >< is open (or closed) in R >< . In Exercise 6.10.32, the reader is

asked to verify that, for any n > 1, the set Q n Rn X n is not closed in R"'.

The question of whether or not the set Q n Rn"n is open in RT XTh is more

difficult. However, it turns out that Q n R1 ''"n is not open for n = 4. To

see this, consider the matrix

21 25 —27 —36

7 3 —9 36
M =

12 12 —20 0

4 4 —4 —8

In Kelly and Watson (1979) it is shown that M E Q. One can check that

M is nondegenerate and, hence, M e R0 . Some calculation shows that
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if q = (-48, 48, —48, 48), then the LCP (q, M) has exactly two solutions.

One solution is w = (272, 0, 0, 104) and z = (0, 29, 15, 0). This solution

is nondegenerate and has an index of +1. The other solution is w =
(0, 2464, 1008, 0) and z = (88, 0, 0, 50). This solution is nondegenerate and

has an index of —1. Thus, deg M = 0 and M is superfluous.

Let ME E R4x4 be equal to M except that

m14 = -36—e and m24 =36 +E.

Let

qE = (26r, —2e, 3200 — 120r, —8e).

Kelly and Watson (1979) show that if 0 < r < 1, then SOL(gE, ME) = 0.
Thus, M is on the boundary of the set Q n R4x4 and, so, the set Q n R4x4

is not open in R4 x 4

6.8 Bounds on Degree

In the previous section we showed that if a matrix exists with degree

equal to k, then a superfluous matrix exists with degree equal to k. This

does not quite prove the statement we made in Section 6.3 that superfluous

matrices with arbitrarily large degree exist. We still need to show that, in

fact, there are matrices with arbitrarily large degree.

Actually, it is quite easy to show that matrices with arbitrarily large

degree exist. Let M be the matrix given in Theorem 6.7.3. Recall that

in the proof of 6.7.3 we showed deg M11 = — 2. Using M11, along with

Theorem 6.7.4 and Lemma 6.7.5, it is not hard to construct a matrix

with an arbitrarily large degree. However, the larger the degree we wish

the matrix to have, then the larger the matrix we must construct. One

begins to wonder how large a degree an n x n R0-matrix can have. We will

now turn our attention to this question.

Lower bounds on degree

The goal of this subsection is to construct an n x n R0-matrix which

has a relatively large degree. As one might expect, it will be convenient to

first prove some technical lemmas. The reader is reminded that e denotes

the appropriately-dimensioned vector containing all ones.

 



a+b

a
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a

a	 •••	 a

a + b •••	 a

a	 ••• a + b
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6.8.1 Lemma. Let n be a positive integer and let a and b be real numbers.

If M is the n x n matrix

then det M = b'z- '(na + b). (By convention, 00 = 1.)

Proof. The lemma is obvious if n = 1 or if b = 0. Thus, assume n > 1

and b 0. Let M' be the matrix obtained from M by subtracting the first

row from each of the other rows. Let M" be the matrix obtained from

M' by subtracting from the first row a/b times the sum of the other rows.

Clearly, det M = det M' = det M". In addition, we find that M" is a lower

triangular matrix with mll = na + b and m22 = b for i = 2, ... , n. Hence,

det M" = bn -1 (na + b), and the lemma follows. ❑

6.8.2 Lemma. Let M E Rn X n be the matrix given in (1) and suppose

det M j 0. If na + b > 0, then e E int(pos M). If na + b < 0, then

c posM.

Proof. If na + b> 0, then letting x = )e, with A = 1 /(na + b), we have

Mx = e. Since det M 0, this shows that e E int(pos M).
If na + b < 0, then letting x = -.\e, with A = 1 /(na + b), we have

Mx = -e. This shows that -e E pos M. If My = e for some y > 0,
then x + y > 0 and M(x + y) = 0. This contradicts the hypothesis that

det M 0. Hence, e V pos M. ❑

We now proceed to construct an n x n R0-matrix with a relatively large

degree. It is interesting to note that there are two distinct cases depending

on whether n is even or odd.
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6.8.3 Theorem. Let n be an odd positive integer. If M is the n x n matrix

	2—n 	 2	 ...	 2

	

2	 2—n  ...	 2
2(eeT) — nI =

	2 	 2	 ... 2—n

then M E Ro and

	

degM =	
n-1

(n — 1)/2

Proof. Consider the principal submatrix Maa of M. Lemma 6.8.1 gives

us detMaa = (—n) 1 ' 1-1 (2^o — n). As n is odd we have det M. 0.
Thus, M is nondegenerate and, hence, M E R0 .

We will now calculate the degree of M by finding all the solutions to

the LCP (e, M). If (w, z) solves (e, M) with a = supp z, then we must

have —Maa za = e. Conversely, as 0, if za > 0 and —Maa za = e,

then letting z = 0 gives us a z E R  which solves the LCP (e, M). Thus,

to find the solutions of (e, M) we must find those index sets a for which

e E pos(—M). Using Lemma 6.8.2, we see that e E pos( —M) if and

only if (o < n/2. Since n is odd, this happens if and only if a < (n-1)/2.
Further, using Lemma 6.8.2, if o < (n — 1)/2, then e E int(pos(—M)).
Thus, for each index set a with < (n — 1)/2, we obtain a distinct

nondegenerate solution of the LCP (e, M) and, moreover, these are the

only solutions of (e, M). The degree of M may now be calculated as the

sum of the indexes of the solutions to (e, M). The index of the solution

associated with a is sgn(det M ). Since a	(n — 1)/2 and det MMa =

(—n)I .I 1 (2cti	 n), the index of the solution associated with a is (—l)k1.

Therefore

(n -1) / 2

degM = E ( -1)
k=o

Cn  1/ +	
(-1)(

n

E/2	 \

77n-1"  	7n-1".\- 

^	 k	 k-1 / /
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(1)(n 1)/2	
n — 1

(n — 1)/2

The theorem now follows. ❑

6.8.4 Theorem. Let n be an even positive integer. If M is the n x n

matrix

1—n 	 2	 ...	 2

2	 1—n  •..	 2
2(eeT ) — (n -I- 1)I =

2	 2	 ... 1—n

then M E Ro and
degMl = (n-1)

.
n/2

Proof. This is Exercise 6.10.35. ❑

Theorems 6.8.3 and 6.8.4, along with Lemma 6.7.5 and Remark 6.7.6,

give a lower bound on the largest degree that an n x n matrix can have. It

has been conjectured that this lower bound is, in fact, the largest degree

attained by any of the matrices in Ro n Rn X n (see Morris (1990a)). While

it is not known whether this conjecture is true or false, it should be possible

for us to obtain some upper bound, albeit crude, on the degree of an n x n

R0-matrix. This will be our goal for the next part of this section.

Upper bounds on degree

We will first examine a geometrical way of viewing the linear comple-

mentarity problem which is different from the ways we have so far discussed.

Given M E Rn>< consider the polytope

PM -- {xERT':x>0,Mx>0,eTx=1}.	 (2)

Notice that PM is a subset of the (n — 1)-dimensional regular simplex

{x E Rn : x > 0, eTx = 1}. A vertex x of PM is said to be i-complementary

if x^ (Mx) = 0 for all j E { 1, ... , n} \ {i}. We may refer to a vertex of PM

as being complementary without specifically mentioning to which index set

it is complementary. The following is a key result concerning PM.
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6.8.5 Theorem. Let M E Ro n Rn>< be given. If, for some i E {1,.. . , n},

we have M., K(M), then there is a bijective correspondence between

solutions to the LCP (M. i , M) and i-complementary vertices of PM.

Proof. Suppose M. 2 C(M). There is then a bijective correspondence

between complementary cones containing  M.  and solutions to the LCP

(M. i , M). Suppose M. , E pos C(a) and let (w, z) be the corresponding

solution to (M.i, M). If we let x = (z + I.)/(cTz + 1), then it is easy

to check that x is an i-complementary vertex of PM. Further, suppx =

a U {i }. Notice, as pos C(a) is nondegenerate, since M. 0 .(M), we must

have i V a. Thus, for each element in SOL(M. z , M) we have a distinct

i-complementary vertex of PM.

Conversely, suppose x is an i-complementary vertex of PM. If x2 = 0,

then xTMx = 0 and it follows that x E SOL(0, M). This is impossible as

M E R0 . Thus, xz > 0. It is now easy to check that if z = (x — x 2 L 2 )/xi

and w = Mx/xi, then (z, w) solves (M., M) and, if a = supp x, then

supp z = a \ {i}. Therefore, the correspondence we found in the previous

paragraph between elements in SOL(M.Z, M) and s-complementary vertices

of PM is invertible and, hence, a bijection. ❑

The condition given in Theorem 6.8.5, that M., K(M), is not true for

general R0-matrices. (For example, consider the identity matrix in Rnx"`

with n > 2.) To circumvent this problem we will restrict our attention to

a certain matrix class contained within the class R0 . It will turn out that

1C(M) is always true for matrices in this class and, yet, the degree

bounds we obtain for this matrix class will hold for general  R0-matrices.

6.8.6 Definition. A matrix M E R" is said to be totally nondegenerate

if every square submatrix of M is nonsingular.

6.8.7 Proposition. A matrix M E RT'"Th is totally nondegenerate if and

only if every n x n submatrix of the n x 2n matrix [ I, M] is nonsingular.

Further, the class of totally nondegenerate n x n matrices is dense in Rnxn

In addition, if M E Rn X f is totally nondegenerate, then:

(a) MERO ;

(b) ]%4.,j ^ JC(M) for every i E {1, .. ., n};

(c) the class of totally nondegenerate matrices is both full and complete;
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(d) I {i : xi = 0} 1 + I {i: (Mx) 2 = 0}I = n — 1 for every vertex x of PM;

(e) if PM 74 0, then dim PM =n-1.

Proof. This is Exercise 6.10.36. ❑

We now use the polytope PM to derive an upper bound on the degree

of totally nondegenerate matrices.

6.8.8 Lemma. For M E RnXn, let cv(M) denote the number of comple-

mentary vertices of PM. Let

g(n) = max{cv(M) : M E Rnxn is totally nondegenerate} .

For n > 2, we have (n — 1) g(n) < 2n g(n — 1).

Proof. Suppose M is totally nondegenerate and PM	 0. Part (e) of

6.8.7 implies dim PM = n — 1. Part (d) of 6.8.7 implies every vertex of

PM is contained in exactly n —1 facets and, further, these facets determine

the vertex. Since PM has at most 2n facets, we have cv(M) < (n-1
2n ) 

'

Thus, g(n) is bounded from infinity and, hence, it is truly a maximum (as

opposed to a supremum). We may assume g(n) = cv(M).
For some fixed i E {1, ... , n}, consider the facet F = {x E PM : x2 = 0}.

If x is a complementary vertex of PM contained in F, then 6.8.7(d) implies

that xr is a complementary vertex of PM. Thus, 6.8.7(c) implies that F
contains no more than g(n — 1) complementary vertices of PM.

Now suppose F = {x E PM : (Mx)2 = 0}. Let M be the principal

pivotal transform of M with pivot m22. If x is a complementary vertex of

PM contained in F, then 6.8.7(d) along with (2.3.8), (2.3.9), and (2.3.10)
implies that x/eTxi is a complementary vertex of PM--. Thus, 6.8.7(c)

implies that F contains no more than g(n — 1) complementary vertices of

PM

We now know that every facet of PM contains no more than g(n — 1)
complementary vertices. As PM has at most 2n facets, if we were to count

the number of distinct ordered pairs (F, x) where F is a facet of PM and x
is a complementary vertex of PM contained in F, then this number would

be no larger than 2n g(n — 1). However, we know that each complementary

vertex of PM is contained in exactly n-1 facets, thus the number of ordered

pairs (F, x) is exactly equal to (n — 1) g(n). The lemma now follows. ❑
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6.8.9 Theorem. Let M E RT""'' be given. If n > 4, and if M is totally

nondegenerate, then deg M 3 x 2n-4

Proof. Part (d) of 6.8.7 implies that no vertex of PM can be both 1-

complementary and j-complementary with i 54 j. From Theorem 6.8.5 and

part (b) of 6.8.7, there must be at least degM i-complementary vertices

of PM, for each i E {l, ..., n}. Hence, using the notation of Lemma 6.8.8,

we have deg MI < g(n)/n. Using Lemma 6.8.8, we have

g(n) < 2g(n — 1) < 2 2g(n — 2) < ... < 2 ' -4g(4 )
n — n-1 — n-2 — 4

According to Theorem 2.6.33, the number of edges of a 3-dimensional

polytope is two less than the number of vertices plus the number of facets.

If M' E R4 " 4 is totally nondegenerate and if PM' 0, then 6.8.7 implies

that dim PM' = 3 and that every vertex is contained in exactly three edges.

Clearly, every edge contains exactly two vertices and PM has no more than

eight facets. Putting all these facts together, we deduce that PM , has at

most 12 vertices. Therefore, g(4) < 12 and, so, I degM <3 x 2n -4 . ❑

As we mentioned earlier, Theorem 6.8.9 can be extended to cover all

R0 -matrices.

6.8.10 Corollary. Let ME Rnxn be given. If n >_ 4 and if M E Ro , then

I degM <3 x

Proof. As the reader is asked to show in Exercise 6.10.7, a matrix is

pseudo-regular if and only if none of its complementary cones are strongly

degenerate. Thus, by Theorem 6.1.25, the set Ro n1 Rn"' is open in RT "T .

Hence, there is an e > 0 such that if I M — M'II < a then M' E Ro .

Proposition 6.8.7 implies there is a totally nondegenerate M' such that

^ IM — M'II < e. Clearly, every matrix of the form tM + (1 — t)M', for

t E [ 0, 1], is pseudo-regular. We now conclude from Theorem 6.1.22 that

deg M = deg M'. The corollary now follows from Theorem 6.8.9. ❑

At first glance Corollary 6.8.10 is quite disappointing. After all, it is

immediate that I deg Ml < 2n, for M E Ro n Rnxn as there are only 2n

complementary cones. Thus, Corollary 6.8.10 simply reduces this by a

constant factor. On the other hand, according to the well-known Stirling
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Approximation (see Knuth (1973)),

n! en
lim	 =1.

flOO nn 2^rn

Therefore , (
(n

"^ ii/2) = O(2//) as n ^. Thus, by Theorem 6.8.3, we

cannot hope to bound deg M for M e Ro n Rn X n by anything smaller

than O(2n/ \/ii). Hence, the true bound lies somewhere between O(2/ \/)

andand O(2n). There is evidence to suggest that the true bound is O(2n/ \/i)

but a complete proof of this does not yet exist (see Morris (1990a)).

6.9 Q0-matrices and Pseudomanifolds

The main goal of this section is to prove a most interesting theorem

characterizing a certain subclass of the Q 0-matrices. However, in devel-

oping the insights needed for the proof, we will study the geometry of the

LCP from a new viewpoint. To explore the underlying geometric and com-

binatorial structure exhibited by this new viewpoint we will introduce the

concept of a pseudomanifold. Thus, at the end of this section we will not

only have obtained a result concerning Q 0-matrices but, also, we will have

gained additional understanding concerning the geometry of the LCP.

The classes Q and Q 0 do not, as of yet, have complete characteriza-

tions that are computationally practical. Thus, since we wish to obtain

a relatively simple characterization for Q 0-matrices, we will be forced to

place some restrictions on the matrices we will consider. First, we will work

only with totally nondegenerate matrices (see 6.8.6). This is a reasonably

strong assumption. However, as with many other areas of mathemati-

cal programming, if one works under a nondegeneracy assumption, then

cleaner results may be obtained, with the key ideas behind those results

more clearly displayed, without a lengthy digression to deal with the de-

generate cases. We mention, as the standard consolation, that the class of

totally nondegenerate n x n matrices is dense in Rn"n (see 6.8.7).

In addition to total nondegeneracy, we will assume that pos (I, —M)

is pointed (see 2.6.25). This is required by the geometric approach we

will take in studying the LCP. Note, if pos (I, —M) equals all of space,

then M E Q0 if and only if M E Q. Thus, if we wish to specifically study

matrices which are in Q 0 but not Q, which would be particularly interesting
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considering how much attention we have given to Q-matrices compared

with Q0-matrices, then this pointedness assumption is quite appropriate.

Of course, this assumption avoids those cases in which pos (I, —M) is not

pointed but is still not all of space. However, the assumption of total

nondegeneracy would also eliminate these cases.

Therefore, throughout the rest of this section we will assume that the

matrix M E R7 ' is totally nondegenerate and that the cone pos (I, —M)

is pointed.

Complementary simplices

In Exercise 2.10.29 the reader is asked to show that if a finite cone is

not all of space, then there is a hyperplane that intersects the cone precisely

on the cone's lineality space. Thus, as pos (I, —M) is pointed, there is an

(n — 1) -dimensional hyperplane which intersects pos (I, —M) at the origin

and at no other point. We may select some hyperplane H that intersects

int(pos (I, —M)) and that is parallel to the hyperplane through the origin.

Since M can have no zero columns, it is easy to see that if x is a column of

the matrix (I, —M), then II intersects the open ray {An : A > O} in exactly

one point.

6.9.1 Notation. Within this section, we will let H be as described above.

If x is a column of the matrix (I, —M), then we define the point [ x ] by

letting

[x] = {Xx:A>0}nf.

If A E R"'' X ' is a submatrix of (I, —M), then [ A ] will denote the convex

hull of {[A,]} 1 .  If A and B are both submatrices of (I, —M), each with

n rows, then [ A, B] is the convex hull of [ A ] and [ B ] . Notice, all these

convex hulls are contained in H. Further, within this section, we will let

S = { [ x ] : x is a column of (I, —M)}.

Clearly, if M E Rn"n, then SI = 2n. Also, [I, —M] is the convex hull of

the points in S and dim[ I, —M] = n — 1.

As M is totally nondegenerate, we deduce that if A is any n x n sub-

matrix of (I, —M), then dim[A] = n — 1. It is clear that the polytope

[ I, —M] equals H n pos(I, —M) and that, for any index set a, the simplex

[CM (a)] equals HnposCM(a).
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6.9.2 Definition. If A E RTh > is a submatrix of (I, —M), then [ A] is

said to be distinctly labelled if, for each i E {l,. , n}, the matrix A does

not contain both the column I. and the column —M.z. If A E Rnxn and if

[A] is distinctly labelled, then [A] is said to be a complementary simplex

relative to M.

Clearly, [ A] is a complementary simplex relative to M if and only if

A = CM(a) for some index set a. Using Proposition 3.2.1, we deduce the

following characterization for when M is a Q0-matrix. It is this character-

ization which we will use in the sequel.

6.9.3 Proposition. If M E Rf X f is totally nondegenerate and if the cone

pos (I, —M) is pointed, then M E Qo if and only if the union of all the

complementary simplices relative to M equals the polytope [ I, —M]. ❑

For the rest of this section we will study the LCP by examining the

geometric and combinatorial structure of the polytope [ I, —M ] and the

complementary simplices. Since H = affn[ I, —M ], it will be convenient to

have the following definition. Since this definition is only for this section,

we list it as a notation.

6.9.4 Notation. Let S be an affine space in R. If C C Rn, we will let CS

denote the orthogonal projection of C into S. Let S be another affine space

in R. If x E S C S, then the orthogonal complement of S in S around x

refers to the affine space of all vectors y E S such that (y — x) T'(z — x) = 0

for all z E S.

A characterization of Q 0

The main goal of this section is to prove the following result.

6.9.5 Theorem. Let M E R"'"fl be given. If M is totally nondegenerate

and pos (I, —M) is pointed, then M E Q0 if and only if each facet of

[ I, —M ] is distinctly labelled.

Proof of necessity. Suppose F is a facet of [ I, —M ] which is not dis-

tinctly labelled. Let H = affn F. Select q E ri F. If [C(a)]  is a comple-

mentary simplex containing q, then H n [ C(a) ] must be a face of [ C(a) ].
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Thus, H fl [ C(a) ] _ [ C(cv).ß ] for some index set ß. However, total nonde-

generacy implies that F has exactly n — 1 vertices and these are the only

points of S contained in H. Since q E ri F, we conclude that [ C(a).Q ]
must equal F. This is impossible as F is not distinctly labelled. Therefore,

q is not contained in any complementary simplex and, so, M Q0 . ❑

The proof of sufficiency is more involved and will require some addi-

tional tools which we will develop in the rest of this section. Unfortunately,

the arguments which establish these tools require n > 3. (It should come as

no surprise that lower dimensions are somewhat anomalous.) Fortunately,

we can prove Theorem 6.9.5 directly for n < 2 by considering all possible

cases.

Proof for n = 1. If n = 1, then M satisfies the hypothesis of the theorem

if and only if M < 0. In this case [ I, —M ] is a single point with no facets

and M E Q0 . Thus, the theorem is vacuously true. ❑

Proof for n = 2. If n = 2 and if M satisfies the hypothesis of the theorem,

then [ I, —M ] is a line segment. Clearly, the facets of the line segment (the

endpoints) must be distinctly labelled as they each have one label. Thus,

for the theorem to hold, M must be a Q0-matrix. To see that M E Q0

we can argue as follows. Without loss of generality, we may assume [ II ]

is one of the two endpoints of [ I, —M]. If [1.2]  is the other endpoint,

then the complementary simplex [C(0)]  will contain [ I, —M]. Similarly,

[C({2})]  will contain [ I, —M] if [—M.2]  is the other endpoint. If [—M.1]

is the other endpoint, then [ I. 2 ] is in the relative interior of [ I, —M ] and

so [ I, —M ] is contained in the union of the simplices [C(0)]  and  [C({1})].
In all cases, 6.9.3 implies M E Q0. ❑

As previously mentioned, we cannot present the proof of sufficiency

for Theorem 6.9.5 in the case n > 3 until we introduce some additional

concepts. Therefore, we now turn to the next subsection to begin our

discussion of the needed background material. For the rest of this section,

we will assume n > 3.
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Pseudomanifolds

In this subsection we will begin our study of the combinatorial structure

of the polytope [ I, —M]. We start with the following basic results.

6.9.6 Proposition. Let M E Rnxn be given with n > 3. Suppose M
is totally nondegenerate and pos (I, —M) is pointed. If F is an m-face of

[ I, —M], where 0 < m < n — 2, then F is the convex hull of m + 1 points

in S.

Proof. By 2.7.5, [ I, —M ] has a supporting hyperplane H such that F =
[ I, —M] n H. Thus, F is the convex hull of those points of S which lie in

H. As dim F = in and as M is totally nondegenerate, we conclude that F
is the convex hull of m + 1 points in S. ❑

6.9.7 Proposition. Let M E Rn X n be given with n > 3. Suppose M
is totally nondegenerate and pos (I, —M) is pointed. If F is an m-face of

[ I, —M] and if F' is a k-face of F, where 0 < k <m < n — 2, then F' is a

k-face of [ I, —M].

Proof. By 2.7.5, there exist b, d E R and nonzero vectors a, c E R such

that
aTx = b	 forallxEF,

aTx > b	 forallxE[I,—M]\F,

cTx = d	 for all x E F',

cTx > d	 for all x E F \ F'.

It is not hard to see that F is the convex hull of those points x E S for

which aTx = b. Similarly, F' is the convex hull of those points x E S f1 F
for which cTx = d. Let

A = min{(aTx — b)/(d — cTx) x E S \ F and d> cTx}

with = 1 if the minimum is taken over the empty set. If x E S \ F, then

aTx > b and, so, .A > 0. Select ) E R such that 0 < A < A. It follows

that H = {x E R"' : (a + )c) Tx _ (b + )d)} is a supporting hyperplane to

[ I, —M ] with F'= H fl [ I, —M]. Thus, F' is a k-face of [ I, —M]. ❑

We now introduce the key combinatorial structure that will be used in

our study of [ I, —M].
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6.9.8 Definition. Let V be a finite and nonempty set of elements (called

vertices). We say that a collection P of subsets of V is an n-dimensional

pseudomanifold (on V) if

(a) S E P implies that I SI = n + 1,

(b) F C V and F = n implies that F is a subset of at most two elements

in P,

(c) for every pair S, S E P, there is a sequence S = So, Si, ... , S, =

of elements in P such that ISz_1 fl SZ l = n for 1 <i <m.

If P is an n-dimensional pseudomanifold, we refer to the elements in P as

n-simplices. In addition, if F C S E P with F = n, then we say that F is

a facet of S. The collection of all facets which are contained in exactly one

element of P is called the boundary of the pseudomanifold P and is denoted

by bdP. We define P = {(} to be the unique nonempty (- 1)-dimensional

pseudomanifold, and, we note, P has no facets.

Several of the ideas used in Sections 6.2 and 6.3 reappear in the above

definition. Indeed, the sequence of cones and facets encountered in Lemke's

method, or the cones and facets associated with a family of facets, can be

expressed as pseudomanifolds. We will now show that important parts of

the structure of [ I, —M ] are pseudomanifolds.

6.9.9 Theorem. Let M E Rn X n be given with n> 3. Suppose M is to-

tally nondegenerate and pos (I, —M) is pointed. If we consider a polytope

as representing the set of its extreme points, then the collection of comple-

mentary simplices is an (n — 1) -dimensional pseudomanifold on S whose

boundary is empty.

Proof. Clearly, 6.9.8(a) holds. Suppose F C S with F = n — 1. If both

[ I.z ] and [ —M.i ] are contained in F, for some i E {1, ... , n}, then F is

not contained by any complementary simplex. Therefore, if F is contained

by some complementary simplex, we must have F = [ C(a)., ] for some

index set ci and some i E {1, ... , n}. Thus, F is contained by exactly two

complementary simplices and these are [ C(ci) ] and [ C(ci A {i}) ]. Hence,

6.9.8(b) holds and, further, the pseudomanifold will not have a boundary.

If a A ß = f il, ... , i.,,,, }, then the sequence So = [C(a)] and Sk =

[ C(cti A {il, ... , ik }) ], for k = 1, ... , m, shows that [ C(cti) ] and [ C(ß) ] can

be connected as described in (and required by) 6.9.8(c). ❑
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6.9.10 Theorem. Let M E Rn"n be given with n > 3. Suppose M is

totally nondegenerate and pos (I, —M) is pointed. If we consider a polytope

as representing the set of its extreme points, then the facets of [ I, —M ]

form an (n -2)-dimensional pseudomanifold on S whose boundary is empty.

Proof. Proposition 6.9.6 implies 6.9.8(a) holds. Suppose F is a facet

of [ I, —M ] and F' is a facet of F. (Note, dim F' = n 3 which requires

the assumption that n > 3.) Select some point x E ri F' and let H be

the orthogonal complement of affn F' in H around x. We will now show

6.9.8(b) holds by examining the geometry of [ I, —M I H.

Clearly, dim H = 2 and FF = x. Since orthogonal projection is an affine

transformation, we can show using convexity that [ I, —M [H is just the

convex hull of the points {yH : y E S}. Thus, [I, —M]H is a polygon. Since

dim[ I, —M ] = n — 1, we must have dim[ I, —M]H = 2. By 6.9.7, there is

an (n — 2)-dimensional hyperplane H' C ft such that F' = [ I, —M ] n H'. It

is not hard to show that dim HH = 1 and that, for any y E H, if yH E HH,
then y E H'. It follows that HH n [I, —M]H = {x}. Hence, x is a vertex

of [I, —M]H. Using convexity and total nondegeneracy, we conclude that

there is a bijection between facets of [ I, —M] containing F' and edges

of [ I, —M]H containing x. Therefore, as [ I, —M]H is a 2-dimensional

polygon, [ I, —M ] has exactly two distinct facets which contain F'. This

not only proves that 6.9.8(b) holds but also shows that the pseudomanifold

of facets of [ I, —M ] will not have a boundary.

Suppose F and F are two facets of [I, —M]. Select y E ri[I, —M]. Let

F' be a k-face of [ I, —M ] where k < n — 4. (If n = 3, then no such F'

exists and this part of the argument is trivial.) The affine hull of {y} U F'

will have dimension n — 3 or less. The (finite) union of all such affine

hulls will have dimension n — 3 or less (see 2.9.16). The complement of

this union in H is path connected (see 2.9.15(c)). This complement will

contain some x E ri F and x E ri F along with a path between them (see

2.9.17). If z is a point in this path, then z y and, by convexity, the

ray {y + )(z — y) :.\ > 0} intersects the relative boundary of [1,—M]

in exactly one point. By associating this point of intersection with z, we

obtain a second path between x and x which is contained in the relative

boundary of [ I, —M ] and does not intersect any k-face of [ I, —M ] with

k < n — 4. It follows that every point along this second path is contained

in no more than two facets of [ I, —M]. Further, if a point is contained in
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two facets, then the two facets share a common (n — 3) -face. Therefore, by

following the path from x to x we will obtain from the facets we encounter

a sequence from F to F as required by 6.9.8(c). ❑

We now know that both the complementary simplices and the facets of

[ I, —M] form boundaryless pseudomanifolds. Neither of these is precisely

what we will want. The pseudomanifolds which we will find most valuable

turn out to be certain subsets of the complementary simplices having the

facets of [ I, —M ] as boundary. These pseudomanifolds will be defined via

the following equivalence relation.

6.9.11 Definition. Let M E RT X n be given. Suppose M is totally nonde-

generate and pos (I, —M) is pointed. We will say that two complementary

simplices [C(a)]  and [ C(/3)] are related, denoted [C(a)] — [C(/3)],  if
a = ß or if there exists a sequence of index sets Y = ryo, 7l , ... , 'Ym = ß
such that for each i e {1, .. ., m} the simplices [C(-y_1)]  and [C( i) ]

have a facet in common and, further, this common facet is not a facet of

[1, —M].

The reader is reminded that the simplices [ C(-y2_1) ] and [ C('y2) ], in

Definition 6.9.11, have a common facet if and only if A'yjj < 1.

Just before 6.9.11, we mentioned that we were going to define an equiv-

alence relation. For — to be an equivalence relation we must have

(a) [ C(a) ] [ C(a) ] for all a,

(b) [C(a)] ^ [ C(ß) ] if [ C(ß) ] ^ [C(a)],

(c) [C(a)] ^ [ C(ß) ] if [C(a)] ^ [ C(-') ] and [C(7)] ^ [ C(ß) ]

The reader can easily verify that all these conditions hold and, thus, the

relation — is indeed an equivalence relation. We may therefore consider an

equivalence class of complementary simplices, that is, a set of complemen-

tary simplices each related by — to the others and none related to any com-

plementary simplex outside the set. The collection of all complementary

simplices relative to M may be partitioned into equivalence classes. We

will now show that these equivalence classes are pseudomanifolds. These

particular pseudomanifolds will end up being quite important to us.
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6.9.12 Theorem. Let M E Rn"n be given with n > 3. Suppose M is

totally nondegenerate and pos (I, —M) is pointed. Let C be the set of com-

plementary simplices in some — equivalence class. If we consider a polytope

as representing the set of its extreme points, then C is an (n-1)-dimensional

pseudomanifold. Further, if all the facets of [ I, —M] are distinctly labelled,

then if F is a facet of [ I, —M], there is some complementary simplex in C

which has F as a facet.

Proof. Since the collection of all the complementary simplices is a (n —1)-

dimensional pseudomanifold (see 6.9.9), then C satisfies conditions (a) and

(b) of 6.9.8. It follows from the definition of — that a — equivalence class

must satisfy 6.9.8(c). Therefore, C is a pseudomanifold.

Now assume that all the facets of [ I, —M ] are distinctly labelled. We

must show that if F is a facet of [ I, —M], then some complementary sim-

plex in C has F as a facet. This will follow from the fact that the facets of

[ I, —M] form a pseudomanifold (see 6.9.10) if we can show

(a) there is some facet of [ I, —M ] which is also a facet of some comple

mentary simplex in C,

(b) if F and F are facets of [ I, —M ] which share a common (n — 3)-face

(a facet of the facets), and if F is a facet of some complementary

simplex in C, then F is a facet of some complementary simplex in C.

We will first prove (a). Let F be a facet of [I, —M]. Since F is distinctly

labelled, we must have F = [C(ß).ß ] for some j E {1, ..., n} and some

index set 3. Let [ C(a) ] be an element of C. If a = ß, we are done. If

a i 3, let a0ß={il,...,im }and letryk =nA{il,...,ik}fort <k<m.

If none of the facets [ C(lyk).rk ], for 1 <k <m, is a facet of [ I, —M], then

we may deduce that [C(c)] — [ C(13)J.  Thus, [C(/3)]  e C and, so, (a) would

follow. Otherwise, let k' be the minimum value of k for which [ C(7k). Z-k ]

is a facet of [ I, —M ] . If k' = 1, then a facet of [ C(ci) ] is a facet of

[ I, —M], so (a) would follow. If k' > 1, then we see [C(c)] — [ C (ykI_1) ] ,

so [ C(ryf_l) ] E C. Further, a facet of [ C('yk'_1) ] is a facet of [ I, —M ]. In

all cases, (a) holds.

We will now prove (b). Suppose F is a facet of [ I, —M ] and suppose

F is also a facet of some element of C. Again, as F is distinctly labelled,

we may assume F = [ C(/3).5 ].  In addition, we may assume [C(/3)]  E C.
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Pick some i j and let -y {i, j}. Without loss of generality, we may

assume ß n y = 0 and, thus, F = [ C(ß), y , L i ] . Now, consider [ C(ß). ry ]
which is a facet of F. Let F' be the unique other facet of [ I, —M] which

has [ C(ß). ry ] as a facet. We must show that F' is a facet of some element

of C. Since F' is distinctly labelled, there are three cases.

(1) F'= [C(ß). ry ,I. ]. In this case, F' is a facet of [C(/3)] E C.

(2) F'= [C(/3).,—M.].  Thus, F' is a facet of [ C(ß A {i}) ]. The com-

mon facet between [C(/3)]  and [C(3 0 {i }) ] is [ C(ß)., I. ]. Since

only two facets of [ I, —M] can have [C(/3).]] as a facet, [ C(ß). y , I.]
is not a facet of [ I, —M ] . Thus, [ C(ß) ]	 [ C(ß A {i }) ], therefore

[ C(3 A {i}) ] E C and (b) would follow.

(3) F'= [C(3).,—M.].  Thus, F' is a facet of [ C(ß A 'y) ] . The com-

mon facet between [C(3 A'y) ] and [ C(ß A {i }) ] is [ C(ß).,,, —M. i ].

The common facet between [C(3  A {i }) ] and [C(/3)]  is [C(/3)., I.^ ] .
Both [ C(ß). y , —M. Z ] and [ C(ß). y , L^ ] are not facets of [ I, —M ] as

only two facets of [ I, —M] can have [ C(ß). 5 ] as a facet. Therefore,

[ C(ß A ry) ] = [ C(ß) ] so [ C(ß A ry) ] E C and (b) holds. ❑

6.9.13 Corollary. Let M E R" >< be given with n > 3. Suppose M
is totally nondegenerate and pos (I, —M) is pointed. If all the facets of

[ I, —M ] are distinctly labelled, then there are at most two — equivalence

classes.

Proof. Let F be a facet of [ I, —M]. Theorem 6.9.12 implies that each

equivalence class must contain a complementary simplex with F as a facet.

However, F cannot be the facet of more than two complementary simplices

(see 6.9.9). Thus, there are at most two equivalence classes. ❑

We will eventually show that, under the hypothesis of Corollary 6.9.13,

there are always two — equivalence classes. Given this, the next result

supplies us with the proof of sufficiency for Theorem 6.9.5 in the case

n >3.

6.9.14 Theorem. Let M E Rn"n be given with n > 3. Suppose M is
totally nondegenerate and pos (I, —M) is pointed. Suppose all the facets

of [ I, —M ] are distinctly labelled. If there are exactly two — equivalence

classes, then M E Q0.
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Proof. Let C be one of the equivalence classes. We will show that if

q E [ I, —M], then q is contained in some element of C. The theorem will

then follow from 6.9.3.

First, we note that if q E K(M), then there is a unique A > 0 such that

Aq E H. We will let ft(q) denote Aq. If S is a set contained in K(M), then

H(S) will denote the set {H(q) : q E S} C ft.

If q is in the relative boundary of [ I, —M], then 6.9.12 implies that q

is contained in some element of C. Thus, we will assume q E ri [ I, —M].

As noted in previous proofs, we may select some index set a and

i E { 1, . .. , n} such that [C(a).,] is a facet of [1,—MI.  Theorem 6.9.12

allows us to assume [C(a) ] e C. Using Theorem 6.2.7, one may show

the existence of a point q E ri(pos C(ce).r) such that all the intersections of

K (M) with the path of e [ q, q ] are nondegenerate.

We may now use Algorithm 6.3.1 (Lemke's method) in the extended

manner described between Corollaries 6.3.11 and 6.3.12. Let d = q — q

and z0 = 1. The initial distinguished complementary cone will be pos

and we begin by having zo decrease. (Note, q + dz0 K(M) if z0 > 1.)

The following are some observations concerning what will happen as the

algorithm processes this particular problem.

Suppose the algorithm changes distinguished cones at the point q + dz0.

Let these two cones be pos C(3) and pos C(ß A {j}). Hence, we have

q + dzo E ri(pos C(ß).ß). If 0 < zo < 1, then H(q + dzo) E ri[ I, —M]. It

follows that [C(ß)] — [ C (ß A { j }) ] . Hence, as long as we have 0 < zo <1,

the complementary simplices associated with the distinguished cones will

all be elements of C.

As M is totally nondegenerate, Algorithm 6.3.1 will not terminate with

zo E (0, 1). Suppose, after we start the algorithm, that zo first leaves the

interval (0, 1) by taking the value zero. If pos C(ß) is the distinguished

complementary cone at that point, then q E [C(3) ] E C and the theorem

would follow. Therefore, suppose zo first leaves the interval (0, 1) by taking

the value one.

As q E ri(pos C(cti). Z ), one can show H(q) E ri[ C(a).r ]. Thus, any

complementary simplex containing H(q) must have [C(a).,] as a facet.

(See the proof of necessity for Theorem 6.9.5.) Therefore, if pos C(ß) is

the distinguished cone at the time zo returns to the value one, we must have

ß = ci or ß = cti A {i}. Since z0 must return to the value one by increasing,
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Theorem 6.3.7(a) implies a zA ß. (Also, see the discussion just before

Corollary 6.3.12.) Thus, ß = a 0 {i}, and we conclude [ C(a 0 {i}) ] E C.

Yet, Theorem 6.9.12 implies that every equivalence class has an element

with [ C(a)./3 as a facet. There are only two complementary simplices

with [ C(a). z ] as a facet, and we have shown that C contains both of them.

Therefore, there can only be one equivalence class. This contradicts the

theorem's hypothesis; thus, zo must always reach the value zero. ❑

Restricted pseudomanifolds

In the final part of the proof of Theorem 6.9.5, we will need to use

induction on the dimension of a family of pseudomanifolds on S. The

lower-dimensional pseudomanifolds in this family will be restrictions of the

higher-dimensional pseudomanifolds. To explain what we mean by the

word restriction, we introduce the following definition.

6.9.15 Definition. Let P be an n-dimensional pseudomanifold on the set

V. If S C V, we define

P(S) = {S' C (V \ S) : S U S' E P }.

If P(S) is a, possibly empty, (n —^SI)-dimensional pseudomanifold for every

set S C V, then we will say that P has the restricted property and we will

refer to the pseudomanifolds P(S) as restricted pseudomanifolds of P.

6.9.16 Remark. If P has the restricted property and has no boundary,

then P(S) has no boundary. If P has the restricted property, then so does

P(S). The reader is asked to show these assertions in Exercise 6.10.38.

6.9.17 Theorem. Let M E Rn"n be given with n > 3. Suppose M is

totally nondegenerate and pos (I, —M) is pointed. If we consider a poly-

tope as representing the set of its extreme points, then the collection of

complementary simplices is an (n — 1) -dimensional pseudomanifold on S

with the restricted property.

Proof. This is Exercise 6.10.39. ❑

The following result contains the essential geometric property of the

polytope [ I, —M] which we will need.
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6.9.18 Theorem. Let M E R"' be given with n > 3. Suppose M is

totally nondegenerate and pos (I, —M) is pointed. Suppose all the facets

of [ I, —M ] are distinctly labelled. If we consider a polytope as representing

the set of its extreme points, then the facets of [ I, —M ] form an (n — 2)-

dimensional pseudomanifold on S with the restricted property.

Proof. Let P be the collection of facets of [ I, —M]. Let A be an n x k

submatrix of (I,—M). For ease of notation we will denote P([A]) as

simply P(A). Theorem 6.9.10 states that P is an (n — 2)-dimensional

pseudomanifold. We must now show that P(A) is also a pseudomanifold.

If [ A] is not distinctly labelled, or if k > n, then P(A) _ 0. If k = n -1,

and if P(A) 0, then we must have [A] E P and so P(A) _ {0}. If k = n-2

and if P(A) -A 0, then we must have A = C(cti).p where lß1 = n — 2 and

where [A] is an (n -3)-face of [I, —M]. There are precisely two elements in

P containing [A]. Thus, there are precisely two distinct elements in P(A),

each of which is a one-point set. Hence, P(A) satisfies all the conditions in

Definition 6.9.8 to be a 0-dimensional pseudomanifold.

We will now prove the theorem by induction on k. We know P(A) is

a pseudomanifold if k > n — 2. We will now assume this is true for k + 1

and show it is true for k, where 0 < k < n — 2. As before, if P(A) 0,

then we must have A = C(ci ).p where /3 = k and where [ A] is a (k — 1)-

face of [I,—M]. It is clear that P(A) satisfies 6.9.8(a). Let A' be an

n x (n — k — 2) submatrix of (I, —M). As P is a pseudomanifold, [A, A' ]

can be a facet of at most two elements of P. Thus, [A']  can be a facet of

at most two elements in P(A). Therefore, P(A) satisfies 6.9.8(b).

We now turn our attention to showing that P(A) satisfies 6.9.8(c). No-

tice that 6.9.8(c) defines an equivalence relation in that we may partition

the elements of P(A) into disjoint equivalence classes so that for any two

elements in P(A), there is a sequence as given in 6.9.8(c) if and only if

the two elements are in the same equivalence class.

Let d be some column of the matrix (I,ß, —M.ß). Let B and B' be

n x (n — k — 2) submatrices of (I, —M) such that [ d, B] and [ d, B'] are

in P(A). Clearly, [ B ] and [B']  are elements of P(d, A) and, by induction,

there is a sequence in P(d, A), as given in 6.9.8(c), for [ B ] and ]B'].  If we

adjoin d to each element in this sequence, we obtain a sequence in P(A), as

given in 6.9.8(c), for [ d, B] and [ d, B']. From this we conclude no column

in (I.ß, —M.d) can appear in elements of more than one equivalence class.
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Let B be an n x (n — k —1) submatrix of (I, —M) such that [B] E P(A).

Clearly, B must be a submatrix of (I,ß, —M.ß). Since k <n — 2, there is a

facet of [ A, B ] , containing the face [ A ] . There must be another element of

P also containing this facet. (P has no boundary, see 6.9.10.) This other

element of P gives us an element of P (A) distinct from [ B ] but sharing a

facet with [ B ] . We conclude that each equivalence class must contain at

least two elements. Thus, at least n — k columns of the matrix (I.ß, —M.ß)

must appear in each equivalence class. Since (I.ß, —M.d) has 2(n — k)

columns, we conclude there can be at most two equivalence classes. If there

is only one equivalence class, then 6.9.8(c) is satisfied, and the theorem

follows. Therefore, we will now assume there are two equivalence classes,

and we will show that this leads to a contradiction.

Suppose there are two equivalence classes. Recall that A =

Given our observations above and the fact that P has no boundary, we

may assume the two equivalence classes are as follows:

{ [ B ] : B is an n x (n — k — 1) submatrix of C(a).ß } ,

{[B]:Bisannx(n —k— 1) submatrix ofC(d).ß}.

If we select i E ß, then [ C(a)., ] is a facet of [ I, —M]. Thus, there is a

vector x E R7 such that

xTC(cr).^ = 0, xTC(ce).i > 0, and xTC( ) > 0.

We may assume x is scaled such that xTC(cti).i = 1. This means we may

assume x = (C(cti))i, l . Hence, (C(cti))ß 1 C(i) > 0.

If we select j E ß, then [ C(a).ß, C(d). \ {j } ] is a facet of [ I, —M].

Thus, there is a vector y E R"` such that yTC(a).ß = 0, yTC(^).^ \{ . } = 0,

and yTC(a).^ > 0. Since k < n — 2, we have (ßj > 2. Thus, select some

iEß\ {j }. We have

0 = yTC(^). z

_ YTC(0)(C(c,» -r C(c,)•z

= yTC(a)•a(C(a))_lC(a)•z + YTC(02).0(C(a))^^c(Ü)•^

= yTc(a).ß(c(a))ßlc(a)•2 > 0.

Thus, we arrive at a contradiction, and the theorem follows. ❑
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6.9.19 Notation. For the rest of this section we will use the following

notation. Let P denote the collection of facets of [ I, —M ]. Let P denote

the collection of complementary simplices. If A is a submatrix of (I, —M),
let P(A) and P(A) denote PQ A ]) and P([A]), respectively.

We can now extend Definition 6.9.11 so that it applies to the restricted

pseudomanifolds of P. The reader should find the following extension to

be quite natural.

6.9.20 Definition. Let M E Rn"n be given with n > 3. Suppose M is
totally nondegenerate and pos (I, —M) is pointed. Suppose all the facets

of [ I, —M ] are distinctly labelled. Given A = C(a).ß, we say the simplices

[ C(-y). ] and [ C(ry'). ] contained in P(A) are related, which we denote

by [ C(-y).ß ] A [ C(y').ß ], if ß n ry = ß n -y' or if there exists a sequence of

index sets 'y = -yo, 'yl, ... , .y,,t = -y' such that for each i E {1,. . .  , m} the

simplices [ C('yj_1).d ] and [ C( -y2).ß ] have a facet in common and, further,

this common facet is not an element of P(A).

Note that is the same as — if ß = 0. It should be clear that N is an

equivalence relation. As for the equivalence classes determined by ;4, we

can quickly deduce the following.

6.9.21 Theorem. Let M E Rn "n be given with n > 3. Suppose M is
totally nondegenerate and pos (I, —M) is pointed. Suppose all the facets

of [I, —M] are distinctly labelled. Given A = C(a)., let C be the set of

elements of P(A) in some A equivalence class. If we consider a polytope

as representing the set of its extreme points, then C is an (n — 1 —

dimensional pseudomanifold. Further, if F E P(A), then there is some

element of C which has F as a facet and, therefore, there are at most two

N equivalence classes.

Proof. The proof is similar to the proofs of Theorem 6.9.12 and Corollary

6.9.13. We leave it to the reader as Exercise 6.10.40. ❑

We are now in a position to show that there are exactly two = equiva-

lence classes. We will first show this in the case where not all the points in

S are vertices of [ I, —M ] . This is the easy case as it can be shown directly,

i.e., without the use of induction.
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6.9.22 Theorem. Let M E RnXn be given with n > 3. Suppose M is
totally nondegenerate and pos (I, —M) is pointed. Suppose all the facets

of [ I, —M ] are distinctly labelled. Let A = C(ct ).p be given and let x be

a column of (I,a, —M.0). If P(A) 0 and if [ x ] is not a vertex of any

element in P(A), then there are exactly two N equivalence classes.

Proof. The case = 1 is trivial, thus we will assume > 2. Without

loss of generality, we may assume x = I. where i E ß. There are two cases

depending on whether or not [ —M.i ] is a vertex of any element in P(A).
Suppose [ —M. i ] is not a vertex of any element in P(A). In what follows,

B represents an appropriately sized submatrix of (I, —M). Let

C = {[B,I.z]eP(A):[B]EP(A)}.

As P(A) 0, then C 0. We will show that if S E C and S' E P(A) share

a common facet, then either S' E C or the common facet is in P(A). It
follows from this that C contains an ;q equivalence class. Yet, C is not all of

P(A) as it contains no simplex with [ —M.i ] as vertex. Thus, in this case,

the theorem would follow from 6.9.21.

As ( > 2, we may take [B, 1. 3 , L,], with [B] E P(A,L3 ), as an

arbitrary element in C. Now P(A) is a pseudomanifold (see 6.9.18), and it

has no boundary (see 6.9.10 and 6.9.16). Thus, there is exactly one other

element of P(A), aside from [ B, I.3 ], which contains [ B ]. Since no element

of P(A) has [ I.i ] or [ —M.2 ] as a vertex, and as P is distinctly labelled,

then we must have [ B, —M. 3 ] E P(A). Hence, [ B, —M.d, I.,,] E C. We

deduce that every element of P(A) adjacent to [ B, 1. 3 , I.] is in C except for

possibly [ B, I., —M.i ] . However, the common facet between [ B, I., I.]
and [ B, 1.3 , —M.,] is in P(A). The theorem, in this case, now follows.

Suppose [ —M. 2 ] is a vertex of some element in P(A). Let

C = { [ B, —M. i ] E P(A) : [ B ] E P(A) } .

Notice, if F E P(A) has [—M.,]  as a vertex, then there is a unique other

element of P(A) which shares a facet with F but doesn't have [ —M.,,] as

a vertex. Hence, there are elements of P(A) which do not have [—M..]  as

a vertex and, so, C ^ 0. We will show that if S E C and S' E P(A) share

a common facet, then either S' E C or the common facet is in P(A). As

before, the theorem will follow from this.
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Again, as	 > 2, we may take [ B, I.^, —M.^ ], with [B] E P(A, I. 3 ),
as an arbitrary element in C. There is exactly one other element of P(A),
aside from [B, I.^], which contains [B]. Since no element of P(A) has

[ I. i ] as a vertex, and as P is distinctly labelled, then we must have either

[ B, —M.,] E P(A) or [ B, —M.3 ] E P(A), but not both. In the case where

[ B, —M. 3 ] E P(A), we have [ B, —M. 3 , —M.] E C. Thus, as before, if a

facet of [ B, I.^, —M.] is not in P(A), then the unique other element of

P(A) containing that facet is in C. The theorem follows. ❑

We finally move on to the main result needed to finish the proof of

Theorem 6.9.5.

6.9.23 Theorem. Let M E Rf X fl be given with n > 3. Suppose M is
totally nondegenerate and pos (I, —M) is pointed. Suppose all the facets

of [ I, —M ] are distinctly labelled. Let A = C(a).ß be given. If P(A) 0,

then there are exactly two ;9 equivalence classes.

Proof. The case	 = 1 is trivial. Suppose Ii = 2 and assume ß = {i, j}.
Since P(A) is a pseudomanifold (see 6.9.18) and it has no boundary (see

6.9.10 and 6.9.16), then P(A) consists of exactly two vertices. As the

reader can check, there are essentially two cases. An example of one of the

cases would be P(A) _ { [ I., ], [ L3 ] }. There are two N equivalence classes,

namely,

{ [ I.z, I.^ ] } and { [ —M. i , I.^ ], [ I.z, —M.3 ], [ —M. i , —M. 3 ] } .

An example of the other case would be P(A) _ { [ I., ], [ —M.i ] }. There

are two A equivalence classes, namely,

{ [ I.Z, I.^ ], [ —M.i, 1.J } and { [ I.Z, — M•3 ], [ —M.z, —M. 3 ] } .

Thus, in all cases, the theorem holds if 	 = 2.

We now proceed by induction. Select k E {3, . .. , n}. We will assume

that if	 < k, then

(a) the theorem holds,

(b) if [x] E Sand if [B], [B']  E P(A, x), then [ B, x] N [ B', x ] implies

[B] 9:,x [B'].
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Notice that (a) and (b) hold if / < 2. We will now show that (a) and (b)

hold if / = k.

We will first show that (a) holds if = k. We may assume that,

for every column x of the matrix (I.e, —M.d), there is some element of

P(A) which has [ x ] as a vertex. Otherwise, (a) follows directly from The-

orem 6.9.22. Thus, if we select i E ß, then P(A, L e ) and P(A, —M• ^)

are nonempty. By induction the elements of P(A, I.,) are partitioned into

two equivalence classes by Ate• . Denote these two classes by CI and C.
Similarly, the elements of P(A, —M. 2 ) are partitioned into two equiva-

lence classes by A , -nlf•i. Denote these two classes by CM and C. Let

CI = { [ B, I.] : [B] E Cr} and CM = { [ B, —M. 3 ] : [B] E CM}, with

similar definitions for CI and J. Notice, C1, Cm, CI, and CI, are mutu-

ally disjoint and their union is P(A). In addition, note that CI is entirely

contained in some A equivalence class and, further, the same can be said

of CM, C'j , and CM.

Theorem 6.9.21 implies that the only way in which (a) can fail is for

all of P(A) to be one equivalence class. We will now show that this cannot

happen.

We may take [ B, 1. 3 , L z ] to be an arbitrary element of Cr , where [ B ]

is in P(A, L^, L i ). Suppose [ B, I.] P(A). This implies [ B ] P(A, L2 ).

Thus, [ B, —M.3 ] E CI and, hence, [ B, —M.3 , L i ] E Ci. We have now

shown that if S E CI and S' E P(A) share a common facet which is not

in CI, then either S' E C1 or the common facet is in P(A). From this

we conclude that if C r C P(A), then CI is a ;4 equivalence class and,

hence, (a) would follow. Therefore, assume [ B, I. j ] P(A) and, hence,

[ B, I.^, I. i ] ; [ B, 1. 3 , —M. 3 ]. We may assume [ B, I.^, —M.] E CM.

Thus, CI U CM is contained in a A, equivalence class.

Since we now know that an element in CI and an element in CM share

the common facet [ B, I.] P(A), the question arises as to whether it is

possible for an element in Cr and an element in C', to share a common

facet F V P(A). There are two cases to consider depending on whether or

not F and [ B, I.] have any common vertices.

Suppose F and [ B, L] share a common vertex. We may take F to be

[ B', I.] where [B']  E P(A, I.^, I. i). Thus, we have [ B', I.] E CZ f1 C.
We know [ B, 1. 3 ] A?•= [ B', I.] because both are elements in CI. By part

(b) of our induction assumption, we have [B] A,1. 3 ,I. [B'].  This im-
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plies [ B, i.] A JJ. [ B', I., ] . As [ B, I.] and [ B', I.] are not in P(A),

we have [ B, I.,,] A, r. [ B, —M.,.] and [ B', 1. 2 ] AJ• [ B', —M.,]. Thus,

[ B, —M. 2 ] AJ•3 [ B', —M. 2 ]. Again, using part (b) of our induction as-

sumption, we have [ B ] A , I•^, M•i [B'].  Hence, [ B, I.] [ B', I.^ ].

However, as know [ B, I.] E CM and [ B', I.] E C, we have a contradic-

tion. Therefore, F and [ B, I.] cannot share a common vertex.

The only possibility left is that F = [ B', —M.3 ], where there is a index

set 'y for which B = C('y).ß \{ } and B' = C(ry).ß\{2,^}. Now consider CI.

Using a previous argument in this proof, we know that if CI C P(A), then

C. is a N equivalence class and, hence, (a) would follow. Therefore, there

is some F' E Cj which is not in P(A). As [B, I.] and [B', —M. 3 ] are

elements of C1, then F' is neither of these. From this we see that F' must

have a vertex in common with both [ B, I.] and [ B', —M.3 ]. Thus, using

F' and [ B, I.] if F' E CM, or using F' and [ B', —M.d ] if F' E C'M , an

argument similar to the one given in the previous paragraph will lead us

to a contradiction. Therefore, F cannot exist.

We have now shown that if F is the common facet between an element

in CI and an element in C'M , then F E P(A). We may similarly show that

if F is the common facet between an element in CM and an element in C,

then F E P(A). We conclude from this that Cr U CM is a N equivalence

class. Therefore, (a) is true in all cases.

We will now show that (b) holds if = k. Suppose [ B, I.] 4 [ B', I.]

where [ B ] and [B']  are elements of P(A, I.2). To prove (b), we must show
[B] A,r. z [B'].

First, we will assume that [ I.Z ] is not a vertex of any element in P(A).

This is the easy case because the assumption we just made implies that

P(A, I.i) = 0. Consequently, all of P(A, 1. 2 ) forms one A•2 equivalence

class and, hence, [B ] A , I. [B'].

Now we will assume that [ I. i ] is a vertex of some element in P(A).

Thus, P(A, 1. 2 ) zA 0. Define C1, CI, C1, and CI as before. It is not hard to

see that there must be some element in CI which has a common facet with

some element in C. We may assume these elements are [ D, I. ] E CI and

[ D, —M.d ] E CI, where j E j\ {i} and [ D ] E P(A, I.Z, I.^ ). Of course, this

means [ D ] E P(A, L 2 ) and, hence, [ D, L e ] E P(A).

Our goal is to show [ B ] A, [.2 [B'].  That is, we must show [ B ] and

[ B' ] are both in CI or are both in C. If not, by considering the assump-
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tion that [ B, I.,,] N [ B', I.,], we would have to conclude that CI and CI
are in the same equivalence class. Yet, we have already proven part

(a) of the induction, so we know there are two A equivalence classes. By

Theorem 6.9.21, both of these A equivalence classes must contain an el-

ement having [ D, I.,] as a facet. However, if CI and CI are in the same

A equivalence class, then that equivalence class contains both [ D, I., I.]

and [ D, —M.3 , I.,]. Thus, the other equivalence class would not contain

an element having [ D, L,] as a facet. Therefore, CI and CI are in different

A equivalence classes and, so, [ B ] A , I• [B'].  We have now shown that (b)
is true in all cases. This completes the induction and, hence, the theorem

holds. ❑

Proof of sufficiency for Theorem 6.9.5. We have already shown the

theorem is true for n < 2. Thus, we assume n > 3. Since P = P(0), and

since P 0, Theorem 6.9.23 implies there are two — equivalence classes.

Theorem 6.9.5 now follows from Theorem 6.9.14. ❑

6.10 Exercises

6.10.1 Let A E Rn'P be given. Show that the affine hull of pos A is the

subspace of RTh spanned by the columns of A. In addition, show that pos A
has a nonempty relative interior.

6.10.2 Prove that Proposition 6.1.2 is true.

6.10.3 In 6.1.16 we determined the degree of the matrix whose comple-

mentary cones are shown in Figure 1.2. We also determined that the matrix

depicted in Figure 1.4 does not have a well-defined degree. Determine, for

Figures 1.3, 1.5, 1.6, and 1.7, whether or not the matrices depicted have a

well-defined degree and, if so, the value of the degree. (Note: It is not nec-

essary to determine actual numerical values for the entries of the matrices

in order to do this exercise.)

6.10.4 Show that if M E P, then M has a well-defined degree and

deg M = 1. Give a proof or a counterexample to the converse of the

previous statement.
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6.10.5 Let M E Rn x n be given. Remember that pos (I, —M), the convex

hull of K(M), is the set of vectors q for which the LCP (q, M) is feasible.

Show that M E So if and only if pos(I, —M) is not strictly pointed.

6.10.6 Let {Mz } be a sequence of matrices in Rnxn and {x i } a sequence

of points in R', such that lime —,, Mi = M and lim	 xZ = x. Show that

limy=," fmj (x 2 ) = fM (x).

6.10.7 Let M E Rn x T be given. Show that M is an R0-matrix if and

only if no complementary cone of M is strongly degenerate.

6.10.8 For fixed n > 2, let S C RTh x Rn x "` be the set of all vector-matrix

pairs (q, M) for which degm (q) is well-defined by 6.1.4. Is S a closed set

in Rn x RT' x n ? Is S an open set in R"'' x R < ?

6.10.9 Given M E Rn x n, show that K(M) = cl (int K(M)) if M is

nondegenerate.

6.10.10 Given M E Rn x n, show that M E Q if and only if the union of

the nondegenerate complementary cones relative to M is equal to R".

6.10.11 Show that in the defintion of £(M), given in 6.2.3, both condi-

tions (a) and (b) are needed. (Give an example of a matrix M for which

G(M) would change if condition (a) were dropped. Likewise, give an ex-

ample of a matrix M for which G(M) would change if condition (b) were

dropped.)

6.10.12 Let M E R><', cti C {1, ..., n}, and i E {1, ..., n} be given.

Suppose that neither pos CM (cr) nor pos CM (a A {i }) is weakly degenerate.

Show that for any q E pos Cm(a)., \ L(M), the family of facets around q

containing pos CM (a)., consists solely of pos Cm (a).1 . In addition, show

that the class of the family does not depend on q.

6.10.13 Give an example of a matrix M and a vector q E K(M) \ G(M)

such that q is not contained in any full or weakly degenerate complementary

cone relative to M. Is it possible to construct such an example so that q is

contained in an odd number of complementary cones?

6.10.14 Supply the proof to Theorem 6.2.24
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6.10.15 Give an example to show that Theorem 6.2.28 is stronger than

Theorem 6.1.17. That is, in the notation of the two theorems, give an

example of a matrix M where the connected components of RTh \ C are not

the same as the connected components of Rn \ cl S.

6.10.16 For the LCP given in Example 6.3.3, the complementary cones

and the ray {q + dz0 : zo > 0} are given in Figure 6.1 while the path

of solutions which Lemke's method follows is shown in Figure 6.2. What

would these two figures look like if

0 1 —2
M= , q= , and d=

—3 1 —1 1

Using your figures, describe how Algorithms 4.4.5, 4.5.4, and 6.3.1 would

process this LCP.

6.10.17 Given M E Rn X n and q E Rn, we know that if q is not con-

tained in any degenerate complementary cone, then SOL(q, M) < oc.

(For example, see the discussion just before Theorem 6.6.1.) Is the con-

verse true, that is, if SOL(q, M) < oc, must it be the case that all the

cones containing q are nondegenerate? Give a proof or a counterexample.

6.10.18 Let M E Rnxn be given. Suppose there is a complementary cone

relative to M with dimension m. Show that if m < k < n, then there is a

complementary cone relative to M with dimension k.

6.10.19 Let M e Rn"n be given. Suppose there are n or fewer full

complementary cones relative to M. Show that M V Q.

6.10.20 Let M E Ro n R3X3 be given. Suppose deg M = 2.

(a) Show that at least six of the eight complementary cones relative to

M will have a positive index.

(b) Show that exactly six of the eight complementary cones relative to

M must have a positive index and, further, that at least one of the

two remaining complementary cones must have a negative index.

(c) Show that there is no continuous function Mt : [ 0, 1] —> Ro f1 R3X3

with Mo and Ml as in (6.1.1).

 



632	 GEOMETRY AND DEGREE THEORY

6.10.21 Show that Ef = P.

6.10.22 With reference to Definition 6.6.5, which of the following ma-

trix classes are full? Column adequate; column sufficient; copositive-plus;

Z; Q; Q0 . For each matrix class, either give a proof that it is full or a

counterexample showing that it is not full.

6.10.23 Let M E U n Rnxn be given.

(a) If M E Q, show that M E P.

(b) If M V Q, show that SOL(q, M) = oo for any q E bd(int K(M)).

6.10.24 Given M E Rn"n, show that M E P implies M E W.

6.10.25 Show that W is a full matrix class.

6.10.26 Show that the inclusions P C W C U are all proper.

6.10.27 Let M E Rnxn be given. Suppose there is a positive integer k

such that I SOL(q, M) I = k for all q E K(M). Show that M E P.

6.10.28 A matrix M E R' x n is said to be weakly separating if for all

index sets a C {1, . .. , n} and all i E {1, ... , n} there exists a hyperplane

H = {x E Rn : aTx = O}, with O 74 a E Rn, such that a2 > O, a TM. i > 0,

and pos CM(cti).z C H. If we require that az > 0 and aTM. 2 > 0 (instead

of ai > 0 and aTM. z > 0), then M is said to be strictly separating. (The

hyperplane H separates the vectors I. and —M.i.)

(a) Show that M is strictly separating if and only if each principal pivotal

transform of M has a positive diagonal.

(b) Show that M is strictly separating if and only if M E P.

(c) Show that M is weakly separating if and only if each principal pivotal

transform of M has a nonnegative diagonal.

(d) Show that the class of weakly separating matrices contains, but is

not equal to, the class P0 .

6.10.29 Let M E Rn x n be given and suppose M is nondegenerate. Show

that M E INS if and only if K(M) is regular.
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6.10.30 Does there exist an M E U \ W such that no complementary

cone relative to M is weakly degenerate?

6.10.31 A matrix M E RT' X Th is said to be almost N if all its proper

principal minors (other, than det Moo) are negative and if det M > 0. A

matrix M E RT"Th is said to be almost N of first category if it is almost

N and if both M and M -1 have at least one positive element.

(a) Let M E Rn x'l be given. Suppose all the principal minors of M

of orders 1, 2, and 3 are negative. Show there exists an index set

a C {1, .. ., n} such that both Maa and MIXE have only negative

elements and both Mai and M have only positive elements.

(b) Let M E Rn"n be given with n > 4. Suppose M is almost N and sup-

pose M 0. Let cti be the index set described in part (a) of this exer-

cise. Show that for each q > 0 there exists two complementary cones

pos CM (ß) and pos CM (y) such that q E pos CM (ß) f1 pos CM (-y),

0^ßCa, and 0^ C .

(c) Let M E R' X n be given with n > 4. Suppose M is almost N of first

category. Show there exists a q> 0 such that SOL(q, M) = 3 and

deg(q) = —1.

6.10.32 Consider the set Q l Rn"n as a subset of Rnxn

(a) If n > 1, show that Q n Rn >< is not closed in Rflxn

(b) If n > 4, show that Q fl R?''"n is not open in Rnxn

6.10.33 For n > 3, let M E R"' x n be the matrix in which each diagonal

element equals —1 and all other elements equal 2, i.e., M = 2eeT — 31.
Consider the matrix

— r M e 1
M IL J E R(n+l^ X ^n+l)

eT 0

Show that M E Q.
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6.10.34 Show that

—1 0 0 1	 1

0 —1 0 1	 1

0 0 —1 1	 1

1 1 1 —3	 0

1 1 1 0	 —3

is a Q-matrix.

6.10.35 Supply a proof to Theorem 6.8.4.

6.10.36 Supply a proof to Proposition 6.8.7.

6.10.37 Let n be a positive integer. If n is odd, then let M be the matrix

given in Theorem 6.8.3. If n is even, then let M be the matrix given in

Theorem 6.8.4. Show there is a real number ) such that PM is similar

to the polytope {x E Rn : 0 < x < e, eTx = Al. Thus, PM is a section

of a cube. (Note, two polytopes in Rn are said to be similar if there is a

function f : R"` —p R, which transforms one polytope into the other, such

that for some t > 0 we have f (n) — f (y) M = tx — yll for all x, y e Rn'.)

6.10.38 Let P be a pseudomanifold on the set V. Show that if P has

the restricted property, as given in Definition 6.9.15, then P(S) has the

restricted property for every S C V. Show that if P has the restricted

property and has no boundary, then P(S) has no boundary for every S C V.

6.10.39 Supply a proof to Theorem 6.9.17.

6.10.40 Supply a proof to Theorem 6.9.21.

6.11 Notes and References

6.11.1 There are many works which have applied degree theory to the

study of the LCP. Some examples would include Garcia and Zangwill

(1981), Garcia, Gould, and Turnbull (1983, 1984), Howe (1983), Howe

and Stone (1983), Stone (1986), and Morris (1990a). Many of the basic

definitions and results found in Section 6.1 can be seen throughout this
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literature. The reader may also wish to consult such works as Saigal and

Simon (1973), Kojima and Saigal (1981), and Ha (1987), which use degree

theory to study the general complementarity problem.

It is possible to extend the degree-theoretic results we have presented so

that degM (q) is well-defined for points q E 1C(M) which are not contained

in any strongly degenerate complementary cones. For such a q there will

exist an E > 0 such that degm (q') is well-defined and takes on the same

value for all q' E B(q,e) \ K(M). One may properly define degM (q) to

be this common value. Furthermore, the set SOL(q, M) is compact and

one may properly define an index for each of the connected components of

SOL(q, M) such that the sum of the indexes is deg l„1 (q). For an example

of how this might be accomplished in the case where all the connected

components are individual points, and for examples of how such extended

definitions of degree and index might be applied, the reader should consult

Stewart (1993) and Gowda (1991b).

For a different topological approach to the LCP, see Naiman and Stone

(1998) where homology theory is used to obtain a characterization of the

class Q which leads to a test for membership. This test has better time

complexity, but worse space complexity, than the one attributed to Gale

(see Note 3.13.4). Unfortunately, both tests are inefficient.

6.11.2 Theorem 6.1.12 can be viewed as an analogue of Sard's theorem

for fM. See Theorem 3.1.3 in Hirsch (1976) or Theorem 22.1.1 in Garcia

and Zangwill (1981).

6.11.3 The term strictly pointed is taken from Doverspike (1982). The

term totally nondegenerate is taken from Doverspike and Lemke (1982).

6.11.4 The example given in (6.1.1) is from Morris (1990b).

6.11.5 Theorem 6.1.23 is basically the contrapositive of Proposition 2.2

in Doverspike (1982).

6.11.6 From Theorem 6.1.27 one can deduce that SOL(q, M) is un-

bounded if and only if q is contained in a strongly degenerate cone relative

to M. Moreover, from the proof of the theorem, one sees that q is contained

in a strongly degenerate cone if and only if the LCP (q, M) has a solution

ray. See Definition 7.5.4 and Note 7.7.12.
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6.11.7 As mentioned in Note 1.7.12, the use of complementary cones to

study the LCP can be traced back to Samelson, Thrall, and Wesler (1958)

and Murty (1972), particularly the latter. Subsequently, complementary

cones, their facets, and path-following arguments have become standard

tools in the study of the LCP. Rather than give what (would have to be)

an extremely abbreviated list of some of the works dealing with these top-

ics, we invite the reader to select any of the material referenced in Notes

6.11.3, 6.11.8, 6.11.11, 6.11.13, or 6.11.25 as examples taken from this

literature.

6.11.8 When path-following arguments are employed to study the LCP,

it is common to require that certain "degenerate" points not be on the

path which is used. At these points it is difficult to keep track of which

complementary cones the path is entering and/or leaving. In this chapter,

we have used G(M) as the set of degenerate points. By using Theorems

6.2.7 and 6.2.8 we insure that the paths we use never contain any points

in £(M).

The set C(M) appears in Saigal (1972a) as the union of two sets. The

two sets are denoted by D and E, and they correspond, respectively, to

conditions (a) and (b) of Definition 6.2.3. In addition, Saigal (1972a)

contains a proof of Theorem 6.2.8.

A smaller set of degenerate points is used in Doverspike (1982) where

only the set D, using Saigal's notation, is to be excluded from paths. We

could have used this smaller set here, rather than L(M), but very few of

our results would have gained anything by this (mainly Definition 6.2.20

would be slightly more general) while the proofs of many of them would

have had additional complexity introduced.

6.11.9 Lemmas 6.2.15 and 6.2.17 are special cases of Lemma 3.1 in

Saigal (1972a).

6.11.10 As pointed out in Remark 6.2.19, the underlying idea behind

the proof of Proposition 6.2.18 is a graph-theoretic argument. This is

also the reasoning which underlies the proof of convergence of Lemke's

algorithm (Theorem 4.4.4). In fact, this argument can be found in the

original papers describing Lemke's algorithm (Lemke and Howson (1964)

and Lemke (1965)). One sometimes encounters this reasoning referred to as
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a "Lemke's ghost" argument alluding to a memorable interpretation due

to B.C. Eaves (see Section 2.2.6 of Murty (1988)). Cottle and Dantzig

(1970) explicitly describe the graph theory behind this argument. They

then extend the argument to cover the vertical generalization of the LCP

(see (1.5.3)). For a treatment of Lemke's algorithm in terms of graph theory

and combinatorial topology see Shapley (1974).

6.11.11 The concept, in the nondegenerate case, of proper and reflecting

facets (Definition 6.2.10) can be seen implicitly in several works. With

regard to facets, our terminology and definitions are derived from Saigal

(1972b), Stone (1981, 1986), and Saigal and Stone (1985). Much of Section

6.2 can be traced to these references. It should be noted that Saigal (1972b)

considered any facet contained in the boundary of K(M) to be proper.

By doing this the definition of regular (Definition 6.6.14) can be simply

stated, in the nondegenerate case, by saying that a matrix M is regular

if all the facets of all the complementary cones relative to M are proper.

Stone (1981, 1986) defines facets to be proper and reflecting only in the

nondegenerate case. By the definitions given in Saigal (1972b), the common

facet of a full cone and a degenerate cone would be considered a proper

facet. This means that some results given in Saigal (1972b) require certain

corrections, as is documented in Stone (1981) and Saigal and Stone (1985).

Our Definition 6.2.20 is taken from Saigal and Stone (1985). However, we

have split the class of absorbing facets, as defined in that paper, into the

classes of absorbing and isolated facets. Also, we have added the class of

cyclic facets.

6.11.12 The LCP parity theorem (Theorem 6.2.27) is a stronger version

of Theorem 3.1 in Saigal (1972a). The same idea underlies the proofs of

Theorems 6.2.27, 6.2.28, and 3.1 (in Saigal (1972a)). Earlier (and less

general) LCP parity theorems can be found in Saigal (1970b) and Murty

(1972).

6.11.13 Many works describe and use Lemke's method from a geometric

viewpoint. For some examples of this literature, and further references, the

reader is directed to Saigal (1972b), Lemke (1980), Garcia and Zangwill

(1981), Doverspike (1982), and Garcia, Gould, and Turnbull (1984).
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6.11.14 The basic results concerning the behavior of Lemke's method as

it relates to complementary cones and their facets is first taken up in Saigal

(1972b). Theorem 6.3.7 and Corollary 6.3.9 are derived from the material

in Saigal (1972b) and Saigal and Stone (1985).

6.11.15 An essential ingredient driving the proofs of Theorem 6.3.10,

Corollaries 6.3.11 and 6.3.12, and Theorem 6.3.13 is the fact that, un-

der nondegeneracy, the almost complementary path followed by Lemke's

method must reach a solution if the only ray the path contains is the initial

ray. This fact is stated explicitly as the corollary to Theorem 1 in Cottle

and Dantzig (1968), however, it appears explicitly or implicitly in many of

the works dealing with Lemke's method including Lemke (1965) itself.

6.11.16 Lemke's method with an arbitrary covering vector, as discussed

in the text between Corollaries 6.3.11 and 6.3.12, is essentially the same

as the method proposed in Garcia, Gould, and Turnbull (1984). That

paper uses a homotopy approach in describing and analyzing the method.

The contents of Corollary 6.3.12 and Theorem 4.8 in Garcia, Gould, and

Turnbull (1984) are basically the same. The reader should note that the

matrix class Q 0 , as given in that paper, refers to the set of R0-matrices

which have nonzero degree and are not superfluous. Why such a matrix

class would be of interest can be seen in the discussion following Corollary

6.3.12.

6.11.17 For the special case of copositive-plus matrices, Theorem 6.3.14

is part of Theorem 3.1 of Cottle (1974b). The proof of our theorem is based

on the proof of Cottle's theorem.

6.11.18 Corollary 6.3.15 shows that Lemke's method will process an L-

matrix. As mentioned in Note 4.12.15, this result is implied by Theorem

4.4.15. We point out that Eaves (1971a), which first defined the class L,

was the first to show that Lemke's method would process an L-matrix.

6.11.19 The augmented LCP addressed in Theorem 6.4.1 was discussed

in Note 3.13.13.

Bimatrix games, addressed in Theorem 6.4.2, were discussed in Note

1.7.4. The reader is also directed to Shapley (1974) which proves Theorem

6.4.2 via a graph-theoretic approach to index theory.
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Theorem 6.4.3 is a generalization of Theorem 2.7 in Doverspike (1982).

This latter theorem is similar to Theorem 6.4.3 but its hypotheses include

the additional requirement that deg M (q) be odd for all q E S.

Theorem 6.4.4 was first shown as part of Theorem 3.3 in Doverspike

(1982).

6.11.20 Section 6.5 here is based on Section 4 of Howe and Stone (1983).

6.11.21 The notion given in Section 6.6, that M E Rl"n n P if and only

if the complementary cones relative to M are nondegenerate and partition

Rn, dates back to Samelson, Thrall, and Wesler (1958). Theorem 6.6.1
was first shown as Theorem 7.1 in Murty (1972).

6.11.22 The class of N-matrices is defined and discussed in Nikaido

(1968) which cites an earlier work by Inada (see Inada (1971)). Theorems

6.6.3 and 6.6.4 are derived from results in Kojima and Saigal (1979). (The

reader should be aware that Theorems 3.3 and 3.4 of Kojima and Saigal

(1979) are slightly inaccurate.) The complete version of Theorem 6.6.4, as

we have it here, appears as Theorem 4 in Gowda (1991b).

6.11.23 The class of fully-semimonotone matrices and the class of U-

matrices are defined and studied in Stone (1981) and Cottle and Stone

(1983). The class of W-matrices is defined and studied in Jeter and Pye

(1987). The results we present in Section 6.6 concerning these matrix

classes are derived from material taken from these sources.

We note that Stone (1981) shows that U n Q0 C Po and conjectures

that Eö f1 Q0 C P0 . As of this writing, the conjecture remains open. For

related material, see Aganagic and Cottle (1987) and Note 3.13.22.

6.11.24 The concept of regular (Definition 6.6.14) is first used in Saigal

(1972b). The definition given here is the one used in Stone (1986). The

class of INS-matrices is first defined in Stone (1981). The results on INS-

matrices given in Section 6.6 can be found in Stone (1981, 1986).

6.11.25 The idea of superfluous matrices can be found in both Stone

(1981) and Garcia, Gould, and Turnbull (1984). The term superfluous is

coined in Howe (1983a). It is in this latter paper that superfluous matrices

of nonzero degree are first shown to exist. Indeed, Theorems 6.7.2 and
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6.7.3 are special cases of results taken from Howe (1983). As discussed

at the end of Section 6.7, an example of a superfluous matrix with degree

equal to zero is given in Kelly and Watson (1979). Theorem 6.7.4 is a

special case of a general theorem concerning degree and the direct sum of

functions (see Howe and Stone (1983)).

6.11.26 Except for Lemmas 6.8.1 and 6.8.2, the results in Section 6.8

are taken from Morris (1990a). Additional insight into the geometry of the

polytope PM can be gained by reading Morris (1990a) where Theorems

6.8.3 and 6.8.4 are proved using this geometry.

6.11.27 The results in Section 6.9 are taken from Doverspike and Lemke

(1982). Pseudomanifolds have been used in a wide variety of mathematical

disciplines including algebraic topology and complementary pivot theory.

Several of the references given in this section use pseudomanifolds such as

Saigal (1972b), Stone (1981), and, of course, Doverspike and Lemke (1982).

The following is a sample of the works where the reader can find further

information on this topic: Spanier (1966), Gould and Tolle (1983), Eaves

(1984), and Freund (1984).

6.11.28 Exercise 6.10.5 is taken from part of Proposition 3.1 in Dover-

spike and Lemke (1982). The inspiration behind Exercise 6.10.17 is de-

rived from Ha (1985). Part (b) of Exercise 6.10.23 appears as Theorem 2 of

Cottle and Stone (1983). Exercise 6.10.28 is taken from material in Murty

(1972). Exercise 6.10.29 appears as Corollary 4.5 of Stone (1986). Exer-

cise 6.10.31 is taken from material in Olech, Parthasarathy, and Ravindran

(1991). (For additional results on almost N-matrices see Gowda (1991b).)

Exercise 6.10.37 is derived from Lemma 4.1 of Morris (1990a).

6.11.29 Several works make use of spherical geometry in studying the

LCP. Instead of working with a complementary cone directly, one works

with the intersection of the complementary cone and the unit sphere. (If

the complementary cone is nondegenerate, this intersection will be a non-

degenerate spherical simplex.)

As pointed out in Section 2.9, nondegenerate homogeneous functions on

Rn can be viewed as functions on Sn -1 . Thus, in the context of the LCP,

connections can be made between degree theory and spherical geometry.
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We have not treated spherical geometry in this book, however, the inter-

ested reader is encouraged to consult the following sample of works taken

from the literature: Kelly and Watson (1979), Cottle, von Randow, and

Stone (1981), Garcia, Gould, and Turnbull (1983), Fredricksen, Watson,

and Murty (1986), and Kelly (1990).

 





Chapter 7

SENSITIVITY AND STABILITY

ANALYSIS

Sensitivity analysis of the linear complementarity problem (q, M) is

concerned with the study of the behavior of the solution(s) of the problem

when the data, i.e., the vector q and matrix M, are subject to change.

Typically, the need for this kind of analysis is attributable to one of sev-

eral factors. The foremost of these is the fact that when the LCP is used

in modeling a practical application, the data, most often, are noisy; that

is to say, they contain errors. This could be due to a number of possi-

ble reasons: inaccurate measurement, insufficient knowledge of the data,

uncertainty, etc. To illustrate this, consider the LCP formulation of the

market equilibrium problem discussed in Section 1.2. In this problem, part

of the data is derived from the demand function (1.2.10). Typically, this

function is obtained through an empirical process which is unequivocally

subject to errors. As a result of the errors present in the data, the solution

obtained from the LCP is at best an approximation of the true equilibrium.

In order for such a solution to be of practical use, it is imperative that the

643
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modeler obtain some sensitivity information of the solution on the data.

Similar considerations also arise from the other equilibrium problems (such

as the traffic and the network equilibirum problems discussed in Sections

4.5 and 5.1, respectively).

Another instance in which sensitivity analysis plays an important role

occurs when the data of the problem depend on certain parameters. We

have seen an example of this type in the context of the implicit comple-

mentarity problem (cf. (1.5.4) in Section 1.5). There, each system (1.5.5)

is equivalent to a linear complementarity problem in which the constant

vector is parametrized by u. Another example of this type is the journal

bearing problem discussed in Section 5.1. There, both the vector q and

matrix M are defined in terms of the grid sizes Az and Ax; in fact, q and

M are nonlinear functions of Az and Ax. These grid sizes are the key

parameters in the finite difference LCP model which is designed to be a

numerical approximation of the physical problem. Hence, it is vital to be

able to analyze the solution of the discretized LCP as a function of the grid

sizes. This kind of analysis is an important facet of the sensitivity study of

the LCP.

Since it is generally impossible to compute an explicit solution of the

LCP (q, M) for all values of the data within a domain of interest, sensitivity

analysis offers the only avenue for the study of the problem when the data

are subject to change. The main goal of such an analysis is to provide

qualitative as well as quantitative information on the problem itself, or on

a given solution of the problem, for a prescribed range of values of the data.

This chapter presents several principal aspects of sensitivity analysis of the

linear complementarity problem.

7.1 A Basic Framework

We introduce a basic framework within which the sensitivity analysis of

the linear complementarity problem can be undertaken. Let M C Rn X Th be

a subset of matrices, and Q C R a subset of vectors. Associated with each

pair of vectors and matrices, q E Q and M E .M respectively, we consider

the LCP (q, M) and its (possibly empty) solution set SOL(q, M). Sensitiv-

ity analysis is concerned with the investigation of this solution set as q and

M vary in Q and .M, respectively. Questions such as the nonemptiness of
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SOL(q, M) for all (q, M) e Q x M, the (upper or lower) semicontinuity

of the solution set SOL(q, M) as a multivalued mapping from Q x M into

R', as well as the boundedness and some form of Lipschitz continuity of

the solution map are of particular interest.

Many important special cases of the above general framework can be

identified. The foremost of these is the instance where a fixed vector q and

matrix M are given and the sets 2 and M are certain neighborhoods of q
and M, respectively. This special case corresponds to the stability analysis

of the given LCP (q, M) in which one is interested only in small changes

of the data, and in how such changes affect the behavior of either a given

solution or the entire solution set of the problem (q, M). Various notions

of stability can be defined and two of these will be analyzed in Section 7.3.

Besides yielding useful information about the solution and the problem

when the data are perturbed, the sensitivity results for the LCP often have

important algorithmic implications. We shall later discuss two applications

of these results in an algorithmic context; one of them concerns the basic

splitting method given in 5.2.1 for solving the LCP (q, M), and the other is

related to the local convergence of Newton's method for solving the nonlin-

ear complementarity problem (1.2.22). In each case, we shall demonstrate

how the sensitivity results are instrumental in establishing the convergence

of the sequences of iterates produced by these methods, and how some

results pertaining to the rates of convergence can also be derived.

Another special case of the general framework for sensitivity analysis

of the LCP is the multivariate parametric linear complementarity problem

in which both the constant vector and the defining matrix in the LCP are

functions of a parameter vector. More specifically, this problem involves

the family:

{(q(s), M(E)) : e E A} (1)

where A (the parameter space) is a subset of R, and q : A –+ R  and M:
A — Rnxn are given functions. The parametric linear complementarity

problem introduced in Section 4.5 is a special case of this multivariate

parametric problem in which there is one single parameter (i.e., m = 1),

the function q(E) is affine in E (i.e., q(E) = q + Ed where q, d E Rn), and

the function M(e) is a constant. The implicit complementarity problem in

Section 1.5 provides another context in the which the parametrized family

(1) arises naturally.
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7.2 An Upper Lipschitzian Property

Consider the sensitivity analysis problem of the LCP (q, M) in which

the matrix M is not subject to change and the vector q is slightly perturbed.

In order to simplify the notation somewhat, we suppress the dependence

on M in SOL(q, M) and let S(q) denote the solution set of (q, M). In this

notation, S(•) defines a multivalued mapping from Rn into itself. Notice

that S(q) may be empty for some q.

The solution mapping S(•) possesses two elementary properties that

are worth noting. One property is the closedness of this map; that is to

say, if {q"} is a sequence of vectors in R' converging to q, and {z"} is a

corresponding sequence of solutions with z" E S(qv) for all v, and if {z'}

converges to z, then z is a solution of the LCP (q, M). This property is

trivial to prove, yet it is the basis upon which several of the convergence

results of the (iterative) splitting method studied in Chapter 5 are derived.

(See for example the limiting argument in the proof of Theorem 5.3.3.)

The other special property of the solution map S(•) is that it is polyhedral;

this means that its graph which is the set

{(q,z)ERtmxRn :zCS(q)},

is a finite union of convex polyhedra. As a matter of fact, this set is equal

to

U{(q, z) E RTh x R+ : qa + Maaza = 0, qj, + M„„za > 0, z = 0}
a

where the union ranges over all index subsets cti of {1, ... , n}.

In essence, the polyhedrality of the solution map S(•) provides the key

to the following result which establishes a very general continuity property

of S(q) as q varies in a neighborhood of a fixed vector q. The validity of

this result requires no assumption on the underlying matrix M. In stating

the result, we use to denote the Euclidean vector norm 12, and 3

the associated (closed) unit ball.

7.2.1 Theorem. Let M E Rnxn and q E Rn be given. Then, there exists

a constant c> 0 and a neighborhood V C R of q such that for all vectors

qCV,

S(q) C S(q) + cll q — ql B. 	 (1)
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Before proving the theorem, we clarify the meaning of the inclusion (1).
First of all, this result applies regardless of whether the set S(q) is empty or

not. In the case where S(q) is empty, the inclusion (1) simply asserts that

for all vectors q sufficiently close to q, the LCP (q, M) also has no solution.

In the opposite case where the LCP (q, M) has a solution, the conclusion

is that for all vectors q sufficiently close to q, if z(q) is an arbitrary solution

of (q, M) (assuming it exists), then there must be some solution z of (q, M)

(which depends on z(q)) such that

z(q) — zjj < c(I q — q1 J.

This last inequality shows that the solutions of the perturbed LCP (q, M),

if they exist, not only are not too far away from some solutions of the given

LCP (q, M), but their distances are bounded by a quantity proportional to

the magnitude of the change in q. Borrowing terminology from the theory

of multifunctions (i.e., multivalued mappings), we therefore conclude that

the solution mapping S(.) is locally upper Lipschitzian with modulus c.

Notice that if S(q) consists of a singleton for each q in a neighborhood

of the base vector q, the expression (1) implies that this solution function

possesses a kind of weak Lipschitz continuity property at the vector q.

The proof of Theorem 7.2.1 relies on a Lipschitzian property of con-

vex polyhedra. In order to state this property, we let PA(b) denote the

polyhedral set

PA(b)={xERt':Ax=b,x>0},

for a given matrix A e R"" X "'' and vector b e R"z.

7.2.2 Lemma. Let A e R"' x n and b E posA be given. Then, there exist

a constant L > 0 and a neighborhood V C Rm of b such that for every

b E V and every vector x(b) E PA(b), there exists a vector x e PA(b) such

that

x(b) — x^^ < Lb — b1^.

Proof. Without loss of generality, we may assume that A is not equal to

the zero matrix. Let F be the collection of feasible bases of A associated

with the polyhedron PA(b), i.e., 1 consists of submatrices B of A which

themselves are comprised of linearly independent columns from A and for

which the subsystem

BXB =b, xB>0	 (2)
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is consistent. Since b E pos A, .F is a nonempty collection. Let I be

the collection of infeasible bases of A associated with PA(b); that is, Z

consists of submatrices B of A which themselves are comprised of linearly

independent columns from A but the subsystem (2) is inconsistent. Notice

that I is a finite (possibly empty) collection, and

b ¢ U pos B.
BEI

The latter union of finitely generated cones is a closed set (which is possibly

empty). Hence, there exists a neighborhood V of b such that

Vn(U posB)=0.
BEI

Let b E V n pos A be given, and let x(b) E PA(b). Then, by Goldman's

resolution theorem, 2.6.23, x(b) is the sum of a convex combination of

extreme points of PA(b) and a nonnegative combination of extreme rays of

PA(b), i.e.,
r	 s

x(b) _ 	 A^u' +	 µ^v^	 (3)

where Xz and ' are nonnegative scalars with E?=1 .ßz = 1, and each u i

(v3 ) is an extreme point (ray vector) of PA(b).

Associated with each extreme point u of PA(b) is a basis B of A whose

columns correspond to the positive components of u. By the choice of b, B

must necessarily belong to the collection .P. Thus, there exists an extreme

point x E PA(b) with x = (XB, 0). We have

B(XB — UB) = b — b

where u = (uB, 0). Since B has full column rank, the matrix BTB is

positive definite. Hence,

xB — UB = (BTB) —l BT (b — b),

which implies

x — ull < II(BTB) —' BT II IIb—bM.

Define the constant

L sax II (BTB) ' BT )
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and apply the previous argument to each of the extreme points u2 appearing
in the representation (3). For each i = 1, ... , r, let x i be an extreme point
of PA(b) that corresponds to u i obtained through this argument. Define
the vector

r s

_ Aix +v3
i=1 j-1

which must belong to PA(b). It follows that

x(b) — x^^ <L)  — b^^

as desired. ❑

Proof of 7.2.1. We first show that if the LCP (q, M) has no solution, then

the same is true for the LCP (q, M) for q sufficiently close to q. This is

obvious because the assumption implies q 0 K(M); since K(M) is a closed

set, it follows that there exists a neighborhood V of q such that q 0 K(M)
for all q E V. Hence, the LCP (q, M) is not solvable for all these vectors q.

Suppose that S(q) 0. Let C be the collection of all complementary

submatrices A of (I, —M) such that q E pos A. Note that C is a finite

collection. By the same argument as above, we deduce that there exists a

neighborhood V of q such that for all q E V for which the LCP (q, M) is
solvable, we have

q E U pos A.
AEC

According to Lemma 7.2.2, there is a constant LA > 0 associated with each
complementary submatrix A E C such that for all vectors q sufficiently
close to q and for each vector u > 0 such that Au = q, there exists a
corresponding vector is > 0 satisfying Ati = q and

— üll < LAjjq — q1J.

By defining the constant c to be the largest of the constants LA with
A ranging over all members of the collection C, and by restricting the
neighborhood V if necessary, we easily deduce the desired inclusion (1). ❑

An immediate consequence of 7.2.1 is the following continuity property
and boundedness of the solution map S(•) at the vector q if the set S(q) is
bounded.
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7.2.3 Corollary. Let M E R'n If S(q) is bounded, then the multivalued

solution map S : Rn --> R^` is upper semicontinuous at q; moreover, there

exist a constant c' > 0 and a neighborhood V of q such that

z( < c'	 for all z E S(q) and q E V.

Proof. If S(q) is empty, then by 7.2.1, so is S(q) for all q sufficiently

close to q. Hence the conclusions of the corollary are vacuously true in this

case. If S(q) is nonempty (and bounded by assumption), then it is compact

because it is closed. Let V and c be as given in 7.2.1. Then, if U is any

open set containing (the compact) S(q), by restricting the neighborhood V
if necessary, it follows that U will contain the set S(q) + c )q — S for all

vectors q E V. By the inclusion (1), the upper semicontinuity of the map

S(.) at q follows. The last conclusion about the existence of the constant

c' also follows from this inclusion. o

The second conclusion of 7.2.3 states that if the LCP (q, M) has a

(nonempty) bounded solution set, then the (nonempty) solution sets of all

nearby LCP (q, M), with q sufficiently close to q, are uniformly bounded.

Local solvability

Theorem 7.2.1 does not assert the solvability of the LCP (q, M) when

q is close to q. Obviously, a sufficient condition for S(q) to be nonempty

is M e Q. The next result shows that under an appropriate uniqueness

condition, the validity of this kind of local solvability property can be char-

acterized in terms of the Q-property of the Schur complement of a certain

principal submatrix in M.

7.2.4 Theorem. Let M E R'Lxn and q be given. Suppose that z is a

locally unique solution of LCP (q, M) and Ma ,, is nonsingular, where

cti={i:zj>0=(q+Mz)i}.

(a) If the Schur complement

Mßß — MOa M^c, Maß	 (4)

belongs to the class Q, where

ß={i:zi=0=(q+M4)2},
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	then there exists a neighborhood V of	 q such that S(q) 	0 for all

q E V.

(b) Conversely, if z is a globally unique solution of (q, M) and if the

LCP (q, M) is solvable for all q sufficiently close to q, then the Schur

complement (4) is a Q-matrix.

Proof. Let 'y denote the complement of a U ß in {1,. . .  , n}. Since Maw is

nonsingular, we have

	— M,—„, qa > 0 ,	 (5)

	qj — MßaMaaAla = 0 ,	 (6)

	qY — MY^Ma ,gca>0.	 (7)

Let N denote the Schur complement given in (4). Since z is a locally

unique solution of the LCP (q, M), Theorem 3.6.5 implies that the matrix

N E Ro , i.e., the LCP (0, N) has zero as the unique solution. By Theorem

7.2.1, there exist a constant c > 0 and a scalar r> 0 such that for every

vector rp with I I rp 11 < r, we have

^zßll < cjjrß11	 (8)

for every solution zß of the LCP (rß, N).

Now, choose the neighborhood V of q such that for every q E V, we

have
zc.=—Ma(ga+MMQzß)>0	

(9)
w.y = q.y + MMya za + M,yß zß >0

for every solution zß of the LCP (rß, N) where

rß = qQ — M0, Maa q, .

That we can choose this neighborhood V with these properties is a conse-

quence of (5) — (8). To complete the proof of part (a), it suffices to observe

that the LCP (rß, N) has a solution by the assumption N E Q; if zp is any

such solution, the first equation in (9) defines the vector za , and the second

equation in (9) implies that (zn , zß, 0) is a solution of the LCP (q, M) for

q E V.
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To establish part (b), suppose that z is a globally unique solution of

( M) with Maa nonsingular and that the LCP (q, M) has a solution for

each q sufficiently close to q. By the global uniqueness of z, the inclusion

(1) implies that for a vector q sufficiently close to q, any solution of (q, M)
must be close to z. In particular, it follows that if q is close enough to q
and if z E S(q) with w = q + Mz, then we have

wi=0<z; for all iEa,

zi=0<wi for all iEly

Let rß be an arbitrary vector. To show that the LCP (rß, N) has a

solution, consider the problem (q, M) with

qa = 4,,, q,ß = qa + Erß, q7 =

where e > 0. By the aforementioned observation, it follows that if e is

small enough, this latter LCP (q, M) has a solution z with corresponding

w = q + Mz; moreover, we have wa = 0 and z7 = 0. It is then an easy

matter to see that zß solves the LCP (Erp, N). Since r is positive, we

conclude that (rß, N) has a solution. ❑

In the notation introduced in 3.9.15, the index sets a, ß and 'y appear-

ing in the above theorem correspond to cti(z), 3(z) and -y(z) respectively.

Here and in the remainder of this chapter, these sets play a central role

in the analysis. Equally important in the subsequent results is the Schur

complement given in expression (4) and denoted N in the proof of 7.2.4.

The Q-property of the Schur complement N is vacuously true if the

index set ß is empty, i.e., if z is a nondegenerate solution of the LCP (q, M);
in this case, it follows that the LCP (q, M) is solvable for all vectors q

sufficiently close to q. Nevertheless, as the example below shows, this local

property does not imply M E Q.

7.2.5 Example. Consider the data

1 1 —1 0

q= 1 , 	 M= 1 —1 0

—1 —2 21

The vector z = (0, 0, 1) T is a locally unique, nondegenerate solution of

(q, M) with cti = {3}. It is easily seen that M 0 Q.
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As illustrated by the next example, it is essential that z be a unique

solution of (q, M) in order for part (b) of 7.2.4 to hold.

7.2.6 Example. Consider the data

	—2	 2 1
4=	 ‚ M=

	

—4	 4 1

The matrix M is nondegenerate and belongs to class Q. Two solutions of

the LCP (q, M) are:

0I,	 z2 = I	 I.

The index sets cti and ß corresponding to the solution z l are

o={1}  and /3={2}.

Since M is nondegenerate, z l is a locally unique solution of LCP (q, M)
(see Theorem 3.6.3). The Schur complement given in (4) is equal to —1,
hence is not in Q.

Theorem 7.2.4 is related to 6.5.5 which treats the case where the vector

q is nonnegative and the solution z = 0 (see also Corollary 6.5.6). The

assumptions in the latter theorem imply the local uniqueness of the zero

solution. One noteworthy point is that in this special case (of a nonnegative

q), the global uniqueness assumption in part (b) of 7.2.4 is replaced by a

certain covering property of the map fM .

An application: convergence of splitting methods

Theorem 7.2.1 has many applications. One of these occurs in the study

of the splitting method described in 5.2.1 for solving the LCP (q, M). This

method generates a sequence {z'} with the property that each z 1 is a

solution of (q + Cz', B) where (B, C) is a splitting of M. Clearly, z 1 is

also a solution of (q + C(z' — zv+l) M). Now, if the sequence {z" — zv+l }

converges to zero, then the latter LCP becomes a perturbation of (q, M)
for all v sufficiently large, and 7.2.1 is therefore applicable.
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7.2.7 Theorem. Let M E RTh X f and q E Rn be such that the LCP (q, M)

has a finite number of solutions. Let (B, C) be a Q-splitting of M, and {z"}

be any sequence produced by the splitting method 5.2.1. The following

two statements are equivalent.

(a) The sequence {zv — zv+ i } converges to zero as v , oo.

(b) The sequence {z'} converges to a solution of (q, M).

Proof. Clearly, it suffices to show (a) = (b). Since q + C(z" — z 1) + q

as v —p oo and the perturbed problem (q+C(z" — z" + 1 ) M) has a solution,

7.2.1 implies that (q, M) must have a solution; moreover, there exists a

constant c > 0 such that for all v large enough and for each solution u' of

(q + C(z" — zv+l ) M), there exists a solution y' of (q, M) satisfying

uV —yV 11 <_clIzv —zv+l

Since (q, M) has only a finite number of solutions, there are finitely many

yV vectors. Hence, the above inequality implies that the solution sets of the

LCPs (q + C(z" — zv+') M) are uniformly bounded for all v sufficiently

large; in particular, the sequence {z" + 1 } is bounded. Moreover, by the

closedness property of the solution map S(•), every accumulation point of

{z"} must be a solution of (q, M). But since SOL(q, M) is a finite set, the

sequence {z"} possesses the following three properties: (i) it is bounded,

(ii) it has a finite number of accumulation points, and (iii) )z"—z"+' ' 0.

Hence, by Theorem 2.1.10, the sequence {z'} converges; its limit must be

a solution of (q, M). ❑

7.2.8 Remark. Observe how the upper Lipschitzian result of 7.2.1 is em-

ployed to establish the boundedness of the sequence {z"}; the existence of

the Lipschitzian constant c is essential for this purpose.

7.2.9 Remark. We recall that a necessary and sufficient condition for the

LCP (q, M) to have a finite number of solutions for all vectors q is when

the matrix M is nondegenerate (see Theorem 3.6.3).

Theorem 7.2.7 can be compared to 5.3.8. There, the matrix M was

assumed symmetric and the splitting (B, C) regular (in addition to being

a Q-splitting); here, these two assumptions are not imposed. In a way, one
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can view 7.2.7 as providing the underlying justification for the validity of

5.3.8. In turn, this can be traced back to the upper Lipschitzian property

asserted in Theorem 7.2.1.

We now switch our attention to the symmetric LCP (q, M) and demon-

strate how Theorem 7.2.1 is again instrumental in establishing the conver-

gence of the splitting method. As we can expect, the quadratic function

f (z) = qTz + 2 zTMz

plays a central role in this analysis. The following theorem is the analog

of 7.2.7 for the LCP (q, M) with a symmetric matrix M. This theorem

provides the ultimate convergence result for the splitting method in 5.2.1

for solving a symmetric LCP.

7.2.10 Theorem. Let M E Rnxn be a symmetric matrix, q E R' be

arbitrary, and (B, C) be a regular Q-splitting of M. The following two

statements are equivalent.

(a) The quadratic function f (z) is bounded below for z > 0.

(b) For any starting vector z° > 0, any sequence {z"} produced by the

splitting method 5.2.1 converges to a solution of (q, M).

In order to prove 7.2.10, we summarize the key facts about the sequence

{z"} which we already know from the results developed in Section 5.3.

Suppose that (a) holds. Let {z"} be a sequence produced by 5.2.1. Then,

(i) the sequence If (z") } is nonincreasing and converges, say, to J;

(ii) there exists a scalar > 0 such that for all v,

zv _ zv+^ll2 <_ 71(.f(zv) _ f(zv+')); (10)

(iii) every accumulation point of {z" }, if it exists, solves (q, M).

Another useful property is the fact that if M is symmetric, the quadratic

function f (z) attains only a finite number of values on the set SOL(q, M)

(cf. 3.12.22).

Proof of 7.2.10. (a)	 (b). The strategy of the proof is somewhat similar

to that of 5.4.6. Let
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w=f(z
u )_ f>0.

The expression (10) implies

^ zv _ zv+l M I < iuv 	(11)

where, for the sake of simplifying the notation somewhat, we have omitted

the subscript 2 in the norm. Our goal is to derive a rate of convergence

result for the sequence {a„} that is analogous to the expression (5.4.4) in

the case of a positive semi-definite M.

As in the proof of 7.2.7, we deduce the existence of a constant c > 0

such that for all v sufficiently large, there exists a solution z" of (q, M)

satisfying

11zv+l — V) <_ cIIzv+
1 — zv11.	 (12)

This inequality implies

lim f(') = lim f (z ') = J.
v—^oo	 v—^oo

Since f (z) attains only finitely many values on SOL(q, M), it follows that

for all v large enough, f() = f. As in the proof of 5.3.2, we have for v

sufficiently large,

9v+^ = f(zv+l) - f(zv)

= (zv+1 — zv
) T(q + Czv+i + Bz") +  (zv+i — zv) T(B — C)(zv+l

 — V)

_ (zv+1 _ zv)T(q + Czv + Bzv+') + (zv+l _ zv)TC(zv+l _ z")

2 (zv+1 — zu)TM (zv+l — zV)

(zv+l — zU)TC( z +1 — zu )
 — ä ( zv+l — z")TM(zv+l — z")

( c (C J + c2 IMII/2)Ilzv+1 _ zvll2

where the last inequality follows from the Cauchy-Schwartz inequality and

(12). By (10), we deduce

w+1 <— P1(17, — w+1)

where

P = 7l(cIICII +c2W)/2)•
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Consequently, for all v large enough,

w+l Pw, (13)

where p = p'/(l + p') < 1. This last inequality gives the desired geometric

convergence rate for the sequence { o „}. In light of this and the inequality

(11), we can complete the proof of convergence of the sequence {z"} by the

same argument as in the proof of 5.4.6. This establishes the implication

(a) (b).

(b) = (a). Fix an arbitrary nonnegative vector z°. Let {z"} be a

sequence of iterates generated by the splitting method in 5.2.1 with z° as

the starting vector. By assumption (b), {z"} converges to a solution z of

(q, M). By Lemma 5.3.2, we obtain

f(z° ) > f(z).

Since there are only finitely many functional values f (z) for z E SOL(q, M),

it follows that f (z° ) is bounded below by the smallest of such values. Since

z° is arbitrary, part (b) is established. ❑

According to Proposition 3.7.14, the matrix M is strictly copositive if

and only if for all q E Rn, the quadratic function f (z) is bounded below

for z > 0. Hence, combining this observation with Theorem 7.2.10, we

deduce the following corollary.

7.2.11 Corollary. Let M E Rnxn be symmetric. Suppose that M has a

regular Q-splitting (B, C) . Then, M is strictly copositive if and only if for

all vectors q E R and all z° E R+, any sequence {z"} produced by the

splitting method in 5.2.1 converges to a solution of (q, M). ❑

The above corollary generalizes Theorem 5.3.5 where the strict coposi-

tivity of M was characterized in terms of a related universal, subsequential

convergence property of the splitting method.

The proof of the implication [(a) = (b)] in Theorem 7.2.10 can be

extended to establish the geometric rate of convergence for the splitting

method of 5.2.1.

7.2.12 Corollary. Let M E Rn"n be a symmetric matrix, and (B, C) be
a regular Q-splitting of M. Suppose that the quadratic function f (z) is
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bounded below for z > 0. Let {z'} be a sequence produced by 5.2.1, and

let z* be its limit. Then, there exist positive scalars Cl and C2 with c2 < 1

such that

zv — z*11 <_ cl(c2)v

for all v sufficiently large. Furthermore, if z* is a locally unique solution of

(q, M), then there exist a constant c' > 0 and an integer v > 0 such that

for v>v,

I1zv+l-z*II <c Ilzv -z*11.

Proof. The first conclusion follows from a general property of sequences

that satisfy the kind of inequalities given by (10) and (13); Exercise 7.6.12

gives the precise statement of this property, and the reader is asked to sup-

ply a proof. We now prove the second assertion of the corollary. Following

the notation in the proof of Theorem 7.2.10, we have f = f (z*) and

Qv = f(zv ) - f( z* ) = 7f(z * )T(z" - z * ) + 2(z V - z* )TM (z" - z* )

Since {z"} —+ z*, it follows that for all v sufficiently large, we must have

Vf(z*)TZv = (q + Mz *)TZ" = 0.

As V f (z*) Tz* = 0, we deduce

w = (zv — z*)TM(z — z*) < II II
 z — z* .	 (14)

Consider the sequence of solutions {z'} of (q, M) for which the inequality

(12) holds for v sufficiently large. Obviously, {zv} converges to z*. But

since z* is an isolated solution, we must have zv = z* for all but finitely

many v's. Hence, combining (11), (12) and (14), we obtain for all v large

enough,

11 z „+1 — z* 112 < c2 q,7v < (c ) 2 1I z v — z * 11 2

where (c') 2 = c2 r^II MII / 2 . 7

7.2.13 Remark. In general, the two conclusions of the above corollary

pertain to different properties of the sequence {z'}. If c' < 1, then clearly,

the second conclusion implies the first. In Exercise 7.6.13, the reader

is asked to verify that these two properties do not generally imply one

another.
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7.3 Solution Stability

The results of the last section are concerned with the stability of the

linear complementarity problem when the defining matrix is not subject to

change; they provide conditions under which the perturbed problems are

solvable when the constant vector is changed slightly (see Theorem 7.2.4),

and they establish the (upper Lipschitz) continuity of the solution set (see

Theorem 7.2.1). The fact that the matrix M is kept fixed is essential

for these results to hold. For instance, the upper Lipschitzian property of

the solution set (cf. expression (7.2.1)) easily fails for an LCP with a P0-

matrix M which is subject to perturbation; if one perturbs M by adding

an arbitrarily small positive quantity to the diagonal entries, the resulting

perturbed matrix becomes a P-matrix, so the left-hand side of (7.2.1) is

a nonempty set for any q, whereas the set in the right-hand side may be

empty.

In this section, we take up the issue of stability of the linear comple-

mentarity problem at a given solution when both the constant vector and

the defining matrix of the problem are perturbed. Here, our focus is on the

change of this particular solution when the data of the problem are slightly

altered.

7.3.1 Definition. Let q E R"'' and M E R"l"f be given. A solution z* of

the LCP (q, M) is said to be stable if there are neighborhoods V of z* and

U of the pair (q, M) such that

(i) for all (q, M) E U, the set

Sv (q, M) = SOL(q, M) n V

is nonempty,

(ii) sup{ y — z* ^^ : y E Sv (q, M)} 0 as (q, M) approaches (q, M).

If, in addition to the above conditions, the set Sv (q, M) is a singleton, then

the solution z* is said to be strongly stable.

Obviously, solution stability is a desirable feature for an LCP. This is

because when a stable solution of the LCP is at hand, one is sure that a

slight change of the data will not have a drastic effect on the perturbed

problem; and in fact, the perturbed problem will have a solution which is
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near the given solution of the unperturbed problem. On the other hand, if

one had an unstable solution of an LCP, then it would be more difficult to

predict the behavior of the given problem resulting from a slight change of

the data.

Condition (ii) in 7.3.1 has two important implications. First, it implies

that if z* is stable, then z* must be locally unique. Thus, local uniqueness

of a solution is necessary for its stability. Second, condition (ii) implies a

certain stability of the positive variables of the solutions to the perturbed

LCP that are close to z*. In turn, this latter property leads to a reduction

of the problem, allowing one to ignore certain well-behaved variables and

concentrate on the remaining variables as one analyzes the change of the

solution z*.

In essence, the reduction that we are about to explain has already been

carried out in Section 6.5. There, in order to perform the local analysis

of the LCP (q, M) with q E 1C(M), a related LCP of smaller dimension is

constructed and used as the principal tool in the analysis. In what follows,

we motivate the latter (reduced) LCP from an algebraic point of view. For

this purpose, we let cti = cti(z*), ß = ß(z*) and y = -y(z*) be the three

index sets associated with the solution z*, see 3.9.15. Then, condition

(ii) of 7.3.1 implies that for all pairs (q, M) sufficiently close to (q, M), if

y E Sv (q,1Vl), we must have

ya >0 and w.y =(q+My) 7 >0. (1)

By complementarity, it follows

wa = (q + My),, = 0 and yy = 0. (2)

Hence, with the exception of the variables correponding to the indices in

the set ß, we know exactly which variables are positive and which are zero

for the perturbed LCP (q, M). Consequently, as far as the stability of the

solution z* is concerned, it is sufficient to understand the change of the

/3-variables as they are the main uncertainty for the perturbed problems.

In Theorem 7.2.4, we have seen that the Schur complement, denoted

N and given in expression (7.2.4), plays an important role in the sensitivity

of the LCP when the matrix M is not changed. The above discussion has

hinted that this matrix N might remain a central element in the solution

stability of the LCP (q, M) when M is perturbed. As the subsequent results
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show, N is the decisive factor that distinguishes the two notions of stability

defined in 7.3.1.

In what follows, we establish necessary and sufficient conditions for the

two kinds of solution stability to hold. In both cases, the derivation relies

on the reduction of the LCP (q, M) to the homogeneous LCP (0, N) that

is defined by the Schur complement N. This reduction has two noteworthy

features: (i) the size of N is typically much smaller than that of M, and (ii)

the constant vector in the reduced problem is zero. That such a reduction

is possible is due to the local nature of the analysis which is being made

entirely in a neighborhood of the solution z* under consideration.

7.3.2 Theorem. Let z* be a solution of the LCP (q, M). Suppose that

Maa is nonsingular. The following statements are equivalent.

(a) z* is stable for the LCP (q, M).

(b) The zero vector is stable for the LCP (0, N).

(c) N E int(Q) f1 Ra .

Proof. We first derive the aforementioned reduction of the LCP (q, M)

to the homogeneous problem (0, N). To do this, we express the problem

(q, M) in terms of the index sets a, ß and -y as

wa = qa + MaazIX + Maßzß + Mzry > 0,

wß = qß + Mßa za + Mßß zß + Mß,y zy > 0,

w.y = q7 + M,ya za + M.yß zß + M,y ,y z,y > 0,

z >0 and wTz =0.

At the solution z*, we have

za = — Maa qa > O, z i = 0, z *̂ = 0,

and

w,, = (q +Mz *),y =q.y+Myazä>0.

Consequently, there are neighborhoods U of (q, M) and V = Va x VQ x Vy

of z* such that if z E V and (q, M) E U, then Maa is nonsingular, and

za > 0, w,y = q,y + MMya za + Myßzß + M,y,y z,y > 0,

0< — McYa (qa + Maßzß) E Va.
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For (q, M) E U, the problem of finding a solution z E V is reduced to

the problem of finding (zn , zp) E Va x V,Q satisfying the system

211,= 4a+MaaZa+M ßZ15=0,

wp = qp+Mßa za +Mßßzß >0,

z3>0, zß Wß=0.

Since Man is nonsingular, we can eliminate the z, variables using the

first equation and then substitute the resulting expression into the other

inequality, thus obtaining an LCP in the variable zß E Vß

w3 = (biß MQctiMeaga) (M/3ß — MQ"MceaMaß)z,ß,

zß>0, wp > 0, zß wß = 0.	 (3)

By letting

rß = q,Q — Mßa Mcea Ala and N = M,ß,Q — Mßa M

we recognize the problem (3) as the LCP (rß, N). For (q, M) _ (q, M), we

have (rß, N) = (0, N), and this is the reduced homogeneous LCP that we

mentioned above.

We are now ready to prove the equivalence of the three statements (a),

(b) and (c).

(a)	 (b). Suppose that z* is a stable solution for the LCP (q, M).

Let V and U be the neighborhoods specified in 7.3.1. By restricting the

neighborhood U if necessary, we may assume as a result of condition (ii)—

that V = V. We may further assume that the two neighborhoods U and

U also coincide.

Let W be a neighborhood of the pair (0, N) such that (rß, N) E W

implies (q, M) e U where

qa=Qa, qß=q,3+r3	 qry=qry

and M = M except for the principal submatrix Mpp which is equal to

MO,, M;, Maß + N. It is then a simple matter to verify that Vß and W

are the required neighborhoods for zero to be a stable solution of the LCP

(0, N). This establishes (b).
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(b) (c). Suppose that zero is a stable solution of the LCP (0, N).

Then, there exists a neighborhood WN of N such that for all vectors r

sufficiently small, the LCP (r, N) has a solution for all N E WN. Hence,

by means of a scaling argument, it follows that such a matrix N must

belong to Q. Consequently, N E int(Q). The same scaling argument also

shows that zero must be the (globally) unique solution of the homogeneous

problem (0, N) because of its local uniqueness. Hence N E Ro as asserted

by (c).

(c) = (a). Suppose that N E int(Q) f1 Ro . We need to construct the

neighborhoods V and U required in 7.3.1. Let WN be a neighborhood

of N such that N E WN implies N E Q. Restrict the neighborhood U

described above so that (q, M) E U implies Mßp — Mpa M^a MaQ E WN.

Then, the reduced problem (3) has a solution zß whenever (q, M) e U. In

turn, this solution induces a solution (zu , zß, 0) to the problem (q, M) via

za = —M  + Ma/3zß).

To complete the proof, it remains to be shown that all solutions zß of the

problem (3) approach zero as (q, M) tends to (q, M). Suppose that this is

not true. Let {(rß, N„)} be a sequence of LCPs of the form (3) such that

rß --^ 0 and Nv — N as v — oc, and let {zß} be a corresponding sequence

of vectors with each zß E SOL(rß, N„) and

> e for all v

where e is some positive scalar. It is then easy to verify that any accu-

mulation point of the normalized sequence {zß / zä } must be a nonzero

solution of the problem (0, N). Since such an accumulation point exists,

we obtain a contradiction to the assumption N E R0 . ❑

7.3.3 Remark. Part (c) of Theorem 7.3.2 is vacuously true if z* is a non-

degenerate solution of the LCP (q, M) (because the index set ß is empty).

Consequently, any nondegenerate solution z* of (q, M) must be stable, pro-

vided that M,. is nonsingular. As a matter of fact, Theorem 7.3.7 shows

that such a solution must be strongly stable.

Theorem 7.3.2 shows that the stability of a solution z* of an LCP (q, M)

can be characterized in terms of a certain matrix property of the Schur
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complement N, provided that the principal submatrix MMa is nonsingular.

Nevertheless, as the example below shows, this latter matrix can be singular

at a stable solution.

7.3.4 Example. Consider the data

0 0 —2 2

q= —1 , 	 M= 1 1 2

1 —1 —1 0

The LCP (q, M) has a unique solution z* = (1, 0, 0) with a = {1} and

ß = {2, 3}. The principal submatrix M. = 0 is singular, but the solution

z* is stable. The reader is asked to verify the latter statement in Exercise

7.6.2.

As Theorem 7.3.2 shows, the matrix class int(Q) fl Ro plays a central

role in the solution stability of the LCP. In the next result, we provide

several characterizations of such a matrix within the class of semimonotone

matrices.

7.3.5 Theorem. Let M E Rn"nfE0 . The following statements are equiv-

alent.

(a) M E Ro .

(b) M E R.

(c) M E int(Q) n Ro .

(d) MEQnRo .

Proof. (a)	 (b). This is the inclusion (3.9.9).

(b) = (c). This is Exercise 3.12.25.

(c) (d) = (a). These are obvious. ❑

The implication [(c) 	 (b)] in Theorem 7.3.2 says that if a matrix M

belongs to the interior of the class Q, then the homogeneous LCP (0, M) is

stable at the zero solution provided that zero is the unique solution. The

next result generalizes this conclusion to the inhomogeneous LCP (q, M)

when it has a unique solution.
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7.3.6 Proposition. Let M E int(Q)nR0 . If the LCP (q, M) has a unique

solution z*, then (q, M) is stable at z*.

Proof. It suffices to show all solutions of the LCP (q, M) converge to z*

as (q, M) approaches (q, M). Assume the contrary. Then, there exists an

e > 0 and a sequence {(q", M')} —> (q, M) such that for each v, the LCP

(q", M") has a solution z' satisfying z" — z* > e. (Note that M" e Q by

the interior assumption of M.) The sequence {z"} is bounded; otherwise

a subsequential limit of the normalized sequence {z'/)z} would yield

a nonzero solution of the homogeneous LCP (0, M) which would contra-

dict the assumption M E R0. Now that {z"} is bounded, let be any

limit point. It is easy to show that z E SOL(q, M). But ( z — z * ( > E

contradicting the uniqueness assumption on z*. ❑

The stability notion defined in 7.3.1 allows the matrix M to change.

This accounts for the membership of the matrix N in the interior of the

class Q in condition (c) of Theorem 7.3.2. If one is merely interested in

a more restricted kind of stability in which the perturbation occurs only

in the vector q, then the interiority condition can be dropped. In essence,

this latter case is covered by the local results developed in Section 6.5.

Strong stability

A stable solution of the LCP need not be strongly stable. This can

be seen from Theorem 7.3.7 below which establishes that the principal

submatrix Maa associated with a strongly stable solution z* of (q, M)

must be nonsingular; as illustrated by Example 7.3.4, the submatrix M.

may be singular if z* is just stable.

The next result provides necessary and sufficient conditions for the

strong stability of a given solution of an LCP. This characterization re-

sembles Theorem 7.3.2 but with two salient differences: (i) the nonsingu-

larity of M. is no longer an assumption, but rather, is a consequence of

strong stability, and (ii) the matrix class to which the Schur complement

N belongs, is P. As we see from the proof of Theorem 7.3.2, the stability

of a solution z* for the LCP (q, M) is closely related to the homogeneous

LCP (0, N) under perturbation; in essence, the strong stability of z* is

completely dictated by the unique solvability of the problems (r, N) for all
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vectors r E RI^I; the latter is clearly equivalent to the P-property of N (cf.

Section 3.3).

7.3.7 Theorem. Let z* be a solution of the LCP (q, M). The following

statements are equivalent:

(a) z* is strongly stable for the LCP (q, M).

(b) Maa is nonsingular, and the zero vector is strongly stable for the

LCP (0, N).

(c) Maa is nonsingular, and N E P.

Proof. (a) = (b). Suppose z* is strongly stable. Let U and V be the

two neighborhoods as specified in Definition 7.3.1. We establish first the

nonsingularity of M. Assume the contrary. Let u a be a nonzero vector

such that

Maaua = 0.

Choose r,Q > 0 such that

rß + Mßaua > 0.

Consider the perturbed LCP (q° , M) where

4a = qa, qä = qß + Orß 	 qe = qry .

It is easily seen that for all 0 > 0 sufficiently small, this perturbed problem

(q° , M) has two distinct solutions, z* and z o where

zIX = zä -{- Bn^, 4=o,0, z ŷ = 0.

Moreover, if we choose 0 > 0 small enough, the pair (q8 , M) and the so-

lution ze fall within the neighborhood U of (q, M) and V of z* respec-

tively. But this contradicts the strong stability of z* which requires the set

Sv (q, M) be a singleton for all (q, lll) sufficiently close to (q, M).

Now, by Theorem 7.3.2, it follows that the zero vector is a stable so-

lution of the homogeneous LCP (0, N). To deduce the strong stability of

the zero solution, it suffices to observe that there is a one-to-one correspon-

dence between the vectors in SOL(r f, N) n.Üß and those in SOL(q, M) f1 V

(see the notation used in the proof of [(a) = (b)] in 7.3.2).
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(b) (c). It suffices to show N E P. Fix an arbitrary vector r E R1

Since zero is a strongly stable solution for the homogeneous problem (0, N),

there exist two scalars El, e2 > 0 such that for all e E (0, E1] the LCP (er, N)

has a unique solution v satisfying a2. We argue that this latter

LCP has a globally unique solution for all sufficiently small E. According

to Theorem 7.3.2, the homogeneous LCP (0, N) has a unique solution.

Hence, applying Theorem 7.2.1 to the latter LCP, we deduce the existence

of scalars e3 > 0 and c> 0 such that for all e E (0, e3] and for all solutions

v of the LCP (er, N), we have

vM < ca)r

Let
22

E = min(a1, E3, 
cMr

Then, it follows that for all e E (0, ), the LCP (ar, N) must have a unique

solution; consequently, the same is true for (r, N). This establishes N E P.

(c) (a). Suppose that M. is nonsingular and N E P. Then,

provided that M is sufficiently close to M, the principal submatrix Maa

remains nonsingular and the corresponding Schur complement

N = Mp,Q — Mßa Maa Maß E P.

Consequently, in the notation of Theorem 7.3.2, the LCP given in (3) has

a unique solution for all pairs (q, M) with M sufficiently close to M. By

the reduction argument made in the proof of this previous theorem, it is

an easy matter to establish the strong stability of the solution z* for the

LCP (q, M). ❑

7.3.8 Remark. The two conditions in part (c) of 7.3.7 are precisely the

requirement for the solution z* to be a strongly regular vector with respect

to the function Hq , M (•) (cf. Definition 5.8.3). Consequently, if z* is a

solution of the LCP (q, M), then z* is strongly stable if and only if it is a

strongly regular vector with respect to the "min" function.

The strong stability of a solution z* of the LCP (q, M) ensures that

any slightly perturbed LCP will have a unique solution that is close to

z*. This does not imply, however, that z* is the (globally) unique solution
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of (q, M), nor does it imply that the perturbed problems have (globally)

unique solutions. The data (q, M) given in Example 7.2.5 illustrate this.

By the characterization in 7.3.7, the solution z exhibited there is strongly

stable for the given LCP. Yet, the same LCP has another solution, namely,

(0,1,0).

Some Lipschitzian results

If z* is a strongly stable solution of the LCP (q, M), then the mapping

SV : U - Rn defined by

Sv(q, M) = SOL(q, M) n V.

is a single-valued function. The next result, 7.3.9, shows that this func-

tion SV(.) is Lipschitzian when the neighborhood U is properly restricted.

Notice the distinction between the two theorems, 7.2.1 and 7.3.9. In the

former result, the matrix M is not perturbed, and the upper Lipschitzian

property pertains to the entire solution set of the perturbed LCP; in the lat-

ter result, the matrix M is permitted to vary, and the Lipschitzian property

refers to that (unique) solution of the perturbed LCP lying in the neigh-

borhood V; solutions outside of V—if they exist—do not necessarily obey

this property.

7.3.9 Theorem. Suppose that z* is a strongly stable solution of the LCP

(q, M). Then, there exist neighborhoods U of (q, M) and V of z*, and

a Lipschitzian function z : U -* V such that z(q, M) = z* and for all

(q, M) E U, the vector z(q, M) is the unique solution of the LCP (, M)

that belongs to V.

Only the Lipschitzian property in the above theorem requires a proof.

In turn, this proof relies on the lemma below which asserts two Lipschitzian

properties of the (unique) solution of an LCP with a P-matrix. In turn,

this lemma makes use of the fundamental constant c(M) of a P-matrix M

defined in (5.10.6).

7.3.10 Lemma. Let M E Rn X n n P.

(a) For any two vectors q and q' in R''

z* - z'11- <c(M) -l
llq - q')	 (4)
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where z* and z' denote the unique solutions of the LCPs (q, M) and

(q', M) respectively.

(b) For each vector q E Rn, there exists a neighborhood U of the pair

(q, M) and a constant c' > 0 such that for any (q', W) E U (i = 1, 2),

M Z ePand

	Uz i* -z2 	<c((q' -q2 	+IIM'- M 2 )) ".)

where z i denotes the unique solution of (qz , M z ) for i = 1, 2.

Proof. The proof of part (a) is rather similar to that of Propositions

5.10.5 and 5.10.7. For each i = 1,..  , n, we have

0 > (z% — z^)(w% — wz) _ (zz z^)[(q — q) + M(z* — z')]2.	 (5)

Hence,

max (z* — z')i(M(z* — z')); < max (z* — z')i(q — q')i
i <i<n	 i<i<n

	<z  — z ))q	 q'.

By the definition of the constant c(M), we have

max (z* — z')2(M(z* — z'))i > c(M)z* — z'^^^•
i <i<n

Combining this with the previous inequalities, and cancelling one factor

— z' ) 0 , we obtain the desired inequality (4).

To prove part (b), we first note that the following inequality holds for

any two P-matrices M l and M2 :

	c(M ' ) — c(M 2 )1 < ^IM 1 — M2.	 (6)

Hence, it follows from Proposition 5.10.7 that there exist a neighborhood

U of the pair (q, M), a constant c > 0 and a scalar S E (0, c(M)) such that

for any (q', M') E U, the matrix M' E P, M' — M ( 00  < 6 and

	^^41" < c	 (7)

where z' is the unique solution of the LCP (q', M')
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Now, take two pairs (q', M') and (q2 , M2 ) in the neighborhood U. As

in the expression (5), we have

0 > (z 1 - z2)z[(gl - q2 ) + (M i z l - MZ Z2 )]i.

By applying an argument similar to that used in part (a) above, we deduce

	c(M 1 )z' — z2 11^ <— ^Iq'	 g2 ((00 + IIM' — M2 11cc(Iz 2 (l0C.

By (6),

	c(Mr) > c(M) — 	 — MII > c(M) — S.

Hence, combining the last two inequalities with (7), we obtain

zz  — z2 11^ < (c(M) — S) -1 max(1, )[ II q' — g 2 1100 + IIM' — M 2 ]

which establishes the Lipschitzian property of the solution of the LCP as

the data vary in the neighborhood U. ❑

7.3.11 Remark. Lemma 7.3.10 shows that when M E P, the unique

solution of (q, M) is a globally Lipschitzian function of the vector q. More-

over, the inequality (6) shows that the constant c(M) associated with a

P-matrix M is a Lipschitzian function of M with a modulus equal to one.

Lemma 7.3.10 can be extended to the mixed LCP (1.5.1) with a non-

singular matrix A and the Schur complement B — DA -1 C E P. This

extension can be used to complete the proof of the desired Lipschitzian

property of the solution function z(.) in Theorem 7.3.9. The reader is

asked to supply the omitted details of the proof in Exercise 7.6.4.

When z* is a strongly stable solution of the LCP (q, M), Theorem 7.3.9

ensures the existence of a Lipschitzian solution function z(.) defined on a

neighborhood of the data pair (q, M) and having values in a neighborhood

of z*. In the next theorem, we derive a weaker version of this result by

assuming that z* is a stable solution of (q, M). In essence, the conclusion

is a strengthening of the condition (ii) in the definition 7.3.1 of stability

and is a kind of weak Lipschitzian property at the solution z*.

7.3.12 Theorem. Let z* be a stable solution of the LCP (q, M). Then,

there exist a constant c > 0 and neighborhoods U of (q, M) and V of z*

such that
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(i) for all (q, M) E U, the set Sv (q, M) is nonempty,

(ii) sup{IIy —z *II :yESv(q,M)} <c(IIq—q ( +I(M—MII).

Proof. Let U and V be the neighborhoods as given in 7.3.1. By Theorem

7.2.1, there exist a neighborhood Q of the vector q and a constant c' > 0
such that for all vectors q E 2, we have

SOL(q, M) C SOL(q , M) + c Ilq — gll 8 .	 (8)

If y E SV(, M), then y E SOL(q, M) where

q=q+(M —M)y.

Moreover, if E > 0 is the radius of the neighborhood V, then the vectors

y in SV (q, M) are uniformly bounded by E + Hence, by restricting

the neighborhood U if necessary, it follows that the vector q E Q. By (8),

there exists a solution z of (q, M) such that

Ily — zIl <	 (I Jq — qJj + JAM — MIS IIyID)• 	 (9)

By restricting the vector y to be chosen from Sv (q, M) where V C V is
a smaller neighborhood of z*, and by restricting the neighborhood U even

further if necessary, we can be ensured that the solution z must lie in the

neighborhood V. But since z* is the only solution of (q, M) within V, we

must have z = z*. Assertion (ii) now follows easily from (9) in view of the

boundedness of the solutions y E Sv (q, M). ❑

It is natural to ask whether the Lipschitzian property (ii) in Theorem

7.3.12 can be strengthened to the following inequality

sup{ Ily 1 — y2 11 :	E Sv (q', M 2 ), i = 1, 2} < c(II q 1 — g2 II + II M ' — M 2 II )

for any (q2 , M Z) E U (i = 1, 2). The example below shows that this

strengthening is generally not possible.

7.3.13 Example. Let M E R2X2 be the matrix with all entries equal to 1.
The zero vector is the (unique) solution of the homogeneous LCP (0, M),
and it is stable (because M E int(Q) n R0). Consider the vectors

q l = £^2 	 ,	 and q2 = 	E2 £ I.
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For e > 0 sufficiently small, the unique solutions of the LCPs, (q l , M) and

(q2 , M), are given, respectively, by

	

z i = ^	 I ,	 z2 = ^ 0 1.

Hence,
z1 - z2	1

	q2"	
as e 0.

In Section 5.10, we have discussed the issues of residues and error

bounds for the linear complementarity problem. There, the results ob-

tained all rely on the blanket assumption that the matrix M either belongs

to the class P or is positive semi-definite; and they are applicable to an

arbitrary vector in R. In particular, Proposition 5.10.5 establishes an

upper bound for the distance z — x between a vector x E R' and the

unique solution z of (q, M) in terms of the residue 11 min(x, q+Mx). In

what follows, we derive a local version of this result by considering a stable

solution z E SOL(q, M) and vectors x that are close to z. This result jus-

tifies the use of the quantity min(x, q + Mx) as a measure of goodness

for x to be an approximate solution of (q, M).

7.3.14 Proposition. Suppose z is a stable solution of the LCP (q, M).
Then, there exist a constant µ > 0 and a neighborhood V of z such that

for every x E V,

x— z J J< p 1l min(x, q + Mx)11.

Proof. By Theorem 7.3.12, there exist neighborhoods Q of q and V' of z

and a constant c> 0 such that for every q' E Q and every y E Sv, (q', M),

y — zJJ <cJJq — q'

Since the "min" function is continuous, there exists a neighborhood V of z

such that for every vector x e V, we have q' E 2 and x — u E V' where

q'=q+(M—I)u, and u=min(x,q+Mx).

Let x be an arbitrary vector in this neighborhood V. Then, it is easy to

see that the vector v = x — u E SOL(q', M). Hence, we have

z — v11 < c11 (M — I)u^^,
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from which it follows that

IIz —x)I < (1 +cMIM—IIIuM .

Consequently, the proposition is established with y = 1 + cUIM — III. ❑

Besides being instrumental in the proof of the above local error bound

result (Proposition 7.3.14), Theorem 7.3.12 can be used to establish a

rate of convergence property of the splitting method (Algorithm 5.2.1) for

solving a general asymmetric LCP. This latter property is in contrast to

that asserted in Corollary 7.2.12 which is applicable only to a symmetric

LCP.

7.3.15 Theorem. Let (B, C) be a splitting of the matrix M E Rnxn with

B E Q. For a given z° E R+, let {z'} be a sequence of iterates produced

by Algorithm 5.2.1. Suppose that {z'} converges to a solution z* of (q, M)

and that z* is a stable solution of the LCP (q + Cz*, B). Then there exist

a constant 0> 0 and an integer v > 0 such that for all v > v,

zv+l — z* II <— BII zv — z*

Proof. As zv+ l E SOL(q+Cz", B) and the sequence {z"} converges to z*,

the stability assumption of z* and Theorem 7.3.12 together readily yield

the desired conclusion asserted by the theorem. ❑

7.3.16 Remark. According to Theorem 7.3.2, z* is a stable solution for

the LCP (q + Cz*, B) if Baa is nonsingular and the Schur complement

Bßß — Bßa B^'B p belongs to int(Q) rl Ro where

cti = {i : z* > 0 = (q + Mz*)} and ß = {i : z* = 0 = (q + Mz*)}.

7.4 Solution Differentiability

In this section, we study the multivariate parametric linear comple-

mentarity problem (7.1.1). Throughout the discussion, we assume that

q : A -- R' and M : A —> Rf' X n are Lipschitz continuous functions of

the parameter vector e E A C Rm. Suppose that a solution z* of the LCP

(q(e*), M(e*)) is given that corresponds to a specific value E* of the param-

eter. We are interested in the behavior of this solution when E is perturbed
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around the base vector E. Thus, in this analysis, the parameter set A is a

suitable neighborhood of E * .

According to Theorem 7.3.9, if z* is a strongly stable solution, then

there exist neighborhoods A of E* and V of z*, and a Lipschitzian function

z : A — V such that z ( E*) = z* and for each e e A, z(E) is the unique

solution of the LCP (q(E), M(r)) that lies in V. By assuming an additional

differentiability property on the data functions q(•) and M(.), we establish

below that the solution z(.) is directionally differentiable at e*; furthermore,

we provide a necessary and sufficient condition for this solution function to

be Frechet differentiable at z*.

Before deriving these differentiability results, we use the parametric

LCP with a single parameter to illustrate the main idea.

7.4.1 Example. Consider the PLCP (4.5.1) with parameter A E R and

data

q d	 M2	 [ 1 	 —1 2

The unique solution of the complete parametric problem is given by

A > 2 = (zi(A), z2(A)) _ (0 , 0),

	

2> A > 4/3	 (zi(A), z2(A)) = (0,1— A /2),

4/3 > A = (zi (A), z2 (A)) = (4/3 — A, 5/3 — A).

It is easily seen that the left and right slopes of the function Z2 (A) are differ-

ent at the breakpoints A = 2 and 4/3. Hence, z2 (A) fails to be differentiable

at these critical values of A. Note, however, that z i (A) is identically equal

to 0 for A E [4/3, oc); in particular, it is differentiable at the value A = 2.

At values other than these two, both z 1 A) and z2 (A) are continuously

differentiable.

The above example illustrates several important points. First of all,

left and right derivatives of the solution function z(A) exist at all values A.

The LCP (q + Ad, M) has a unique nondegenerate solution at all values of

A except at the two breakpoints A = 2, 4/3. At the nondegenerate values

of A, the solution z(A) is F-differentiable. At the degenerate value A = 2,

there is a change of basis and the solution z(2) = (0, 0) is degenerate; yet

one variable (namely, z1) is differentiable whereas the other variable is not.

 



7.4 SOLUTION DIFFERENITABILITY	 675

The nondifferentiable variable z2 is the degenerate variable which is also

the one that causes the basis to change. At the other critical value A = 4/3,

both variables become nondifferentiable.

In essence, given the parameter vector e* and the solution function

z(•) of the multivariate parametric linear complementarity problem (7.1.1)
around e*, those components zz (.) for i E -y(z(c*)) must be F-differentiable

at e*; as a matter of fact, these variables z(r) are identically equal to zero

for e in a small neighborhood of e*. The differentiability of the remaining

components zi (•) (for i e ca(z(e*)) U ß(z(E*))) at e* is completely deter-

mined by the degenerate variables z2 for i E ß(z(r*)). The result to follow

makes precise the central role played by these degenerate variables in the

differentiability of z(.) at r*. In stating the result, we write

w(E, z) = q(E) + M(E)z

and let V E w,* denote the Jacobian matrix (öwz(r*,z*)lae^) for (i,j) in
irx {1,...,m}whereiC {1,...,n}.

7.4.2 Theorem. Suppose that z* is a strongly stable solution of the LCP

(q(r*), M(e*)), and that the functions q(•) and M(.) are Lipschitz contin-

uous in a neighborhood of the vector e* e R. Suppose further, that the

function w(., z*) is F-differentiable at e*. Then there exist neighborhoods

A of e* and V of z*, and a Lipschitzian function z : A -^ V such that

z(e*) = z* and for each r E A, z(e) is the unique solution of the LCP

(q(e), M(e)) in V. Moreover,

(a) the function z(.) is directionally differentiable at s*, the directional

derivative z' (r*, i) along a direction i e R"1z is the unique solution z
to the following complementarity system:

VEw * '0 + M(r*)aaza + M(E * ) c jzj = 0,

V E wßr^ + M(e*)ß^za + M(r*)ßßzß > 0,

T V E w*r^ + M E*	 *	 (1)zß	 13	 ( )Oaza + M (^ )ßß z0 = 0

z/3>0, 	z.=0

wherewhere a, ß and -y are the index sets associated with the solution z*;

(b) the following stronger limit property holds:

z(E) — z(E * ) — z'(E * ,E — 5 * )
	hm	 = 0;	 (2)
	E^E*	 11E - E* 11
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(c) the function z(•) is F-differentiable at a* if and only if either 3 is

empty or

DEw*ß — M(E* )ßaM(E * )aaV wa = 0 i	 (3)

in this case, the F-derivative of z(•) at a* is given by

Oz(E* ) = —M(a*)aaVEw*, Ozß(E* ) = 0 , Vz7(?) = 0i (4 )

(d) if the function w(•, z*) has a strong F-derivative at e* and if z(•) is

F-differentiable at e*, then the F-derivative of z(.) at e* is also strong.

Proof. In light of the discussion that precedes Example 7.4.1, it suffices

to establish the four differentiability assertions (a) — (d).

The system (1) is essentially a mixed linear complementarity problem in

the variables (za , zß). According to the characterization of strong stability

(cf. 7.3.7), this system has a unique solution for all vectors 7] E R' (see

3.12.5). In order to show that such a solution is equal to the directional

derivative z'(e*, 7]), it suffices to verify the limit expression (2). For this

purpose, let y(a) denote the unique solution of the system (1) corresponding

to 7) _ a — s*. Since M(E*) aa is nonsingular, we have

y(a) = 
—M(a * )aa(V w (S — E*) + M(?)ß 2Jß(a)),

and yß(a) is the unique solution of the LCP (sß(e), N(e*)) where

N(a * ) = M(a * )ßß — M(Z * )ßaM(E * )a1M(E * )aß E P,

sß(E) = (V w^3 — M (E* )ßa /1 (E* )aaVE wa)(a — E* )

Consequently, it follows from Lemma 7.3.10 that there must exist a con-

stant c> 0 such that for all e,

I(Ya(E), yß(E))11 < eJIa — -*

By letting e be sufficiently close to e*, we can therefore be assured that the

vector z(s*) +y(e) is a solution of the LCP (d(e), M(a*)) where

4(a) = 4(s * ) + VE w*(s — e * );

moreover, z(e*) + y(e) can be made arbitrarily close to z(e*) by further

restricting e if necessary.
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By definition, z(s) is a solution of the LCP (q(e), M(s)); equivalently,

z(a) is a solution of the LCP (q(e), M(c*)) where

q(a) = q(a) + (M(a) — M(E * ))z(e * ) + (M(e) — M(E * ))(z(E) — z( -' * ))•

Since both vectors q(€) and q(a) can be made arbitrarily close to q(c*) by

restricting a, it follows from 7.3.9 that there exists a constant L > 0 such

that for all e sufficiently close to e*, we have

z(a) — z(a*) — y(a)) < Lllq(a) — q(E)11

By the F-differentiability of w(., z*) at e*, it is easy to deduce

lim 	 = 0 ,
EE * a —

which implies,

lim z(a) — z(a*) — y(a) = 0.
E^E=	 SIE — -* II

This establishes the limit condition (2) which in turn yields the conclu-

sion that the unique solution to the system (1) is equal to the directional

derivative z' (a*, r^).

To prove part (c), suppose that z(.) is F-differentiable at e* and that

ß zA 0. Then, we have

z'(c*, rj) + z'(e*, —r7) = 0 for all rq E Rm.

Since the /3-components of these directional derivatives are nonnegative, it

follows that

zß(E*, rl) = 0.

But zß(e*, ,q) is the (unique) solution of the LCP (r,ß(?), N(e*)) where

rß(^1) _ (Vewß M(E * )ßaM(E* )cYCYVw )i7,

we conclude rß(r^) > 0 for all r7 E R', from which (3) follows easily.

Conversely, if ß 0 and (3) holds, then for all vectors rj E Rm, we have

	z e(E*, 7%) = —M (a * )aaV Ewcarl,	 z(a*, 71) = 0,	 z.y(a*, ij)	 0.
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Thus, the directional derivative z' (e*, 77) is a linear function in the direction

1). By the limit condition (2), it follows that'7z(e*) exists and is given by

(4). The case ß = 0 is proved in a similar way.

Finally, to prove part (d), it suffices to verify

lim
( 6, E ' ) - (E * *)

z(e) — z(E') — Vz(E * )(6 e')

IIG - E'
=0

assuming Vz(E*) exists. The proof of this limit condition is analogous to

that of (2). The reader is asked to supply the omitted details in Exercise

7.6.8. El

7.4.3 Remark. In 7.4.2, it is assumed that the function w(., z*) has an

F-derivative at e*. This is a fairly weak differentiability assumption; it

implies neither the F-differentiability of q(•) nor that of M(.) at e*, nor does

it imply the F-differentiability of w(•, z) at a vector z z*. The application

to Newton's method will clarify these points (cf. Remark 7.4.6).

As a function in the direction i, the directional derivative z'(a*, 71),

being the unique solution of the complementarity system (1), is piecewise

linear (see Proposition 1.4.6); moreover, z'(e*, r1) is Lipschitzian in ri (see

Exercise 7.6.4). Since there is no particular functional form assumed on the

functions q(.) and M(.), the solution z(E) in Theorem 7.4.2 is, in general,

a nonlinear function in a. The limit condition (2) allows us to write

z(e) =z(a*)+z'(e*,E— s*)+o((s—e*M)

This says that the solution function z(e) can be approximated by a Lips-

chitz continuous piecewise affine function in the parameter vector E.

Besides being a mixed LCP, the system (1) has another noteworthy

point: namely, it involves only the a and 3 variables; thus, its size is less

than that of the family of parametric LCP (7.1.1) (unless of course 'y is

empty). In the event where ß is empty which correponds to the case

where z(a*) is a nondegenerate solution of the LCP (q(a*), M(e*))—the

system (1) reduces to the system of linear equations in the za variables:

D ewaii + M(E * )aaza = 0.

Incidentally, in this latter nondegenerate case, the condition (3) is vacu-

ously satisfied; hence, the solution function z(.) is trivially F-differentiable

at e* if z(c*) is a nondegenerate solution of (q(e*), M(e*)).
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An application: Newton's method

In Section 1.2, the nonlinear complementarity problem was introduced

as a source problem for the LCP, and a solution strategy for the former

problem was briefly sketched. Interestingly, the convergence of a basic

iterative method for solving the nonlinear complementarity problem can

be deduced from the solution differentiability results of the multivariate

parametric LCP established in Theorem 7.4.2. The main objective of this

subsection is to explain how this can be accomplished.

There is a rich theory of iterative methods for solving the nonlinear com-

plementarity problem. To present the full details of this theory is beyond

the scope of this book. In the sequel, we develop the local convergence the-

ory for the most fundamental of such iterative schemes; namely, the New-

ton method. There are several motivations for this development. First, the

theory is important in its own right. Second, the development provides an

illustration of how the solution differentiability results of the multivariate

parametric LCP can be useful in an algorithmic context. Third, we have

the opportunity to expand the discussion started in Section 1.2 in order to

give further evidence of the important role played by the LCP in the study

of the nonlinear complementarity (and the variational inequality) problem.

Consider the nonlinear complementarity problem defined in (1.2.22)

z > 0, f(z) > 0, and zTf(z) = 0.	 (5)

Here f : Rn * R"' is assumed to be Lipschitz continuously differentiable.

Newton's method attempts to solve this problem in the following way.

7.4.4 Algorithm. (Newton's Method)

Step 0. Initialization. Let z° > 0 be given, set v = 0.

Step 1. General step. Let zv+l be some solution of the LCP (qv, V f (z"))
where

q' = f (z") — V f (zh.)z".

(The choice of the solution zv+l will be made precise subse-

quently.)
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Step 2. Termination test. If z 1 satisfies a prescribed stopping rule,

terminate. Otherwise, repeat the general step with v replaced

by v + 1.

The well-definedness and convergence of the above method is local in

nature. This means that in order for the sequence {zv} to be well defined

and for it to converge to a desired solution z* of the problem (5), the initial

iterate z° is required to be chosen from a suitable neighborhood of z*. As

we see shortly, the key property we need is the strong stability of z* as a

solution to a certain linear complementarity problem.

We now formally establish the convergence of Newton's method by using

the sensitivity results for the LCP. The first step is to define the family of

multivariate parametric LCPs

{(q(v), M(v)) : v e V} (6)

where V is a certain domain in Rn to be specified and

q(v) = f (v) — V f (v)v, M(v) = V f (v).

Note that the vector v plays the role of the parameter vector e in the

notation of (7.1.1).

Suppose that z* is a solution of the problem (5). Clearly, z* solves the

LCP (q(z*), M(z*)). We suppose that z* is a strongly stable solution of the

latter LCP; according to Theorem 7.3.7, this is equivalent to the following

two conditions:

V ff (z *) is nonsingular, (7)

Vfß(z* ) Vafß(z* )Vafa(z* ) Vßfa(z*) E P,	 (8)

where

a={i:zz >0= fi(z*)}, ß={i:z2 = 0= fi(z*)}.

Then, by considering z* both as the base parameter vector e* as well as

the solution, we deduce, by 7.4.2, the existence of two neighborhoods Vl

and V2 of z* such that for each vector v E V1, the LCP (q(v), M(v)) has a

unique solution G(v) that belongs to the neighborhood V2; moreover,

G(z*) = z*,	 (9)
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and as a function of v e V1 , the solution G(v) is Lipschitzian and direction-

ally differentiable. The neighborhood Vl serves as the domain of definition

for the family (6).

The equation (9) says that the solution z* is a fixed point of the mapping

G : Vi — V2 . With this function G, we may rephrase Newton's method

7.4.4 as the fixed-point iteration

zv+l 
= G(zv)

As such, Theorem 2.5.9 can be applied to establish the well-definedness

and the convergence of the sequence of iterates produced by the method.

In order for this theorem to be applicable, it is essential for the mapping

G to have an F-derivative at the fixed point z* and for p(VG(z*)) < 1.

The following result, which is an application of 7.4.2, furnishes these re-

quirements. (This result is reminiscent of Exercise 2.10.13 that asserts

the same conclusion, but in the context of Newton's method for systems of

nonlinear equations.)

7.4.5 Proposition. Let f : Rn —> R be Lipschitz continuously differ-

entiable. Suppose that z* is a solution of the problem (5) satisfying the

conditions (7) and (8). Let C: V1 -> R' be as defined above. Then VG(z*)

exists and VG(z*) = 0.

Proof. In order to apply 7.4.2, we first establish that the function

w(v, z*) = q(v) + M(v)z* = f (v) — 17f (v)(v — z*)	 ( 10)

has an F-derivative at v = z*, as a matter of fact, we claim

V ??,w(z*, z*) = 0.	 (11)

For this, it suffices to verify the limit condition

lim 
w(z* + h, z*) — w(z*, z*)

 =0.
h	 0	 IIhll

Substituting the expression (10) into the numerator, we see that the left-

hand side of the above equation reduces to

lim f (z* + h) — f (z*) — V f (z* + h)h
	h=0	 Ilhll
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which is equal to zero by the continuous differentiability of f. Hence, (11)

follows. This in turn implies that the condition (3) is trivially satisfied.

Hence, VG(z*) exists. Finally, the conclusion VG(z*) = 0 is an immediate

consequence of (4). ❑

7.4.6 Remark. The above proposition serves to clarify Remark 7.4.3.

Since the function f is assumed only once differentiable, neither q(v) nor

M(v) is F-differentiale at an arbitrary vector v. Yet, the proof in 7.4.5

demonstrates that the function w(v, z*) is F-differentiable at v = z*. The

differentiability assumption of f in 7.4.5 can be further weakened. Indeed,

this result holds if f is F-differentiable in a neighborhood of z* and has a

strong F-derivative at z*.

Proposition 7.4.5 is all that is required for the applicability of Theorem

2.5.9. The convergence of Algorithm 7.4.4 is summarized in the result

below. The first conclusion of the result requires no further proof as it is

a straightforward consequence of 7.4.5 and 2.5.9; the second conclusion

shows that Newton's method possesses a quadratic rate of convergence.

The proof of this rate property is also based on the previous sensitivity

results of the LCP.

7.4.7 Theorem. Let f and z* satisfy the assumptions in 7.4.5. Then,

there exists a neighborhood V of z* such that whenever the initial iterate

z° is chosen in V, a sequence of vectors {z"} can be defined such that each

z"+ l solves the LCP (qv, V f (z")), and {z"} converges to z*. Moreover,

there exists a constant c > 0 such that for all v sufficiently large,

z( < c^l zv — z* 11 2. (12)

Proof. In light of the preceding discussion, we prove only the quadratic

rate property (12). By its choice, z" + i E SOL(q(z' ), M(z")); or equiva-

lently, zv+ l is a solution of (q', M(z*)) where

Q, =f(z v ) - Vf(z ' )zv

+ (V f(z") 
— Vf(z * ))z * + (Vf(z v ) — V.f(z * ))(z

v+i z * )

Since z* is a strongly stable solution of the LCP (q(z*), M(z*)), Theo-

rein 7.3.9 implies that there exists a constant c' > 0 such that for all v
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sufficiently large,
zv+^ - z* II <c  II qv - q(z*) II

Substituting the definitions of q" and q(z*), we have,

q" q(z) =

- (f(z * ) - f(zv ) - Vf(z" )(z * z"))+('7f(zv)-Vf(z*))(zv+l-z*)1

hence, we deduce

(1-c JIVf(zv)-Vf(z*)II)Ilzv + 1 _z*II < c Il.f(z*)-f(zv)-'7f(zv)(z*-zv)II

Since {z"} converges to z*, there exists a scalar E > 0 such that for all v

sufficiently large,

1- c Ilof(zv) - Vf(z*)II > E.

Moreover, by the Lipschitzian property of the F-derivative V f (•), it follows

from the mean value inequality (2.1.6) that there exists a constant e' > 0

such that for v large enough,

.f(z*)-f(zv)-Vf(zv)(z*-zv)II <r'Ilz*-zvI1 2

Consequently, combining the last three inequalities, we easily derive the

existence of a constant c> 0 for which (12) holds for all v large enough. ❑

In the above proof of convergence of Newton's method 7.4.4, we have

used part (c) of the differentiability result 7.4.2. Without going into the

details, we mention that part (d) of this latter result is useful in estab-

lishing the feasibility of a continuation scheme for enlarging the domain of

convergence of the same method. See Note 7.7.8.

7.5 Stability Under Copositivity

Section 7.3 has analyzed the stability of the linear complementarity

problem at a given solution. The analysis is local in nature in that it is

made in a neighborhood of the solution. In this section, we broaden the

analysis by focusing on the change of the solution set of the LCP (q, M) as

a whole, and not on any one particular solution. Nevertheless, unlike the

results in Section 7.2, the treatment herein allows both the vector q and
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the matrix M to vary. This broader treatment entails the restriction of M

to a certain matrix class.

In order to provide the necessary background for the results to follow,

we recall Theorem 3.8.6 which states that the LCP (q, M) has a solution

whenever M is copositive and q belongs to the dual cone of the solution

set SOL(O, M) of the homogeneous LCP (0, M) associated with M. To

simplify the notation somewhat, let S = SOL(O, M). Clearly, S C R.

This implies that the dual cone S* of S must have a nonempty interior; as

a matter of fact, int S* contains all positive vectors. It is also easy to see

that q E int S* if and only if

[0 ^ v > 0, My > 0, vTMv = 0] [ vTq > 0] . (1)

With this equivalence at hand, we may state the following stability result

for an LCP (q, M) under a copositive perturbation. Part of the significance

of this result is that no assumption is imposed on the matrix M; the con-

clusions of the theorem concerns those perturbed LCPs of (q, M) that are

defined by copositive matrices.

7.5.1 Theorem. Let M E R" X n be an arbitrary matrix, and let q E int S*

where S is the solution set of (0, M). Then there exist positive scalars E,

c and L such that for all (q, M) E R'' x Rn"n with M copositive and

satisfying ( q — q 1 1 + I I M — M I I <r, the following statements hold:

(a) the LCP (q, M) is solvable,

(b) for all z e SOL(q, M), (f(< c,

(c) SOL(q, M) c SOL(q, M) + L((q — qll + IIM — MII)B.

Proof. We claim that there exist neighborhoods Q of q and M of M such

that for any (q, M) E Q x ,M, we have q E int S* where S = SOL(0, M).

Suppose not. Then, there exist sequences {qk } C Rn, {Mk} C Rnxn and

{vk } C R12 such that v k E SOL(0, Mk) and = 1 for each k, {qC } and

{Mk} converge to q and M respectively, and

(vk )Tgk G 0.

Let v be an accumulation point of the sequence {v k }. Then v is a nonzero

solution of (0, M) and satisfies vTq < 0. But this contradicts the assump-

tion q E int S* . Hence, the existence of Q and M follows.
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If (q, M) e Q x .M. and M is copositive, Theorem 3.8.6 implies that

the LCP (q, M) must have a solution. Hence part (a) is established.

Part (b) is proved by contradiction. Suppose that no such constant c

exists. Then there exist sequences { I zk II } _ oo, (qk , Mk ) -  (q, M) such

that for each k, Mk is copositive, and

wk = q k + Mkz k > 0, 0 4 zk > 0, (wk ) TZ k = 0.

It is easy to show that if v is a subsequential limit of the normalized se-

quence {z k /II zk ll }, then v violates the implication (1). Indeed, we have

w k 	qk	 zk

zkll	 IIzkII + Mk IIzkII -- 
0

k	 / k)T	 k	 k
T z 	lz Mkz  	 zQ=(q k )

 IIzkII +	 IIzkII

	
> (qk ) T___IIzkI

( qk)T z k	 (zk)T	 zk

0 	IIzkII 1Tz k lT + iizkft AIkIIzkl

Passing to the limit k — cc in these expressions establishes the claim on

the limit point v. This contradiction completes the proof of (b).

Finally, we prove (c). For this purpose, let be an arbitrary solution

of (q, M). Then z e SOL(q, M) where

q = q +(M —M)z.

Since the solutions of the LCP (q, M) are uniformly bounded for all (q, M)

as given, the vector q can be made arbitrarily close to q by restricting

s if necessary. Hence, it follows from Theorem 7.2.1 that there exists a

constant c' > 0 such that for any solution z of such a pair (q, M), there

exists a solution z of (q, M) satisfying

IIz —z)I < c' )Iq—qII.

With L = c' max(1, c) where c > 0 is the constant obtained in part (b), the

desired inclusion of part (c) follows. ❑

As noted in the proof of part (c), part (b) provides a uniform bound for

the solutions of the perturbed LCPs that are close to the given problem
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(q, M). It is important to point out that such a bound is valid only for the

LCP (q, M) with M copositive. As an example, consider the case n = 1,
with M = 0 and q = 1. The perturbed LCP (q, ME ) where ME = —E <0
has a solution zE = 1/r which clearly is unbounded as a tends to zero. In

a similar way, the restriction that the perturbed matrix M be copositive is

also essential for part (c) to hold. Note, however, the perturbed problem

(q, MM ) remains solvable as long as q is sufficiently close to q 1. This

suggests that in general, part (a) in Theorem 7.5.1 might remain valid

under a weaker assumption on the perturbed matrix 1l[.

An application of Theorem 7.5.1 has appeared in Lemma 5.3.4 which

asserts the boundedness of a sequence {z"} produced by the splitting

method in 5.2.1 for solving a symmetric LCP. Assumption (a) in this

lemma implies that M is copositive, and (b) is exactly the condition that

q belongs to int SE. Since for each v sufficiently large, zv+l can be looked

upon as a solution of the perturbed LCP (q+C(z"—z"+') M), the bound-

edness of {z'} therefore follows easily from Theorem 7.5.1.

By restricting M to be a copositive-plus matrix, we can derive the

following consequence of 7.5.1 which gives several equivalent conditions

for the stability of the LCP (q, M) with an arbitrary vector q.

7.5.2 Corollary. Let M E R"' be a copositive-plus matrix, and q E RTh
be an arbitrary vector. The following statements are equivalent.

(a) There exists a scalar 6 > 0 such that the system

q+Mz>0, z>0,

has a solution z for each q E Rn satisfying q — j( < 6.

(b) There exists a scalar e > 0 such that for each (q, M) E Rn x Rn"n

satisfying Iq — q^^ + 11M — M < e, the system

q+Mz>0, z>0,

has a solution.

(c) The system

MTU<0, gTu<0, 0^u>0	 (2)

has no solution u E R.
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(d) The solution set of the LCP (q, M) is nonempty and bounded.

(e) The system

q +Mz>0, z >0	 (3)

has a solution.

(f) The system

My > 0, qTv < 0, (M + MT )v = 0, O v > 0	 (4)

has no solution.

(g) There exists a scalar 6 > 0 such that the LCP (4, M) is solvable for

all 4 E R" satisfying q — q^^ < 6.

(h) There exist scalars c > 0 and c > 0 such that the LCP (4, M) is
solvable for all (4, M) E Rn x R' ' '' with M copositive and satisfying

q)) + 11M — M^^ < e; and furthermore,	 < c for all z in
SOL(q, M).

Proof. We establish the equivalence of these statements by verifying a

series of implications.

(b) = (a). This is trivial.

(a) = (c). Suppose the system in (c) has a solution u which, we may

assume, satisfies ( u = 1. Let q = q — Su. Then, the existence of a solution

to the system in (a) with this vector 4 easily yields a contradiction to the

assumption about u.
(c) (e). The two systems in (c) and (e) are dual of one another.

Thus, the infeasibility of one is equivalent to the feasibility of the other.

(c) (f). Clearly, if (2) has no solution, then (4) can not have a solu-

tion. Conversely, if the former system has a solution u, then by copositivity,

we have uTMT u = 0 which implies (M + MT )u = 0 by copositivity-plus.

Thus, (4) also has a solution.

(c) ' (h). The inconsistency of the system (2) implies the validity of

the implication (1). Thus, (h) follows from Theorem 7.5.1.
(g)	 (a). This is obvious.

(e) = (b). If the system (3) has a solution, then that solution will

satisfy the perturbed system

q +Mz>0, z >0
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wherever the pair (4, M) is within a certain neighborhood of (q, M). Hence

(b) follows.

[(h)	 (g)] and [(h)	 (d)]. These are obvious.

At this point, we have established the equivalence of the statements (a),

(b), (c), (e), (f), (g) and (h).

Finally, to complete the proof, it suffices to verify (d) (f). We claim

that if z solves (q, M) and v is a solution of the system (4), then the vector

z + 6v is a solution of (q, M) for all 9 > 0. Clearly, z + By is feasible;

moreover,

0 < (z + Bv) T (q + Mz + OMv) = 8q v < 0.

Hence, z+Ov E SOL(q, M) for all 0 > 0. Since v is nonzero, this contradicts

the boundedness of the solution set of (q, M). Consequently, all eight

statements (a) — (h) are equivalent. n

7.5.3 Remark. The statement (e) is noteworthy because it is equivalent

to the strict feasibility condition of the LCP (q, M).

Solution rays

Among other things, Corollary 7.5.2 establishes that for a solvable LCP

(q, M) with a copositive-plus matrix M, the boundedness of the solution

set of (q, M) plays an important role in the stability of the problem; in

turn, the latter boundedness property is equivalent to the non-existence of

a vector u satisfying the system (2) (or (4)). Moreover, the proof of the

implication [(d) = (f)] in 7.5.2 shows that any such vector a, if it exists,

has the property that for any solution z of (q, M), z+Bu remains a solution

of (q, M) for all 0 > 0. This latter property motivates the following general

definition.

7.5.4 Definition. The LCP (q, M) is said to have a solution ray at z with

generator v if v is nonzero and z + By solves (q, M) for all 0 > 0. We say

that a nonzero vector v generates a solution ray of (q, M) if (q, M) has a

solution ray at some z with v as the generator.

It is not difficult to see that for a general LCP (q, M), SOL(q, M) is

unbounded if and only if (q, M) has a solution ray; moreover, a nonzero

vector v generates a solution ray for (q, M) at z if and only if
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(i) z solves (q, M), and v solves (0, M),

(ii) vT'(q + Mz) = 0, and zTMv = 0.

Geometrically, the LCP (q, M) has a solution ray if and only if q lies in a

strongly degenerate complementary cone. . (The reader is asked to supply

the proof of the above statements in Exercise 7.6.5.) Thus, the generators

of the solution rays of (q, M) are nonzero solutions of the homogeneous

problem (0, M). In particular, if M E R0 , then (q, M) has no solution

ray for all q E Rh. This conclusion is not surprising because according

to Proposition 3.9.23, such LCPs must have bounded solution sets, and

hence, can not have solution rays.

In general, the generator v of a solution ray of (q, M) is dependent on

the base vector z. The following example illustrates this point.

7.5.5 Example. Consider the LCP (q, M) with

0	 0	 0
q=	 M=

2	 1 —1

The vector v = (1, 0) is a generator of a solution ray of (q, M) at the zero

solution; however, v is not a generator of a solution ray at the solution

(1, 3).

As noted in the preceding discussion, when the matrix M is copositive-

plus, then a vector v generates a solution ray of the LCP (q, M) if v is

a solution of the system (2) or (4); moreover, any member of SOL(q, M)

can serve as the base solution z. Thus, any one of the conditions in 7.5.2

is necessary for the non-existence of a solution ray of (q, M) when M is

copositive-plus. It turns out that these conditions are sufficient as well;

moreover, a geometric interpretation can be given in terms of the cone

K(M).

7.5.6 Proposition. Let M C Rn x n be copositive-plus and q E K(M) be

arbitrary. The following statements are equivalent:

(a) q C int K(M).

(b) LCP (q, M) has no solution ray.
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(c) LCP (q, M) is strictly feasible.

(d) q is not contained in any strongly degenerate complementary cone.

Proof. (a)	 (b). Since a copositive-plus matrix is copositive-star, we have

K(M) = (SOL(0, M))* by Theorem 3.8.13. Hence, assumption (a) implies

q e int S* where S = SOL(0, M). By 7.5.1, it follows that SOL(q, M) is

bounded. Consequently, (q, M) cannot have a solution ray.

(b) (c). This has been noted in the above discussion.

(c) (a). The strict feasibility of (q, M) implies q E int(pos(I, —M)).

By 3.8.13 again, (a) follows readily.

Finally, the equivalence of the two statements (b) and (d) for a general

LCP has been observed previously; see 7.6.5. ❑

7.5.7 Remark. The implication (a) 	 (d) in 7.5.6, proved here by in-

voking the perturbation result of Theorem 7.5.1, was previously proved as

Theorem 6.3.14 for the (broader) class of L-matrices.

The concept of a solution ray is closely related to that of a recession

direction (defined in Exercise 2.10.18). Indeed, a vector v generates a

solution ray of (q, M) if and only if v 0 and v E 0+ SOL(q, M). Moreover,

according to a characterization of a solution ray mentioned earlier, it is easy

to see that (with S = SOL(0, M))

0+ SOL(q, M) =	 U	 {v E R"` : vT (q + Mz) = ZTMV = Of fl S.
zESOL (q,M)

In the event that SOL(q, M) is convex (this holds if, for instance, M is a

column sufficient matrix), the latter expression simplifies to

0+ SOL(q, M) = {v E RTh : vT (q + Mz) = zT My = Of n SOL(0, M)

for any z E SOL(q, M).

To close this discussion, we return to a question left open by Theorem

7.5.1. This question has to do with the consideration that whether under

the stated assumption of q and an appropriate assumption of M, the per-

turbed LCP (q, M) will have a solution when the copositivity assumption

on M is removed. A partial answer to this question is provided by Theorem

6.4.4. This result states that if M E L, then statement (d) in Corollary
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7.5.2 implies the solvability of the perturbed LCP (q, M) as long as (q, M)

is close enough to the given pair (q, M); there need be no restriction on

M. Since this solvability property of the perturbed LCPs clearly implies

statement (g) in 7.5.2, it therefore can be added to the list of equivalent

conditions for the stability of a copositive-plus LCP.

In the sequel, we establish a result that provides another affirmative

answer to the question raised above in the case of a copositive matrix

M. The proof of this result resembles that of Theorem 6.4.4 which uses

Theorem 6.4.3.

7.5.8 Theorem. Let M E RT X Th be copositive and S = SOL(O, M). Sup-

pose that q E intS*. Then there exists a neighborhood U C RTh x Rn>< of

the pair (q, M) such that SOL(q', Al') ^ 0 for all (q', M') E U.

Proof. Part (b) of Theorem 7.5.1 implies that SOL(q, M) is bounded.

Hence, (q, M) has no solution ray; equivalently, q is not contained in any

strongly degenerate complementary cone. As we have pointed out previ-

ously, R+ + C int S*. Hence, similar to the proof of 6.4.4, we can deduce

that q lies in the closure of the set of all points with a well-defined nonzero

local degree. The proof can be completed by invoking Theorem 6.4.3. ❑

In Exercise 7.6.6, the reader is asked to establish a generalization of

Theorem 7.5.8 beyond the class of copositive matrices.

An application: quadratic programs

We discuss a specialization of the stability results 7.5.1 and 7.5.2 to

the convex quadratic program (1.2.1):

minimize cTx + 2.xTQx

subject to	 Ax > b	 (5)

x >0

where Q E RT"Th is symmetric positive semi-definite, A E R"', c E Rn

and b e R . The specialization is based on the equivalent formulation of

(5) as the LCP (q, M) with q and M given in (1.2.3):

Tq= I cb ,	 M=	 0	 I.	 (6)
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In the result below, we use y to denote a vector of multipliers associated

with the constraint Ax > b.

7.5.9 Proposition. Let Q E Rn X n be symmetric positive semi-definite,

and A E Rm x  c E Rn and b E R' all be arbitrary. The following

statements are equivalent.

(a) The quadratic program (5) has an optimal solution, and the set of

Karush-Kuhn-Tucker pairs (x, y) is bounded.

(b) The system

Qu=O, Au>0, ATV<0

cTu — bTv < 0, 0 ^ (u,v) > 0	 (7)

has no solution.

(c) There exist positive scalars E and L such that for every (Q, A, c", b)

satisfying

11(Q,A,^,b)— (Q,A,c,b)(( <a,

the associated quadratic program (5) with the data (Q, A, c, b) has

a Karush-Kuhn-Tucker pair (x, y); moreover, if Q is positive semi-

definite, then, for any Karush-Kuhn-Tucker pair ( , y) of the per-

turbed quadratic program, there exists a corresponding pair (x, y) of

Karush-Kuhn-Tucker vectors of the unperturbed program (5) such

that

(,ü)—(x,y)MMCL(Q,A, ,b) — (Q,A,c,b)

Proof. The matrix M in (6) is positive semi-definite, hence copositive-

plus. Consequently, in light of Theorem 7.5.1 and Corollary 7.5.2 (see

the discussion following 7.5.7), it suffices to note that the system (7) is a

specialization of (4) to the pair (q, M) given in (6). ❑

When the matrix Q is positive definite, any sufficiently small perturba-

tion matrix Q of Q will remain positive definite. In this case, the above

proposition specializes to yield the following sharper result.

7.5.10 Corollary. Let Q E R"`l"n be symmetric positive definite, and let

A E c E Rn and b E R""' all be arbitrary. The following statements

are equivalent.

 



7.6 EXERCISES
	

693

(a) The quadratic program (5) has a unique optimal solution x, and the

set of optimal multiplier vectors y is bounded.

(b) The system

ATv<0, bTv>0, O v >0	 (8)

has no solution.

(b') The system

Ax>b x >O	 (9)

has a solution.

(c) There exist positive scalars E and L such that for every (Q, A, c, b)
satisfying

11(Q,A,^,b) — (Q,A,c,b)11 <E,

the associated quadratic program (5) with the data (Q, A, c, b) has

a unique optimal solution x, and for any optimal multiplier vector

y of the perturbed quadratic program, there exists a corresponding

optimal multiplier vector y of the unperturbed program (5) such that

(x^ )	 (x, y) (C L^^ (, A, ^^ ) — (Q, A, c, b) .	 ❑

7.5.11 Remark. We note that condition (9) is equivalent to the strict

feasibility of the quadratic program (5).

In the last corollary, some necessary and sufficient conditions for the

stability of the strictly convex quadratic program (5) are derived. These

conditions involve either the optimal multiplier vectors or the strict feasi-

bility of the program. In Exercise 7.6.10, the reader is asked to establish a

(global) Lipschitzian property of the (unique) optimal solution of (5) under

no such assumptions.

7.6 Exercises

7.6.1 LetMERn"'nRo andgeRTh.

(a) Show that there exist a neighborhood U of the pair (q, M) and a

constant c > 0 such that for all (q, M) E U,

I^zI 	c for all z e SOL(q, 1171).
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(b) Deduce from (a) that there exist a neighborhood U of (q, M) and a

constant L > 0 such that for all (q, M) E U,

SOL(q, M) C SOL(q, M) + L(q — q1I +JIM — MAI )13.

7.6.2 Verify that the solution z* given in Example 7.3.4 is stable for the

given LCP.

7.6.3 In the convergence analysis of the splitting algorithm 5.2.1, the

boundedness of the sequence {z"} and the limit condition

lim IIz"+1 — zv = 0	 (1)
v—cc

have played a major role. This exercise shows how these two properties are

related under certain assumptions on the matrix B and the pair (q, M).

(a) Suppose SOL(q, M) is bounded. Show that if (1) holds, then {z"}
is bounded, and every accumulation point of {z"} solves the LCP

(q, M)•

(b) Conversely, suppose B E P. Show that if {zv} is bounded and if

every accumulation point of {z"} solves (q, M), then (1) holds.

7.6.4 State a result analogous to Lemma 7.3.10 for a mixed LCP. Then

use this result to (i) complete the proof of Theorem 7.3.9, and (ii) show

that the directional derivative z'(E*, i) in Theorem 7.4.2 is a Lipschitzian

function in the direction rq.

7.6.5 Let q E R" and M e RTh x l be given.

(a) Show that the following statements are equivalent:

(i) SOL(q, M) is unbounded,

(ii) (q, M) has a solution ray,

(iii) q belongs to a strongly degenerate complementary cone.

(b) Show that a nonzero vector v generates a solution ray for the (q, M) at

z if and only if

(i) z solves (q, M) and v solves (0, M)

(ii) vT'(q + Mz) = zTMv = 0.
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7.6.6 We say that M E RnXn is a G-matrix if SOL(d, M) = {0} for some

n-vector d> 0. Let S = SOL(0, M). A G-matrix M is said to be G-sharp

if M satisfies the implication (4.11.1); i.e., if

x E S	 (M + MT )x > 0.	 (2)

(a) Show that every copositive matrix is G-sharp.

(b) Consider the matrix

0 —1 2

M= 2 1 —4

2 1 1

Show that M is not copositive and M 0 Ro U P0 , but M is G-sharp.

(c) Show that the conclusion of Theorem 7.5.8 remains valid if M is a

G-sharp matrix and q C int S.

(d) Prove or disprove: suppose that M is a G-matrix and q E int S*,

then SOL(q, M) 0.
(e) Suppose that M satisfies the implication (2) (but M is not necessarily

a G-matrix). Let W be an arbitrary bounded subset of R. Show

that if q E int S*, then there exists a neighborhood V of q such that

the set

{(z,w)CRT xR+:w —MzEV,z*wCW}

(where * denotes the Hadamard product), is bounded. Deduce that

SOL(q, M) is bounded, if it is nonempty.

7.6.7 Let M C Rn x "' be positive semi-definite and q E RI be arbitrary.

Let x E FEA(q, M). Show that (a) if i is an index such that (q+Mx) > 0,

then for any solution z of (q, M),

xT(q + Mx)
zi <

(q -I- Mx) z

and (b) if i is an index such that x 2 > 0, then

w 2 < xT(q + Mx)

x z

for any solution z of (q, M) with w = q + Mz.
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7.6.8 Complete the proof of part (d) in Theorem 7.4.2.

7.6.9 The fact that the directional derivative z/(*, E — E*) satisfies the

limit condition (7.4.2) is not surprising. Show that in general, if the func-

tion f : D — R' where D is an open subset of Rn, is directionally differ-

entiable and locally Lipschitzian at a point x E D, then the limit condition

below must hold:

um f(y) — f(x) — f(x,y — x) — 0.
y —x 	^ly	 x ll

7.6.10 Consider the quadratic program (7.5.5) where the matrix Q is

assumed symmetric positive definite. Let x(b, c) denote the unique solution

of (7.5.5) if it exists. Show that there exists a constant L > 0 such that for

any two pairs of vectors, (b, c) and (b', c'),

x(b,c) — x(b',c')MM <L11(b,c) — (b',c')).

7.6.11 Consider an LCP of the form (Pc, PAP'') where P E Rmxn

A E Rn X n is positive definite (but asymmetric) and c E RTh. Let w(c)

denote the unique w-variable of any solution (w, z) of this problem. Show

that there exists a constant L > 0 such that for all vectors c, c' E R,

w(c) — w(c') <Lc—c'.

7.6.12 Let {zv} be a sequence of vectors in R' and {av } be a sequence

of nonnegative scalars. Suppose that there exist two constants ry > 0 and

p E (0, 1) such that for all v sufficiently large,

11 z" — z"+1 I I 
< 7(av — av+i) and av+l < pav

Show that the sequence {z"} converges; moreover, if z* denotes its limit,

then there exist constants cl > 0 and c2 E (0, 1) such that for all v suffi-

ciently large

zv — z*11 < cl(c2).

7.6.13 Consider the sequence of scalars {av } defined by

(1/8)v v even
av — {`

(1/4)" v odd.
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Show that for this sequence, there exists a scalar c2 E (0, 1) such that for

all v>0,

av < (c2)'

but the subsequence {a„+ 1 /a„ : v even} is unbounded. Conversely, con-

sider the sequence {a'„} defined by

av = 1/v.

Show that for this latter sequence, the sequence {a'v+l /a ,} is bounded, but

there can not exist a scalar c2 E (0, 1) such that for all v sufficiently large,

äv <(c.

7.7 Notes and References

7.7.1 The systematic study of sensitivity analysis in nonlinear program-

ming starts with the seminal work of Fiacco and McCormick (1968) in

which the classical implicit function theorem was used to obtain the first

perturbation properties of parametric nonlinear programs. This subject

has since developed into a very fruitful area of research within mathe-

matical programming. A large body of literature is available, and several

texts have been written, with Bank, Guddat, Klatte, Kummer and Tam-

mer (1983) and Fiacco (1983) being two of the more recent additions. The

former text contains some discussion of the sensitivity issues pertaining

specifically to the LCP.

7.7.2 In the study of sensitivity analysis of nonlinear programming and

its extensions, S. M. Robinson has made numerous influential contribu-

tions. The most significant departure of Robinson's research from the

classic results of Fiacco and McCormick is that the assumption of strict

complementary slackness is removed. This is a major contribution because

with this assumption in place, sensitivity analysis of nonlinear program-

ming (including complementarity problems) can typically be carried out

by a straightforward application of the implicit function theorem, whereas

in the absence of strict complementarity, such a routine exercise is no longer

feasible and new techniques need to be introduced for the analysis. Robin-

son's work has opened up a new avenue for the subject area that allows

general results to be derived under very mild assumptions.
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7.7.3 Although much of Robinson's work is not directly cast in the frame-

work of the LCP, many of the sensitivity results presented in this chapter

are derived as special cases of his discoveries. In particular, Theorem 7.2.1

is a specialization of an upper Lipschitzian property of general polyhedral

multifunctions obtained in Robinson (1981). Lemma 7.2.2 on which the

proof of this theorem is based is drawn from Walkup and Wets (1969).

7.7.4 Throughout the study of the sensitivity and stability of a solution

of the LCP, the Schur complement N defined by the expression (7.2.4) has

played a major role. It appears that Robinson (1980a) and Mangasarian

(1980) are the earliest references to have identified the importance of this

matrix N in the local analysis of the LCP.

7.7.5 Several of the convergence results of the splitting methods described

in Section 7.2 appeared in the literature only recently. The implication (a)

r (b) in Theorem 7.2.10 was obtained by Iusem (1990a) and Tseng and

Luo (1990). The first conclusion in Corollary 7.2.12 was also obtained in

the latter reference.

7.7.6 Definition 7.3.1 is due to Ha (1985) who established the charac-

terization of a strongly stable solution in Theorem 7.3.7. Although Ha

obtained a number of useful results pertaining to a stable solution, (among

these is Example 7.3.4) he fell short of establishing the complete charac-

terization in Theorem 7.3.2; the latter result was obtained in Gowda and

Pang (1992a) who relied heavily on Ha's development. In the related paper

of Jansen and Tijs (1987), the concept of a robust solution of the LCP was

introduced as a refinement of that of a stable solution.

7.7.7 In Theorem 7.3.9, the Lipschitzian property of the solution function

z(.,.) is established as a consequence of the strong stability of the solution

z*. In Robinson's original definition of a strongly regular solution of a

generalized equation (whose connection with a strongly stable solution is

demonstrated in Theorem 7.3.7), this Lipschitzian property is part of the

requirement (see Robinson (1980a)). The fact that this requirement can be

waived in the definition of a strongly stable solution in the case of the LCP

has a great deal to do with the polyhedrality structure of this problem.

Lemma 7.3.10 on which 7.3.9 is based, was obtained in Mangasarian and

Shiau (1987) by a different approach.
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7.7.8 Beginning with the work of Robinson (1985) and Kyparisis (1986),
several authors have made important contributions concerning the solution

differentiability of the parametric nonlinear complementarity and varia-

tional inequality problems; see Kyparisis (1988, 1990), Qiu and Magnanti

(1989, 1992), and Pang (1988, 1990b). Our presentation in Section 7.4 is
largely based on the work of Pang (1990b). The latter reference also pro-

vides a demonstration of the feasibility of continuation of Newton's method

for solving the linearly constrained variational inequality problem that in-

cludes the nonlinear complementarity problem as a special case.

7.7.9 In essence, parts (a) and (b) of Theorem 7.4.2 establishes that

the solution function z(e) is B-differentiable at e*. In general, a function

f satisfying the assumption in Exercise 7.6.9 is said to be B(ouligand)-

differentiable at the point x E D. This terminology was introduced in

Robinson (1987). Shapiro (1990) has studied the relationships between

various concepts of directional differentiability; in particular, the result in

7.6.9 is due to him.

7.7.10 Using Robinson's notion of a strongly regular solution, Josephy

(1979a, 1979b) was the first person to establish the convergence of Newton's

method and the quasi-Newton methods for solving a generalized equation.

Inexact versions of these methods for the nonlinear complementarity and

variational inequality problems were described in Pang (1986b). The latter

reference also contains an extension of Proposition 7.3.14 to the nonlinear

complementarity problem.

7.7.11 The stability analysis of the LCP under the assumption of a copos-

itive matrix is the generalization of the stability study of linear and convex

quadratic programs. Robinson (1977) established a characterization of sta-

bility in linear programming; Daniel (1973b) and Guddat (1976) studied the

stability of convex quadratic programs. Robinson (1979) extended all these

results to the context of a generalized equation and discussed the special-

ization to the linear case. (Incidentally, the linear generalized equation is

essentially equivalent to a positive semi-definite LCP of a particular kind).

Doverspike (1982) established some perturbation results for the copositive-

plus LCP. Mangasarian (1982) extended Doverspike's results and derived

a long list of equivalent conditions for the stability of such an LCP. Most

of these conditions are stated in Corollary 7.5.2.
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7.7.12 Our discussion of solution rays of the LCP is based on Cottle

(1974b). This study was inspired by some questions arising from structural

mechanics that were raised in a private communication by G. Maier to

Cottle in October, 1973.

7.7.13 As it is evident from Corollary 7.5.2, the stability of a copositive-

plus LCP is intimately related to the boundedness of the solution set of the

problem. Mangasarian (1985) derived some interesting bounds for the so-

lutions of a positive semi-definite LCP and applied these results to a linear

program. Exercise 7.6.7 pertains to a result of this kind. Mangasarian and

McLinden (1985) extended the work of Mangasarian (1985) to the nonlin-

ear case and to convex programs. In a related work, Kojima, Mizuno and

Yoshise (1990) investigate properties of ellipsoids that contain all solutions

of a positive semi-defininte LCP with bounded solution set. The latter in-

vestigation is motivated by the family of interior-point methods discussed

in Section 5.9.
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Accumulation point, 46
Active constraint, 115
Activity level, 9
Almost complementary

edge, 269
path, 269, 555
vector, 269

Basic solution, 98
degenerate, 103, 253
nondegenerate, 103, 253

Basis, 69
adjacency, 339
compact (reduced), 353
feasible, 103

lexicographically, 341
full, 353

Bimatrix game, 3, 5, 284, 567
elusive equilibrium, 288
Lemke-Howson method, 285

Bisymmetry, 4, 8, 248
Boundary, 48

relative, 98
Braess's paradox, 306, 378
Breakpoint, 12, 296

Canonical form, 69
Cauchy-Schwartz inequality, 45
Characteristic polynomial, 60
Closure, 48
Complementarity

strict, 25, 697
Complementarity problem

generalized, 14

horizontal, 33
implicit, 33, 448
multivalued parametric, 645
nonlinear, 13-15, 29, 33, 392
over a cone, 31

Complementary
cone, 17, 18, 21, 74, 145

degenerate, 511
distinguished, 546
full, 17, 511
nonconvex, 21
nondegenerate, 511
strongly degenerate, 513, 518,

530, 689
weakly degenerate, 514, 532

index, 606
kernel, 27
matrix, 17, 74
pair, 2
range, 27, 145

regular, 592
simplex, 612

related, 617, 624
slackness, 112
submatrix, 17
vector, 2
vertex, 606

Complements, 2, 254
Computational geometry, 11
Cone, 16, 99

adjacency, 527
convex, 16
dual, 31, 99, 180
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finite, 99
pointed, 16, 102, 515, 610,

612
strictly, 516

polyhedral, 28, 99
regular, 592
self-dual, 31, 130
simplicial, 16, 130, 206

Connected component, 50, 515,
543, 594

Contact problem, 5, 384, 499
Contraction principle, 92
Convergence approach

contraction, 414
monotone, 422
nonexpansive, 441
symmetry, 400

Convergence rate
geometric, 429
quadratic, 91

Convex combination, 48
Convex hull problem, 11, 199, 369
Covering vector, 266, 274, 363
Critical values, 296, 675
Cycling, 239, 336, 368, 376

Damped Newton method, 93
Decomposition, 143
Degeneracy resolution

least-index, 342
lexicographic, 340

Degenerate
index, 190, 449
variables, 190

Degree of
homogeneous function, 121
matrix (M), 514, 595, 596
point (q), 510, 528, 539, 541

Derivative
B(ouligand), 699
directional, 51, 449
F(rechet), 51

strong, 52
Descent methods, 93
Diagonalization, 437, 502
Direction

descent, 94
feasible, 116
recession, 128, 690

Discretization, 5, 34
Distinctly labelled, 612
Dual cone of SOL(0, M), 180, 684
Dual problem

linear, 111
quadratic, 117, 247

Duality theorem, 14, 112, 118
Dynamic programming, 11

Edge, 105
Eigenvalue, 63, 147, 151

maximization problem, 486
Eigenvector, 63
Elastic-plastic torsion problem, 5
Equilibrium

market, 7
Nash, 6
Nash-Cournot, 13
point, 3

Equilibrium problem, 13
price, 13
traffic, 13

Equivalent formulations, 23
Error bound, 505

absolute, 481
relative, 482

Extreme
point, 11, 18, 97

adjacency, 105
ray (see Ray)
subset, 104

Face, 105
Facet, 11, 105, 512

absorbing, 536, 557
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class of, 536
common, 527
cyclic, 536, 538
distinguished, 546
family of, 536
isolated, 536
proper, 528, 536, 557, 578
reflecting, 528, 536, 557

Factorization
Cholesky, 84
triangular (LU), 81, 354
updating, 85

Feasibility, 181
Feasible

region, 2
set, 18
strictly, 461
vector, 2

strictly, 2
Fixed-point, 24

formulations, 24
iteration, 91, 396, 681
theorem, 56

Frank-Wolfe theorem, 114, 139
Free-boundary problem, 5, 34, 387,

499
Function

antitone, 331
coercive, 128
continuous, 51

Lipschitz, 51, 478
convex, 4

strictly, 57
strongly, 57

differentiable
B(ouligand), 699
continuously, 53
directionally, 51, 449
F(rechet), 51, 450
twice, 53

homogeneous, 509
degenerate, 119

nondegenerate, 119
isotone, 331
Lagrangian, 115
linearization of, 53
Lipschitzian

globally, 51
locally, 51

merit, 94, 400, 461
objective, 4, 19, 23
piecewise linear, 27, 296, 509,

678

Game
nonzero-sum, 6
two-person, 6

Gaussian elimination, 85
General position, 97
Generalized equation, 504, 698
Goldman's resolution theorem, 102
Gradient, 52
Gradient inequality, 58
Greedy algorithm, 320

Hadamard product, 232, 468
Halfspace, 21, 31, 49
Hemiballs, 523
Homeomorphism

global, 55, 470
local, 55, 469

Homotopy, 122, 472, 505, 516, 545
Hull

affine, 96, 123, 524
conical, 99
convex, 96, 611

Hyperplane, 49
separating, 107
supporting, 108

Index of
complementary cone, 510, 557
homogeneous function, 121,

510
orthant, 510
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solution, 510
Infeasibility count, 256
Integrability, 8
Interior, 48

relative, 98
Interlacing of eigenvalues, 497
Invariant capital stock, 9
Invariant property, 227
Inverse function theorem, 55
Isotone regression problem, 369
Iterative methods

continuation, 468, 505, 683
damped-Newton, 455, 503
for linear inequalities, 498
Gauss-Seidel, 88
inexact splitting, 445, 503
interior-point, 463, 504

continuation, 473
Jacobi, 88
parallel, 89, 399, 435, 445
projected Gauss-Seidel, 397
projected Jacobi, 396, 435
projection, 500
proximal point, 501
sequential, 89, 399
SOR, 89

block, 398
point, 398
projected, 397

splitting
matrix, 395, 653
variable, 447, 503

symmetrization, 417
two-stage, 445, 501
variational inequality approach,

435

Jamming, 456
Join, 199

semi-sublattice, 199
Journal bearing problem, 5, 387,

499

Karush-Kuhn-Tucker, 23
conditions, 4, 30, 139, 157,

166, 412
pair, 692
theorem, 19, 114

Lagrange multiplier, 115
LCP

augmented, 165, 174, 266, 467,
565

feasible, 2
homogeneous, 3, 165, 180, 192,

661, 684, 689
horizontal, 33, 41
mixed, 29, 165, 387, 678
order of, 3
parametric, 288, 674

multivariate, 34, 645
sources of, 291

reduced, 661, 678
scaling of, 24
solvable, 2, 139, 179
symmetric, 23
vertical, 32

Least element, 200, 202, 206, 423
Least-index rule, 342
Lemke's method

Scheme I, 267, 271, 356, 547,
620

parametric form, 299, 358,
547, 620

streamlined, 271
Scheme II, 282, 283
variable dimension, 314
Z-matrix, 321

Level set, 195, 402, 438, 456, 466
Limit point, 46
Line segment, 49, 104, 523
Lineality space, 102
Linear approximation methods, 13
Linear complementarity problem

(see LCP), 1
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Linear programming, 3, 7, 14, 18, irreducibly, 67
19, 111, 423, 445, 490, strictly, 67
504 diagonally stable, 150, 484

Z-matrix, 326 elementary, 82
parametric, 291 Hessian, 54
solution by, 201, 209 hidden K, 206, 212, 332

Locally convergent algorithm, 26 hidden Z, 206, 209, 212, 422
irreducible, 61

Major cycle, 247, 253, 297 Jacobian, 14, 51
Mapping Minkowski, 222

bijective, 55 nondegenerate, 162, 406, 456,
contractive, 92 654
graph of, 57 nonnegative, 7, 10, 68, 184
injective, 55, 469 orthogonal, 64
multivalued, 33 positive, 6, 68, 284

closed, 56 positive definite, 65, 78, 138,
lower semi-continuous, 56 147, 150, 231, 415, 431
upper semi-continuous, 56 positive semi-definite, 5, 8, 65,

nonexpansive, 92 138, 141, 231, 408, 424,
surjective, 55, 469 440, 487

Markov chain, 10 positively scaled, 150, 168
Matrix reducible, 61

adequate, 156, 157 regular (see R), 193, 222
almost N, 633 pseudo- (see R0), 193
bisymmetric, 4 row adequate, 156
column adequate, 156 row sufficient, 157, 233, 255,
column sufficient, 157, 160, 260, 344, 435

175, 232, 344, 468 semimonotone
comparison, 152, 199, 205, 418 fully (see Eö), 587
completely-Q, 196 strictly, 188, 196
completely-S, 189 strictly (see E), 189, 193
completely-So , 187 semimonotone (see E0), 184,
convergent, 65 187, 191, 664
copositive, 176, 178, 188, 277, sign reversing, 147

684, 691 sign-changing, 72
strictly, 176, 178, 188, 189, skew-symmetric, 10

402, 404, 657 sparse, 61
copositive-plus, 176, 181, 192, Stieltjes, 369

278, 686 strictly separating, 632
copositive-star, 176, 182, 183 sufficient, 157, 294, 352
dense, 61 superfluous, 562, 596
diagonally dominant, 151 symmetric, 430

 



758
	

INDEX

totally nondegenerate, 607, 610,
612

transition probability, 10
tridiagonal, 61
weakly separating, 632
E, 188, 276, 309
Eo , 184, 192, 276 Eö, 588,

639
E1 , 192
H, 152, 205, 418, 486
INS, 593
K, 198, 202, 207, 391, 417
L, 192, 563, 570
M, 222
N, 582
P, 146, 153, 156, 188, 230,

276, 335, 438, 451, 478,
576, 580, 666

P0 , 153, 185, 194, 442, 461,
465, 587

Pi , 234
Q, 145, 149, 178, 183, 184,

194, 451, 520, 574, 602,
650

Q0 , 145, 159, 181, 192, 562,
612

R, 193, 559
R0 , 180, 183, 193, 442, 465,

514, 517, 560, 595, 596,
603, 661

S, 140, 146, 148, 152, 156,
183

S0 , 186
U, 588
V, 196
W, 588
Z, 152, 198, 202, 317

Matrix class, 15
complete, 186, 199
full, 586
membership test, 146, 149,

161, 206, 212

Matrix norms, 61
maximum column sum, 63
maximum row sum, 63
spectral, 65

Maximum
pointwise, 11

Mean value theorem, 53
Meet, 199

semi-sublattice, 199, 207
Minimum

global, 54, 113, 280
lexicographic, 79
local, 54, 113, 116

Minimum principle, 55, 506
Minimum ratio test, 80, 246, 247
Monotone operator, 440
Multiple solutions, 21, 137, 141
Murty's least-index method, 376

Nash equilibrium, 6
Nearest-point problem, 129, 238
Network equilibrium problem, 392,

499
Newton's method, 14, 26, 90, 472,

679
Nonbasic pair, 272
Nondegenerate

intersection, 525
vector, 25, 449, 455

Nonlinear programming, 13
Norm-minimization problem, 449

Obstacle problem, 5
Optimal stopping problem, 10, 33,

199
Optimality conditions

first-order, 114
second-order, 116

Ordering
componentwise, 199
cone, 206
lexicographic, 79
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Pair matrix, 262
Parametric LCP (see LCP, para-

metric)
Partial ordering, 206
Path, 50, 523

component, 50
Perron-Frobenius theorem, 68
Perturbation, 240, 568, 575
Piecewise linear

function, 27
Piecewise linear (affine)

equation, 32, 448
function, 12

Pivot
block, 71
principal, 71
simple, 70

Pivot element, 70
Pivot rule

least-index, 343
lexicographic, 240

Pivoting methods
n-step scheme, 328, 355
Chandrasekaran, 319
Dantzig, 248
Graves, 375
Lemke-Howson, 285
Murty least-index, 243, 354,

358
parametric principal, 293, 355
principal

asymmetric version, 260
Bard-type, 237
symmetric version, 252
Van der Heyden, 309, 363
Zoutendijk, 239, 375

van de Panne-Whinston, 248
P-matrix constant, 478, 506, 668
Polytope, 97
Porous flow problem, 5
Portfolio selection problem, 292,

378

pos (of a matrix), 16
Preprocessing, 317
Principal

subproblem, 245
Principal minor

leading, 59, 77, 203
positive, 231

Principal pivotal transform, 71,
538, 576, 586, 595

Principal rearrangement, 59
Principal submatrix, 28, 147, 154,

158, 184, 195, 196
leading, 59

Principal subproblem, 308
leading, 244, 315

Processing (an LCP), 226
Production activity levels, 7
Profile, 105
Projection, 24, 107, 167
Proximal point algorithm, 440
Pseudomanifold, 615

boundary, 615
facet, 615
restricted, 621
vertex, 615

Quadratic function, 172
bounded below, 403, 655

Quadratic programming, 3, 4, 19,
23, 30, 117, 138, 499, 691

convex, 5
strictly, 411, 436, 444

formulation, 23
nonconvex,280
parametric, 291

Quotient formula, 77

Ray
extreme, 16, 105
primary, 269
secondary, 271, 275

Regular vector, 451
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strongly, 451, 667
Regularization, 439, 503
Relaxation parameter, 89, 397, 448,

501
Residue, 476, 672

Schema, 69
Schur complement, 75, 205, 319,

451
Schur 's determinantal formula, 76
Semiorthant, 572
Sensitivity analysis, 644, 697
Separation

proper, 107
strict, 107
strong, 107

Sequence
convergent, 45

Sequential linearization, 14
Set

bounded, 47
bounded below, 199
closed, 47
compact, 47
connected, 50
convex, 49

polyhedral, 96
dense, 48, 513, 607
dimension, 123, 513
open, 47
path-connected, 50, 123

Shadow prices, 8
Sign changing, 161
Sign reversing, 153, 275
Simplex, 97
Simplicial cone, 206
Slater condition, 408
Solution, 2

basic, 98, 103
existence of, 137
globally optimal, 4, 20
globally unique, 137, 146

isolated, 137, 162
locally optimal, 4, 19
locally unique, 137, 162, 165,

574, 560, 658
nondegenerate, 25, 141, 164,

190, 490, 652
optimal, 14, 18
robust, 698
stable, 659, 665, 698

strongly, 659
trivial, 2
unique, 28, 141, 148, 185, 189,

651, 665
Solution map

closed, 646
directionally differentiable, 675
F-differentiable, 676

strongly, 676
Lipschitzian, 668
locally upper Lipschitzian, 647
polyhedral, 646
upper semi-continuous, 650

Solution ray, 688
generator of, 688

Solution set of (q, M), 2, 144, 519,
541

bounded, 195, 687
uniformly, 650

convex, 144, 157, 160
finite, 162, 654

Spatial price equilibrium, 370
Special structure, 143
Spectral

decomposition, 64
radius, 64

Spectrum, 64
Spine, 572
Splitting, 88, 395

Q, 396, 654
regular

weakly, 400
T, 494, 500
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Stability
solution, 659

Stationary point, 54, 115, 451
Stationary point problem, 5, 439
Steplength (stepsize), 93
Stopping rule, 396, 476
Strategy

mixed, 6
pure, 5
randomized, 6

Strong stability, 665
Submatrix, 17
Subsequential convergence, 401
Subspace

linear/affine, 49
Support, 18
Symmetric difference formula, 230

Tableau, 69
Taylor expansion, 54
Termination criterion, 396, 446,

476
Theorems of the alternative, 109

Farkas's lemma, 109
Gordon's theorem, 110
Stiemke's theorem, 111
Ville's theorem, 110

Traffic equilibrium problem, 13,
304

Unit ball, 44
Unit sphere, 44, 120
Upper envelope, 11
Use (of a column), 17

Variable
basic (dependent), 69
blocking, 247

eligible, 247
distinguished, 247
driving, 247
nonbasic (independent), 69

Variable dimension algorithm, 196

Variational inequality problem, 13,
14, 29, 166, 392

affine, 15, 29
Vector norms, 44

absolute, 46
elliptic, 45
equivalent, 45, 46
Euclidean (1 2 ), 44
max (l,,), 44
monotone, 46, 418
sum (li), 44

Vertex, 105

Wardrop's principle, 306
Weierstrass's theorem, 54
Worst case complexity

Birge-Gana example, 363
Murty's example, 358

Zero-finding problem, 24, 449
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