Zero-Sum Games and Linear Programming Duality

Bernhard von Stengel

Department of Mathematics
London School of Economics

John von Neumann (1903-1957)

- set theory
- mathematics of quantum mechanics
- minimax theorem [1928], game theory
- stored-program computer
- self-replicating automata

John von Neumann (1903-1957)

- set theory
- mathematics of quantum mechanics
- minimax theorem [1928], game theory
- stored-program computer
- self-replicating automata
from The Man from the Future (2021):

"Von Neumann would carry on a conversation with my three-year-old son, and the two of them would talk as equals, and I sometimes wondered if he used the same principle when he talked to the rest of us."

Edward Teller, 1966

3 October 1947: Dantzig meets von Neumann

GD: In under one minute I slapped on the blackboard a geometric and algebraic version of the linear programming problem.

Von Neumann stood up and said, "Oh, that!"
[gives eye-popping lecture on LP duality]
JvN: ... I have recently completed a book with Oskar Morgenstern on the theory of games. I conjecture that the two problems are equivalent.

GD: Thus I learned about Farkas's Lemma and about duality for the first time.

George Dantzig
(1914-2005)

Notation, treat vectors and scalars as matrices

All vectors are column vectors. $\boldsymbol{A}^{\top}=$ matrix \boldsymbol{A} transposed.
$0=(0, \ldots, 0)^{\top}, \quad 1=(1, \ldots, 1)^{\top}$.
$\boldsymbol{A} \boldsymbol{x}=$ linear combination of columns of \boldsymbol{A}

$\boldsymbol{y}^{\top} \boldsymbol{A}=$ linear combination of rows of \boldsymbol{A} \square

$\boldsymbol{y}^{\top} \boldsymbol{b}=$ scalar product of \boldsymbol{y} and \boldsymbol{b}
$\boldsymbol{x} \boldsymbol{\alpha}=($ column $)$ vector \boldsymbol{x} scaled by $\boldsymbol{\alpha}$
$\alpha y^{\top}=$ row vector y scaled by α \square
\square
\square

Primal and dual linear programs

Primal LP:

maximize $\boldsymbol{c}^{\top} \boldsymbol{x}$
subject to $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$,
$x \geq 0$.

Dual LP:

minimize $\boldsymbol{y}^{\top} b$
subject to $\begin{aligned} y & \geq 0, \\ y^{\top} \boldsymbol{A} & \geq c^{\top} .\end{aligned}$

Primal and dual linear programs

Primal LP:

maximize $c^{\top} \boldsymbol{x}$
subject to $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$,
$x \geq 0$.

Dual LP:

$$
\text { minimize } y^{\top} b
$$

subject to $\begin{aligned} y & \geq 0, \\ y^{\top} A & \geq c^{\top} .\end{aligned}$

Weak LP duality: For any feasible primal \boldsymbol{x}, dual \boldsymbol{y} :

$$
\boldsymbol{c}^{\top} \boldsymbol{x} \leq \boldsymbol{y}^{\top} \boldsymbol{b}
$$

Primal and dual linear programs

Primal LP:

maximize $\boldsymbol{c}^{\top} \boldsymbol{x}$
subject to $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$,

$$
x \geq 0
$$

Dual LP:

minimize $\boldsymbol{y}^{\top} b$

subject to $\boldsymbol{y} \geq 0$,
$y^{\top} A \geq c^{\top}$.

Weak LP duality: For any feasible primal \boldsymbol{x}, dual \boldsymbol{y} :

$$
\left(c^{\top}\right) x \leq\left(y^{\top} A\right) x=y^{\top}(A x) \leq y^{\top}(b)
$$

Primal and dual linear programs

Primal LP:

maximize $c^{\top} \boldsymbol{x}$
subject to $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$,
$x \geq 0$.

Dual LP:

$$
\begin{aligned}
& \text { minimize } \boldsymbol{y}^{\top} \boldsymbol{b} \\
& \text { subject to } \boldsymbol{y} \geq \mathbf{0}, \\
& \boldsymbol{y}^{\top} \boldsymbol{A} \geq \boldsymbol{c}^{\top} .
\end{aligned}
$$

Weak LP duality: For any feasible primal \boldsymbol{x}, dual \boldsymbol{y} :

$$
\boldsymbol{c}^{\top} \boldsymbol{x} \leq y^{\top} \boldsymbol{b}
$$

So $\boldsymbol{c}^{\top} \boldsymbol{x}=\boldsymbol{y}^{\top} \boldsymbol{b} \Rightarrow \boldsymbol{x}$ optimal for primal LP, \boldsymbol{y} optimal for dual LP.

Primal and dual linear programs

Primal LP:

maximize $\boldsymbol{c}^{\top} \boldsymbol{x}$
subject to $\boldsymbol{A x} \leq \boldsymbol{b}$,

$$
x \geq 0
$$

Dual LP:
minimize $\boldsymbol{y}^{\top} \boldsymbol{b}$
subject to $\begin{aligned} y & \geq 0, \\ y^{\top} A & \geq c^{\top} .\end{aligned}$

Weak LP duality: For any feasible primal \boldsymbol{x}, dual \boldsymbol{y} :

$$
\boldsymbol{c}^{\top} \boldsymbol{x} \leq y^{\top} \boldsymbol{b}
$$

So $\boldsymbol{c}^{\top} \boldsymbol{x}=\boldsymbol{y}^{\top} \boldsymbol{b} \Rightarrow \boldsymbol{x}$ optimal for primal LP, \boldsymbol{y} optimal for dual LP.
Strong LP duality: If both primal and dual LP are feasible, then they have (optimal) solutions \boldsymbol{x} and \boldsymbol{y} with $\boldsymbol{c}^{\top} \boldsymbol{x}=\boldsymbol{y}^{\top} \boldsymbol{b}$.

Primal and dual linear programs

Primal LP:

maximize $\boldsymbol{c}^{\top} \boldsymbol{x}$
subject to $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$,
$x \geq 0$.

Dual LP:
minimize $\boldsymbol{y}^{\top} \boldsymbol{b}$
subject to $\begin{aligned} y & \geq 0, \\ y^{\top} A & \geq c^{\top} .\end{aligned}$

Weak LP duality: For any feasible primal \boldsymbol{x}, dual \boldsymbol{y} :

$$
\boldsymbol{c}^{\top} \boldsymbol{x} \leq \boldsymbol{y}^{\top} \boldsymbol{b}
$$

So $\boldsymbol{c}^{\top} \boldsymbol{x}=\boldsymbol{y}^{\top} \boldsymbol{b} \Rightarrow \boldsymbol{x}$ optimal for primal LP, \boldsymbol{y} optimal for dual LP.
Strong LP duality: If both primal and dual LP are feasible, then they have (optimal) solutions \boldsymbol{x} and \boldsymbol{y} with $\boldsymbol{c}^{\top} \boldsymbol{x} \geq \boldsymbol{y}^{\top} \boldsymbol{b}$.

Tucker diagram

Primal LP: maximize $\boldsymbol{c}^{\top} \boldsymbol{x}$ subject to $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \quad \boldsymbol{x} \geq \mathbf{0}$.
Dual LP: minimize $\boldsymbol{y}^{\top} \boldsymbol{b}$ subject to $\boldsymbol{y}^{\top} \boldsymbol{A} \geq \boldsymbol{c}^{\top}, \boldsymbol{y} \geq \mathbf{0}$.

LP duality proved with Lemma of Farkas [1902]

Equalities with nonnegative variables

$$
\nexists x: A x=b, x \geq 0 \Leftrightarrow \exists y: y^{\top} A \geq 0^{\top}, y^{\top} b<0
$$

Inequalities with nonnegative variables
$\nexists \boldsymbol{x}: \boldsymbol{A x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0} \Leftrightarrow \exists \boldsymbol{y}: \boldsymbol{y} \geq \mathbf{0}, \boldsymbol{y}^{\top} \boldsymbol{A} \geq \mathbf{0}^{\top}, \boldsymbol{y}^{\top} \boldsymbol{b}<\mathbf{0}$

Inequalities only, get $\mathbf{0} \leq \mathbf{- 1}$ from infeasible $\boldsymbol{A x} \leq \boldsymbol{b}$:

$$
\nexists x: A x \leq b \quad \Leftrightarrow \quad \exists y \geq 0: y^{\top} A=0^{\top}, y^{\top} b<0 .
$$

Lemma of Farkas [1902]

IV. Grundsatz der einfachen Ungleichungen.

Es sei

$$
\left\{\begin{array}{l}
A_{11} u_{1}+A_{12} u_{2}+\cdots+A_{1 n} u_{n} \equiv \Theta_{1} \geqq 0 \tag{1.}\\
A_{21} u_{1}+A_{22} u_{2}+\cdots+A_{2 n} u_{n} \equiv \Theta_{2} \geqq 0, \\
\cdot \cdot
\end{array}\right.
$$

das gegebene System von Ungleichungen, und in jeder Lösung desselben möge

$$
\begin{equation*}
A_{1} u_{1}+A_{2} u_{2}+\cdots+A_{n} u_{n} \equiv \vartheta \geqq 0 \tag{2.}
\end{equation*}
$$

bestehen,
Es giebt immer solche nicht-negativen, von den Variablen u unabhängigen Multiplicatoren λ, dass

$$
\begin{equation*}
\vartheta \equiv \lambda_{1} \Theta_{1}+\lambda_{2} \Theta_{2}+\cdots \tag{3.}
\end{equation*}
$$

ist.

Lemma of Farkas [1902]

IV. Grundsatz der einfachen Ungleichungen.

Es sei

$$
\left\{\begin{array}{l}
A_{11} u_{1}+A_{12} u_{2}+\cdots+A_{1 n} u_{n} \equiv \Theta_{1} \geqq 0 \tag{1.}\\
A_{21} u_{1}+A_{22} u_{2}+\cdots+A_{2 n} u_{n} \equiv \Theta_{2} \geqq 0, \\
\cdot \cdot
\end{array}\right.
$$

das gegebene System von Ungleichungen, und in jeder Lösung desselben möge

$$
\begin{equation*}
A_{1} u_{1}+A_{2} u_{2}+\cdots+A_{n} u_{n} \equiv \vartheta \geqq 0 \tag{2.}
\end{equation*}
$$

bestehen,
Es giebt immer solche nicht-negativen, von den Variablen u unabhängigen Multiplicatoren λ, dass

$$
\begin{equation*}
\vartheta \equiv \lambda_{1} \Theta_{1}+\lambda_{2} \Theta_{2}+\cdots \tag{3.}
\end{equation*}
$$

ist.
This is the equality version of the Lemma in dual form:
$\forall x\left(A x \geq 0 \Rightarrow c^{\top} x \geq 0\right) \Rightarrow \exists y \geq 0: y^{\top} A=c^{\top}$

Lemma of Farkas [1902]

IV. Grundsatz der einfachen Ungleichungen.

Es sei

$$
\left\{\begin{array}{l}
A_{11} u_{1}+A_{12} u_{2}+\cdots+A_{1 n} u_{n} \equiv \Theta_{1} \geqq 0 \tag{1.}\\
A_{21} u_{1}+A_{22} u_{2}+\cdots+A_{2 n} u_{n} \equiv \Theta_{2} \geqq 0 \\
\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot
\end{array}\right.
$$

das gegebene System von Ungleichungen, und in jeder Lösung desselben möge

$$
\begin{equation*}
A_{1} u_{1}+A_{2} u_{2}+\cdots+A_{n} u_{n} \equiv \vartheta \geqq 0 \tag{2.}
\end{equation*}
$$

bestehen,
Es giebt immer solche nicht-negativen, von den Variablen u unabhängigen Multiplicatoren λ, dass

$$
\begin{equation*}
\boldsymbol{\vartheta} \equiv \lambda_{1} \Theta_{1}+\lambda_{2} \Theta_{2}+\cdots \tag{3.}
\end{equation*}
$$

ist.
This is the equality version of the Lemma in dual form:

$$
\begin{aligned}
& \forall x\left(A x \geq 0 \Rightarrow c^{\top} x \geq 0\right) \Rightarrow \exists y \geq 0: y^{\top} A=c^{\top} \\
& \nexists y \geq 0: y^{\top} A=c^{\top} \Rightarrow \exists x: A x \geq 0, c^{\top} x<0
\end{aligned}
$$

Zero-sum games

Game matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$
maximizing row player chooses row $i \in[m]=\{1, \ldots, m\}$
minimizing column player chooses column $j \in[n]=\{1, \ldots, n\}$
payoff $\boldsymbol{a}_{i j}$ to row player = cost to column player

Zero-sum games

Game matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$
maximizing row player chooses row $i \in[m]=\{1, \ldots, m\}$
minimizing column player chooses column $j \in[n]=\{1, \ldots, n\}$ payoff $\boldsymbol{a}_{i j}$ to row player = cost to column player

Mixed-strategy sets

$$
\begin{aligned}
& Y=\left\{y \in \mathbb{R}^{m} \mid y \geq 0,1^{\top} y=1\right\} \\
& X=\left\{x \in \mathbb{R}^{n} \mid x \geq 0,1^{\top} x=1\right\}
\end{aligned}
$$

expected payoff / cost: $\quad \boldsymbol{y}^{\top} \boldsymbol{A} \boldsymbol{x}$

Best responses

Let $\boldsymbol{x} \in \boldsymbol{X} . \quad(\boldsymbol{A x})_{i}=$ expected payoff in row i.
A best response $\boldsymbol{y} \in \boldsymbol{Y}$ to \boldsymbol{x} maximizes $\boldsymbol{y}^{\top} \boldsymbol{A} \boldsymbol{x}$.

$$
\begin{aligned}
& \max \left\{y^{\top}(A x) \mid y \in Y\right\} \\
= & \max \left\{(A x)_{1}, \ldots,(A x)_{m}\right\} \\
= & \min \left\{v \in \mathbb{R} \mid(A x)_{1} \leq v, \ldots,(A x)_{m} \leq v\right\} \\
= & \min \{v \in \mathbb{R} \mid A x \leq \mathbf{1} v\}
\end{aligned}
$$

max-min and min-max strategies

min-max strategy $\hat{\boldsymbol{x}} \in \boldsymbol{X}$:

$$
\begin{aligned}
\max _{\boldsymbol{y} \in \boldsymbol{Y}} \boldsymbol{y}^{\top} \boldsymbol{A} \hat{\boldsymbol{x}} & =\min _{\boldsymbol{x} \in \boldsymbol{X}} \max _{\boldsymbol{y} \in \boldsymbol{Y}} \boldsymbol{y}^{\top} \boldsymbol{A} \boldsymbol{x} \\
& =\min _{\boldsymbol{x} \in \boldsymbol{X}}\{\boldsymbol{v} \in \mathbb{R} \mid \boldsymbol{A} \boldsymbol{x} \leq \mathbf{1} \boldsymbol{v}\}
\end{aligned}
$$

max-min strategy $\hat{\boldsymbol{y}} \in \boldsymbol{Y}$:

$$
\begin{aligned}
\min _{\boldsymbol{x} \in \boldsymbol{X}} \hat{\boldsymbol{y}}^{\top} \boldsymbol{A} \boldsymbol{x} & =\max _{\boldsymbol{y} \in \boldsymbol{Y}} \min _{\boldsymbol{x} \in \boldsymbol{X}} \boldsymbol{y}^{\top} \boldsymbol{A} \boldsymbol{x} \\
& =\max _{\boldsymbol{y} \in \boldsymbol{Y}}\left\{u \in \mathbb{R} \mid \boldsymbol{y}^{\top} \boldsymbol{A} \geq u 1^{\top}\right\}
\end{aligned}
$$

Written as general LP

Minimizer: minimize \boldsymbol{v} subject to $\boldsymbol{A x} \leq \mathbf{1 v}, \quad \boldsymbol{x} \in \boldsymbol{X}$. Maximizer: maximize u subject to $y^{\top} A \geq u 1^{\top}, y \in Y$.

Written as general LP

Minimizer: minimize v subject to $A \boldsymbol{x} \leq \mathbf{1 v}, \quad \boldsymbol{x} \in X$. Maximizer: maximize u subject to $\boldsymbol{y}^{\top} \boldsymbol{A} \geq u \mathbf{1}^{\top}, \boldsymbol{y} \in Y$.

von Neumann's minimax theorem

Every zero-sum game \boldsymbol{A} has a value \boldsymbol{v} :

$$
\max _{y \in Y} \min _{x \in X} y^{\top} A x=v=\min _{x \in X} \max _{y \in Y} y^{\top} A x
$$

von Neumann's minimax theorem

Every zero-sum game \boldsymbol{A} has a value \boldsymbol{v} :

$$
\max _{y \in Y} \min _{x \in X} y^{\top} A x=v=\min _{x \in X} \max _{y \in Y} y^{\top} A x
$$

also, with max-min strategy $\hat{\boldsymbol{y}}$ and min-max strategy $\hat{\boldsymbol{x}}$:

$$
\begin{aligned}
& \min _{\boldsymbol{x} \in \boldsymbol{X}} \hat{\boldsymbol{y}}^{\top} \boldsymbol{A} \boldsymbol{x}=\hat{\boldsymbol{y}}^{\top} \boldsymbol{A} \hat{\boldsymbol{x}}=\max _{\boldsymbol{y} \in \boldsymbol{Y}} \boldsymbol{y}^{\top} \boldsymbol{A} \hat{\boldsymbol{x}} \\
& \Leftrightarrow \quad \forall \boldsymbol{x} \in X, \boldsymbol{y} \in Y: \quad \hat{\boldsymbol{y}}^{\top} \boldsymbol{A x} \geq \hat{\boldsymbol{y}}^{\top} \boldsymbol{A} \hat{\boldsymbol{x}} \geq \boldsymbol{y}^{\top} \boldsymbol{A} \hat{\boldsymbol{x}}
\end{aligned}
$$

$\Leftrightarrow(\hat{\boldsymbol{y}}, \hat{\boldsymbol{x}})$ is a Nash equilibrium (exists via fixed point theorem).

von Neumann's minimax theorem

Every zero-sum game \boldsymbol{A} has a value \boldsymbol{v} :

$$
\max _{y \in Y} \min _{x \in X} y^{\top} A x=v=\min _{x \in X} \max _{y \in Y} y^{\top} A x
$$

also, with max-min strategy $\hat{\boldsymbol{y}}$ and min-max strategy $\hat{\boldsymbol{x}}$:
$\begin{aligned} \min _{\boldsymbol{x} \in \boldsymbol{X}} \hat{\boldsymbol{y}}^{\top} \boldsymbol{A} \boldsymbol{x} & =\hat{\boldsymbol{y}}^{\top} \boldsymbol{A} \hat{\boldsymbol{x}}\end{aligned}=\max _{\boldsymbol{y} \in \boldsymbol{Y}} \boldsymbol{y}^{\top} \boldsymbol{A} \hat{\boldsymbol{x}}$
$\Leftrightarrow(\hat{\boldsymbol{y}}, \hat{\boldsymbol{x}})$ is a Nash equilibrium (exists via fixed point theorem).

The minimax theorem is a consequence of strong LP duality.

von Neumann's minimax theorem

Every zero-sum game \boldsymbol{A} has a value \boldsymbol{v} :

$$
\max _{y \in Y} \min _{x \in X} y^{\top} A X=v=\min _{x \in X} \max _{y \in Y} y^{\top} A x
$$

also, with max-min strategy $\hat{\boldsymbol{y}}$ and min-max strategy $\hat{\boldsymbol{x}}$:

$$
\begin{aligned}
& \min _{x \in X} \hat{y}^{\top} A x=\hat{y}^{\top} A \hat{x}=\max _{y \in Y} y^{\top} A \hat{x} \\
& \Leftrightarrow \quad \forall x \in X, y \in Y: \quad \hat{y}^{\top} A x \geq \hat{y}^{\top} A \hat{x} \geq \boldsymbol{y}^{\top} A \hat{x}
\end{aligned}
$$

$\Leftrightarrow(\hat{y}, \hat{\mathbf{x}})$ is a Nash equilibrium (exists via fixed point theorem).
The minimax theorem is a consequence of strong LP duality. What about the converse?

Dantzig's game [1951]

$$
B=\left[\begin{array}{ccc}
0 & A & -b \\
-A^{\top} & 0 & c \\
b^{\top} & -c^{\top} & 0
\end{array}\right]
$$

Dantzig's game [1951]

$$
B=\left[\begin{array}{ccc}
0 & A & -b \\
-A^{\top} & 0 & c \\
b^{\top} & -c^{\top} & 0
\end{array}\right]
$$

$\boldsymbol{B}=-\boldsymbol{B}^{\top} \Rightarrow$ symmetric game with value $\mathbf{0}$ (by minimax theorem),
\exists optimal $\boldsymbol{z}=(\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{t}) \geq \mathbf{0}$ with $\boldsymbol{B z} \leq \mathbf{0}$ and $\boldsymbol{z}^{\top} \boldsymbol{B} \geq \mathbf{0}^{\top}$:

$$
\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b} t \leq \mathbf{0}, \quad-\boldsymbol{A}^{\top} \boldsymbol{y}+\boldsymbol{c t} \leq \mathbf{0}, \quad \boldsymbol{b}^{\top} \boldsymbol{y}-\boldsymbol{c}^{\top} \boldsymbol{x} \leq \mathbf{0}
$$

Dantzig's game [1951]

$$
B=\left[\begin{array}{ccc}
0 & A & -\boldsymbol{b} \\
-\boldsymbol{A}^{\top} & 0 & \boldsymbol{c} \\
\boldsymbol{b}^{\top} & -\boldsymbol{c}^{\top} & 0
\end{array}\right]
$$

$\boldsymbol{B}=-\boldsymbol{B}^{\top} \Rightarrow$ symmetric game with value $\mathbf{0}$ (by minimax theorem), \exists optimal $\boldsymbol{z}=(\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{t}) \geq \mathbf{0}$ with $\boldsymbol{B z} \leq \mathbf{0}$ and $\boldsymbol{z}^{\top} \boldsymbol{B} \geq \mathbf{0}^{\top}$:

$$
\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b} t \leq \mathbf{0}, \quad-\boldsymbol{A}^{\top} \boldsymbol{y}+\boldsymbol{c t} \leq \mathbf{0}, \quad \boldsymbol{b}^{\top} \boldsymbol{y}-\boldsymbol{c}^{\top} \boldsymbol{x} \leq \mathbf{0}
$$

If $t>0: x \frac{1}{t}$ primal optimal and $y \frac{1}{t}$ dual optimal.

Dantzig's game [1951]

$$
B=\left[\begin{array}{ccc}
0 & A & -\boldsymbol{b} \\
-\boldsymbol{A}^{\top} & 0 & \boldsymbol{c} \\
\boldsymbol{b}^{\top} & -\boldsymbol{c}^{\top} & 0
\end{array}\right]
$$

$\boldsymbol{B}=-\boldsymbol{B}^{\top} \Rightarrow$ symmetric game with value $\mathbf{0}$ (by minimax theorem), \exists optimal $\boldsymbol{z}=(\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{t}) \geq \mathbf{0}$ with $\boldsymbol{B z} \leq \mathbf{0}$ and $\boldsymbol{z}^{\top} \boldsymbol{B} \geq \mathbf{0}^{\top}:$

$$
\boldsymbol{A} x-\boldsymbol{b} t \leq \mathbf{0}, \quad-\boldsymbol{A}^{\top} \boldsymbol{y}+\boldsymbol{c t} \leq \mathbf{0}, \quad \boldsymbol{b}^{\top} \boldsymbol{y}-\boldsymbol{c}^{\top} \boldsymbol{x} \leq \mathbf{0}
$$

If $t>0: x \frac{1}{t}$ primal optimal and $y \frac{1}{t}$ dual optimal.

If $\boldsymbol{t}=\mathbf{0}$ and $\boldsymbol{b}^{\top} \boldsymbol{y}<\boldsymbol{c}^{\top} \boldsymbol{x}$ then $\boldsymbol{b}^{\top} \boldsymbol{y}<\mathbf{0}$ or $\mathbf{0}<\boldsymbol{c}^{\top} \boldsymbol{x}$ (otherwise $\boldsymbol{b}^{\top} \boldsymbol{y} \geq \mathbf{0} \geq \boldsymbol{c}^{\top} \boldsymbol{x}$), and $\boldsymbol{A} \boldsymbol{x} \leq \mathbf{0}$ and $\boldsymbol{y}^{\top} \boldsymbol{A} \geq \mathbf{0}^{\top}$.

Unbounded rays

Suppose for some $\overline{\boldsymbol{x}}$:

$$
\boldsymbol{A} \bar{x} \leq \boldsymbol{b}, \quad \overline{\boldsymbol{x}} \geq \mathbf{0},
$$

and $\mathbf{0}<\boldsymbol{c}^{\top} \boldsymbol{x}, \quad \boldsymbol{A} \boldsymbol{x} \leq \mathbf{0}$ for some $\boldsymbol{x} \geq \mathbf{0}$.
Then $\boldsymbol{A}(\overline{\boldsymbol{x}}+\boldsymbol{x} \alpha) \leq \boldsymbol{b}, \quad \overline{\boldsymbol{x}}+\boldsymbol{x} \alpha \geq \mathbf{0}$,

$$
\boldsymbol{c}^{\top}(\bar{x}+\boldsymbol{x} \alpha)=\boldsymbol{c}^{\top} \overline{\boldsymbol{x}}+\left(\boldsymbol{c}^{\top} \boldsymbol{x}\right) \alpha \rightarrow \infty
$$

as $\alpha \rightarrow \infty$.

Unbounded rays

Suppose for some $\overline{\boldsymbol{x}}$:

$$
\boldsymbol{A} \overline{\boldsymbol{x}} \leq \boldsymbol{b}, \quad \overline{\boldsymbol{x}} \geq \mathbf{0}
$$

and $\mathbf{0}<\boldsymbol{c}^{\top} \boldsymbol{x}, \quad \boldsymbol{A} \boldsymbol{x} \leq \mathbf{0}$ for some $\boldsymbol{x} \geq \mathbf{0}$.
Then $\boldsymbol{A}(\overline{\boldsymbol{x}}+\boldsymbol{x} \alpha) \leq \boldsymbol{b}, \quad \overline{\boldsymbol{x}}+\boldsymbol{x} \alpha \geq \mathbf{0}$,

$$
\boldsymbol{c}^{\top}(\overline{\boldsymbol{x}}+\boldsymbol{x} \alpha)=\boldsymbol{c}^{\top} \overline{\boldsymbol{x}}+\left(\boldsymbol{c}^{\top} \boldsymbol{x}\right) \alpha \rightarrow \infty
$$

as $\alpha \rightarrow \infty . \quad \Rightarrow \quad$ (by weak duality): dual LP infeasible.

Unbounded rays

Suppose for some $\overline{\boldsymbol{x}}$:

$$
\boldsymbol{A} \bar{x} \leq \boldsymbol{b}, \quad \bar{x} \geq \mathbf{0},
$$

and $\mathbf{0}<\boldsymbol{c}^{\top} \boldsymbol{x}, \quad \boldsymbol{A} \boldsymbol{x} \leq \mathbf{0}$ for some $\boldsymbol{x} \geq \mathbf{0}$.
Then $\boldsymbol{A}(\overline{\boldsymbol{x}}+\boldsymbol{x} \alpha) \leq \boldsymbol{b}, \overline{\boldsymbol{x}}+\boldsymbol{x} \alpha \geq \mathbf{0}$,

$$
\boldsymbol{c}^{\top}(\bar{x}+\boldsymbol{x} \alpha)=\boldsymbol{c}^{\top} \overline{\boldsymbol{x}}+\left(\boldsymbol{c}^{\top} \boldsymbol{x}\right) \alpha \rightarrow \infty
$$

as $\alpha \rightarrow \infty . \quad \Rightarrow \quad$ (by weak duality): dual LP infeasible.

\Rightarrow Strong LP duality theorem

Either primal and dual LP are feasible and then have optimal solutions with equal objective functions, or (infeasibility certificate) at least one LP is infeasible and the other (if feasible) is unbounded (with an unbounded ray).

But what if $\boldsymbol{t}=\mathbf{0}$ and $\boldsymbol{b}^{\top} \boldsymbol{y}=\boldsymbol{c}^{\top} \boldsymbol{x}$?

Example		x_{2}
maximize	x_{2}	$x_{2} \leq 1$
subject to	x_{2}	
	x_{1},	$x_{2} \geq 0$

But what if $\boldsymbol{t}=\mathbf{0}$ and $\boldsymbol{b}^{\top} \boldsymbol{y}=\boldsymbol{c}^{\top} \boldsymbol{x}$?

Example maximize
subject to
x_{2}

$$
x_{2} \leq 1
$$

$$
x_{1}, \quad x_{2} \geq 0
$$

$\begin{array}{llll}y_{1} & x_{1} & x_{2} & t\end{array}$

$$
B=\left[\begin{array}{ccc}
0 & A & -b \\
-A^{\top} & 0 & c \\
b^{\top} & -c^{\top} & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 \\
1 & 0 & -1 & 0
\end{array}\right] \begin{aligned}
& \leq 0 \\
& \leq 0 \\
& \leq 0 \\
& \leq 0
\end{aligned}
$$

But what if $\boldsymbol{t}=\mathbf{0}$ and $\boldsymbol{b}^{\top} \boldsymbol{y}=\boldsymbol{c}^{\top} \boldsymbol{x}$?

Example maximize
subject to

$$
x_{2} \quad c^{\top} x
$$

x_{2}

$$
x_{2} \leq 1
$$

$$
x_{1}, \quad x_{2} \geq 0
$$

$$
\begin{array}{cccc}
y_{1} & x_{1} & x_{2} & t \\
0 & 1 & 0 & 0
\end{array}
$$

$$
\left[\begin{array}{cccc}
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 \\
1 & 0 & -1 & 0
\end{array}\right]=0=\begin{aligned}
& =0 \\
& =0
\end{aligned}
$$

But what if $\boldsymbol{t}=\mathbf{0}$ and $\boldsymbol{b}^{\top} \boldsymbol{y}=\boldsymbol{c}^{\top} \boldsymbol{x}$?

Example
maximize $\varepsilon X_{1}+X_{2}$
subject to

$$
\begin{aligned}
& x_{2} \leq 1 \\
x_{1}, & x_{2} \geq 0
\end{aligned}
$$

$$
B=\left[\begin{array}{ccc}
0 & A & -b \\
-A^{\top} & 0 & c \\
b^{\top} & -c^{\top} & 0
\end{array}\right]
$$

$$
\begin{gathered}
y_{1} \begin{array}{cccc}
x_{1} & x_{2} & t \\
0 & 1 & 0 & 0
\end{array} \\
{\left[\begin{array}{cccc}
0 & 0 & 1 & -1 \\
{\left[\begin{array}{cccc}
0 & 0 & 0 & \varepsilon \\
-1 & 0 & 0 & 1 \\
1 & -\varepsilon-1 & 0
\end{array}\right]} & =0 \\
=0 \\
=0
\end{array}\right.}
\end{gathered}
$$

But what if $\boldsymbol{t}=\mathbf{0}$ and $\boldsymbol{b}^{\top} \boldsymbol{y}=\boldsymbol{c}^{\top} \boldsymbol{x}$?

Example maximize
subject to
x_{2}

$$
x_{2} \leq 1
$$

$$
x_{1}, \quad x_{2} \geq 0
$$

$\begin{array}{llll}y_{1} & x_{1} & x_{2} & t\end{array}$

$$
B=\left[\begin{array}{ccc}
0 & A & -b \\
-A^{\top} & 0 & c \\
b^{\top} & -c^{\top} & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 \\
1 & 0 & -1 & 0
\end{array}\right] \begin{aligned}
& \leq 0 \\
& \leq 0 \\
& \leq 0 \\
& \leq 0
\end{aligned}
$$

But what if $\boldsymbol{t}=\mathbf{0}$ and $\boldsymbol{b}^{\top} \boldsymbol{y}=\boldsymbol{c}^{\top} \boldsymbol{x}$?

Example
maximize

$$
x_{2}
$$

subject to

x_{2}	
x_{2}	≤ 1
x_{1},	$x_{2} \geq 0$

$\boldsymbol{x}_{2} \quad \boldsymbol{c}^{\top} \boldsymbol{X}$

$$
\begin{aligned}
& \begin{array}{llll}
y_{1} & x_{1} & x_{2} & t
\end{array} \\
& \begin{array}{llll}
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3}
\end{array} \\
& {\left[\begin{array}{cccc}
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 \\
1 & 0-1 & 0
\end{array}\right]=0 \begin{array}{l}
=0 \\
=0
\end{array}}
\end{aligned}
$$

But what if $\boldsymbol{t}=\mathbf{0}$ and $\boldsymbol{b}^{\top} \boldsymbol{y}=\boldsymbol{c}^{\top} \boldsymbol{x}$?

Example maximize
subject to
x_{2}

$$
x_{2} \leq 1
$$

$$
x_{1}, \quad x_{2} \geq 0
$$

$$
\left.\begin{array}{rl}
y_{1} & x_{1} \\
x_{2} & t \\
\frac{1}{6} & \frac{1}{2} \\
\frac{1}{6} & \frac{1}{6}
\end{array}\right] \begin{array}{rrr}
0 & 0 & 1 \\
\hline 0 & =0 \\
{\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 \\
1 & 0 & -1 & 0
\end{array}\right]=0} & =0 \\
=0
\end{array}
$$

If $\boldsymbol{t}=\boldsymbol{0}$ and $\boldsymbol{b}^{\top} \boldsymbol{y}=\boldsymbol{c}^{\top} \boldsymbol{x}$ then

Dantzig's game gives no information about the LP!

$$
B=\left[\begin{array}{ccc}
0 & A & -b \\
-A^{\top} & 0 & c \\
b^{\top} & -c^{\top} & 0
\end{array}\right]
$$

This means an unused best response and thus violates strict complementarity. This only occurs in degenerate cases.

If $\boldsymbol{t}=\boldsymbol{0}$ and $\boldsymbol{b}^{\top} \boldsymbol{y}=\boldsymbol{c}^{\top} \boldsymbol{x}$ then

Dantzig's game gives no information about the LP!

$$
B=\left[\begin{array}{ccc}
0 & A & -b \\
-A^{\top} & 0 & c \\
b^{\top} & -c^{\top} & 0
\end{array}\right]
$$

This means an unused best response and thus violates strict complementarity. This only occurs in degenerate cases.

Given $\quad B=-B^{\top} \in \mathbb{R}^{\boldsymbol{k} \times \boldsymbol{k}}$
want $\quad \exists z \geq \mathbf{0}, B z \leq 0, z_{k}-(B z)_{k}>0$

If $\boldsymbol{t}=\boldsymbol{0}$ and $\boldsymbol{b}^{\top} \boldsymbol{y}=\boldsymbol{c}^{\top} \boldsymbol{x}$ then

Dantzig's game gives no information about the LP!

$$
B=\left[\begin{array}{ccc}
0 & A & -b \\
-A^{\top} & 0 & c \\
b^{\top} & -c^{\top} & 0
\end{array}\right]
$$

This means an unused best response and thus violates strict complementarity. This only occurs in degenerate cases.

Given $\quad B=-B^{\top} \in \mathbb{R}^{\boldsymbol{k} \times \boldsymbol{k}}$
want $\quad \exists z \geq \mathbf{0}, B z \leq 0, z_{k}-(B z)_{k}>\mathbf{0}$
= Tucker's Lemma [1956]

Tucker's Lemma [1956]

$$
B=-B^{\top} \in \mathbb{R}^{k \times k} \Rightarrow \exists z \geq \mathbf{0}, B z \leq 0, z_{\boldsymbol{k}}-(B z)_{k}>\mathbf{0}
$$

Tucker's Lemma [1956]

$$
B=-B^{\top} \in \mathbb{R}^{k \times k} \quad \Rightarrow \quad \exists z \geq 0, B z \leq 0, z_{k}-(B z)_{k}>0 .
$$

Applied to

$$
\boldsymbol{B}=\left[\begin{array}{ccc}
\mathbf{0} & \boldsymbol{A} & -\boldsymbol{b} \\
-\boldsymbol{A}^{\top} & \mathbf{0} & 0 \\
\boldsymbol{b}^{\top} & 0^{\top} & \mathbf{0}
\end{array}\right]
$$

$$
\Rightarrow \quad \exists z=(y, x, t) \geq 0 \text { with }
$$

$$
A x-b t \leq 0, \quad-A^{\top} y \leq 0, \quad b^{\top} y \leq 0, \quad t-b^{\top} y>0 .
$$

Tucker's Lemma [1956]

$$
\begin{aligned}
& B=-B^{\top} \in \mathbb{R}^{k \times k} \quad \Rightarrow \quad \exists z \geq 0, B z \leq 0, z_{k}-(B z)_{k}>0 \text {. } \\
& \text { Applied to } \\
& \boldsymbol{B}=\left[\begin{array}{ccc}
\mathbf{0} & \boldsymbol{A} & -\boldsymbol{b} \\
-\boldsymbol{A}^{\top} & \mathbf{0} & 0 \\
\boldsymbol{b}^{\top} & \mathbf{0}^{\top} & \mathbf{0}
\end{array}\right] \\
& \Rightarrow \quad \exists z=(y, x, t) \geq 0 \quad \text { with } \\
& \boldsymbol{A x}-\boldsymbol{b} t \leq 0, \quad-A^{\top} y \leq 0, \quad b^{\top} y \leq 0, \quad t-b^{\top} y>0 . \\
& \Rightarrow \quad \text { if } t=0: \quad \exists y \geq 0, \quad y^{\top} A \geq 0^{\top}, \quad y^{\top} b<0 \\
& \text { if } t>0: \quad \exists \boldsymbol{x} \frac{1}{t} \geq \mathbf{0}, \quad \boldsymbol{A x} \frac{1}{t} \leq \boldsymbol{b}
\end{aligned}
$$

Tucker's Lemma [1956]

$$
\begin{aligned}
& B=-B^{\top} \in \mathbb{R}^{\boldsymbol{k} \times k} \quad \Rightarrow \quad \exists z \geq 0, B z \leq 0, z_{k}-(B z)_{k}>0 \text {. } \\
& \text { Applied to } \\
& \boldsymbol{B}=\left[\begin{array}{ccc}
\mathbf{0} & \boldsymbol{A} & -\boldsymbol{b} \\
-\boldsymbol{A}^{\top} & \mathbf{0} & 0 \\
\boldsymbol{b}^{\top} & \mathbf{0}^{\top} & \mathbf{0}
\end{array}\right] \\
& \Rightarrow \quad \exists z=(y, x, t) \geq 0 \quad \text { with } \\
& \boldsymbol{A x}-\boldsymbol{b} t \leq 0, \quad-A^{\top} y \leq 0, \quad b^{\top} y \leq 0, \quad t-b^{\top} y>0 . \\
& \Rightarrow \quad \text { if } t=0: \quad \exists y \geq 0, y^{\top} A \geq 0^{\top}, y^{\top} b<0 \\
& \text { if } t>0: \quad \exists \boldsymbol{x} \frac{1}{t} \geq \mathbf{0}, \quad \boldsymbol{A x} \frac{1}{t} \leq \boldsymbol{b} \quad=\text { Lemma of Farkas! }
\end{aligned}
$$

Variants of Tucker's Lemma [1956]

For $B=-B^{\top} \in \mathbb{R}^{\boldsymbol{k} \times \boldsymbol{k}}, \quad A \in \mathbb{R}^{m \times n}$:
$\exists z \geq 0, \quad B z \leq 0, \quad z_{k}-(B z)_{k}>0$
$\exists x \geq 0, y \geq 0 \quad: \quad y^{\top} A \geq 0^{\top}, \quad A x \leq 0, \quad x_{n}+\left(y^{\top} A\right)_{n}>0$
$\exists x \geq 0, y: y^{\top} A \geq 0^{\top}, \quad A x=0, \quad x_{n}+\left(y^{\top} A\right)_{n}>0$

Variants of Tucker's Lemma [1956]

For $B=-B^{\top} \in \mathbb{R}^{\boldsymbol{k} \times \boldsymbol{k}}, \quad A \in \mathbb{R}^{m \times n}$:
$\exists z \geq \mathbf{0}, \quad B z \leq 0, \quad z_{k}-(B z)_{k}>0$
$\Downarrow: B=\left[\begin{array}{cc}0 & \boldsymbol{A} \\ -\boldsymbol{A}^{\top} & \mathbf{0}\end{array}\right], \boldsymbol{z}=\binom{\boldsymbol{y}}{\boldsymbol{x}} . \quad \Uparrow: \quad \boldsymbol{B}=\boldsymbol{A}, \boldsymbol{z}=\boldsymbol{y}+\boldsymbol{x}$
$\exists x \geq 0, y \geq 0 \quad: \quad y^{\top} A \geq 0^{\top}, \quad A x \leq 0, \quad x_{n}+\left(y^{\top} A\right)_{n}>0$
$\exists x \geq 0, y \quad: \quad y^{\top} A \geq 0^{\top}, \quad A x=0, \quad x_{n}+\left(y^{\top} A\right)_{n}>0$

Variants of Tucker's Lemma [1956]

For $B=-B^{\top} \in \mathbb{R}^{\boldsymbol{k} \times \boldsymbol{k}}, \quad A \in \mathbb{R}^{m \times n}$:
$\exists z \geq 0, \quad B z \leq 0, \quad z_{k}-(B z)_{k}>0$
$\exists x \geq \mathbf{0}, \boldsymbol{y} \geq \mathbf{0}: \quad \boldsymbol{y}^{\top} \boldsymbol{A} \geq \mathbf{0}^{\top}, \quad A x \leq 0, \quad \boldsymbol{x}_{\boldsymbol{n}}+\left(y^{\top} A\right)_{n}>\mathbf{0}$
$\Downarrow: A x \leq 0,-A x \leq 0 \quad \Uparrow: I_{m \times m} s+A x=0$
$\exists x \geq 0, y \quad: \quad y^{\top} A \geq 0^{\top}, \quad A x=0, \quad x_{n}+\left(y^{\top} A\right)_{n}>0$

Variants of Tucker's Lemma [1956]

For $B=-B^{\top} \in \mathbb{R}^{\boldsymbol{k} \times \boldsymbol{k}}, \quad A \in \mathbb{R}^{m \times n}$:
$\exists z \geq 0, \quad B z \leq 0, \quad z_{k}-(B z)_{k}>0$
$\exists x \geq 0, y \geq 0 \quad: \quad y^{\top} A \geq 0^{\top}, \quad A x \leq 0, \quad x_{n}+\left(y^{\top} A\right)_{n}>0$
$\exists x \geq 0, y: y^{\top} A \geq 0^{\top}, \quad A x=0, \quad x_{n}+\left(y^{\top} A\right)_{n}>0$

Lemma of Farkas \Rightarrow Lemma of Tucker

Lemma of Farkas :
$\nexists x \geq 0: A x=b \Leftrightarrow \exists y: y^{\top} A \geq 0^{\top}, y^{\top} b<0$.

Lemma of Farkas \Rightarrow Lemma of Tucker

Lemma of Farkas :
$\nexists \boldsymbol{x} \geq 0: A x=b \Leftrightarrow \exists y: y^{\top} A \geq 0^{\top}, y^{\top} b<0$.
$A=\left[A_{1} \cdots A_{n}\right]:$
either $\quad \exists z \in \mathbb{R}^{n-1}: z \geq 0, \quad \sum_{j=1}^{n-1} A_{j} z_{j}=-A_{n}:$
let $x=\binom{\boldsymbol{z}}{\mathbf{1}}, \quad y=0$
or

$$
\begin{aligned}
& \exists y: y^{\top} A_{j} \geq 0 \quad(1 \leq j \leq n-1), \quad y^{\top}\left(-A_{n}\right)<0 \text { : } \\
& \text { let } \boldsymbol{x}=0 \text {. }
\end{aligned}
$$

Lemma of Farkas \Rightarrow Lemma of Tucker

Lemma of Farkas :
$\nexists x \geq 0: A x=b \Leftrightarrow \exists y: y^{\top} A \geq 0^{\top}, y^{\top} b<0$.
$A=\left[A_{1} \cdots A_{n}\right]:$
either $\quad \exists z \in \mathbb{R}^{n-1}: z \geq 0, \quad \sum_{j=1}^{n-1} A_{j} z_{j}=-A_{n}:$
let $x=\binom{\boldsymbol{z}}{\mathbf{1}}, \quad y=\mathbf{0}$
or
$\exists \boldsymbol{y}: \boldsymbol{y}^{\top} \boldsymbol{A}_{j} \geq \mathbf{0}(\mathbf{1} \leq \boldsymbol{j} \leq n-1), \quad \boldsymbol{y}^{\top}\left(-A_{n}\right)<0:$
let $\boldsymbol{x}=\mathbf{0}$.
$\Rightarrow \quad x \geq 0, \quad y^{\top} A \geq 0^{\top}, \quad A x=0, \quad x_{n}+\left(y^{\top} A\right)_{n}>0$
= Lemma of Tucker

Dantzig's assumption

... assumes Tucker's Lemma and hence the Lemma of Farkas, which proves LP duality directly.

The minimax theorem is not of much use here!

Dantzig's assumption

... assumes Tucker's Lemma and hence the Lemma of Farkas, which proves LP duality directly.

The minimax theorem is not of much use here!

Next: we fix this.
Distilled from Adler [2013].

Tucker's Theorem

For $\boldsymbol{A} \in \mathbb{R}^{m \times n}$
$\exists x \geq 0, y: x \geq 0, \quad y^{\top} A \geq 0^{\top}, \quad A x=0, \quad x^{\top}+y^{\top} A>0^{\top}$

Tucker's Theorem

For $\boldsymbol{A} \in \mathbb{R}^{m \times n}$
$\exists x \geq 0, y: x \geq 0, \quad y^{\top} A \geq 0^{\top}, \quad A x=0, \quad x^{\top}+y^{\top} A>0^{\top}$
Note: $\quad \boldsymbol{x} \geq \mathbf{0} \perp \boldsymbol{y}^{\top} \boldsymbol{A} \geq \mathbf{0}^{\top}$ because $\boldsymbol{y}^{\top} \boldsymbol{A} \boldsymbol{x}=\mathbf{0}$

Tucker's Theorem

For $\boldsymbol{A} \in \mathbb{R}^{m \times n}$
$\exists x \geq 0, y: x \geq 0, \quad y^{\top} A \geq 0^{\top}, \quad A x=0, \quad x^{\top}+y^{\top} A>0^{\top}$
Note: $\quad \boldsymbol{x} \geq \mathbf{0} \perp \boldsymbol{y}^{\top} \boldsymbol{A} \geq \mathbf{0}^{\top}$ because $\boldsymbol{y}^{\top} \boldsymbol{A} \boldsymbol{x}=\mathbf{0}$

Also: Tucker's Theorem \Rightarrow Tucker's Lemma

Stiemke [1915], Gordan [1873]

Stiemke's Theorem

$$
\nexists y: y^{\top} A \geq 0^{\top}, \quad y^{\top} A \neq 0^{\top} \Leftrightarrow \exists x: A x=0, x>0
$$

Stiemke [1915], Gordan [1873]

Stiemke's Theorem

$$
\nexists y: y^{\top} \boldsymbol{A} \geq \mathbf{0}^{\top}, \quad y^{\top} \boldsymbol{A} \neq \mathbf{0}^{\top} \Leftrightarrow \exists \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\mathbf{0}, \quad \boldsymbol{x}>\mathbf{0}
$$

Gordan's Theorem

$$
\nexists x: A x=0, x \geq 0, x \neq 0 \Leftrightarrow \exists y: y^{\top} A>0^{\top}
$$

Stiemke [1915], Gordan [1873]

Stiemke's Theorem

$$
\nexists y: y^{\top} \boldsymbol{A} \geq \mathbf{0}^{\top}, \quad y^{\top} \boldsymbol{A} \neq \mathbf{0}^{\top} \Leftrightarrow \exists \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\mathbf{0}, \quad \boldsymbol{x}>\mathbf{0}
$$

Gordan's Theorem

$$
\nexists x: A x=0, x \geq 0, \quad x \neq 0 \Leftrightarrow \exists y: y^{\top} A>0^{\top}
$$

Tucker's Theorem

$$
\exists x, y: x \geq 0, \quad y^{\top} A \geq 0^{\top}, \quad A x=0, \quad x^{\top}+y^{\top} A>0^{\top}
$$

Gordan, Ville [1938], minimax theorem

Gordan's Theorem

$$
\nexists x: A x=0, \quad x \geq 0, \quad x \neq 0 \Leftrightarrow \exists y: y^{\top} A>0^{\top}
$$

Ville's Theorem

$$
\nexists x: A x \leq 0, \quad x \geq 0, \quad x \neq 0 \Leftrightarrow \exists y \geq 0: y^{\top} A>0^{\top}
$$

Gordan, Ville [1938], minimax theorem

Gordan's Theorem

$$
\nexists x: A x=0, \quad x \geq 0, \quad x \neq 0 \Leftrightarrow \exists y: y^{\top} A>0^{\top}
$$

Ville's Theorem

$$
\nexists x: A x \leq 0, \quad x \geq 0, \quad x \neq 0 \Leftrightarrow \exists y \geq 0: y^{\top} A>0^{\top}
$$

minimax theorem

$$
\exists x \in X, y \in Y, v \in \mathbb{R}: A x \leq 1 v, \quad y^{\top} A \geq v 1^{\top}
$$

Gordan, Ville [1938], minimax theorem

Gordan's Theorem

$$
\nexists x: A x=0, x \geq 0, x \neq 0 \Leftrightarrow \exists y: y^{\top} A>0^{\top}
$$

Ville's Theorem

$$
\nexists x: A x \leq 0, x \geq 0, x \neq 0 \Leftrightarrow \exists y \geq 0: y^{\top} A>0^{\top}
$$

minimax theorem

$$
\exists x \in X, y \in Y, v \in \mathbb{R}: A x \leq 1 v, \quad y^{\top} A \geq v 1^{\top}
$$

(via Ville by subtracting max-min value \boldsymbol{v} from \boldsymbol{A} giving \boldsymbol{A}^{\prime} with $\boldsymbol{y}^{\top} \boldsymbol{A}^{\prime} \geq \mathbf{0}^{\top}$, shows min-max value of \boldsymbol{A}^{\prime} is $\mathbf{0}$).

From Gordan to Tucker

Let $\tilde{\boldsymbol{x}}$ with $\tilde{\boldsymbol{x}} \geq \mathbf{0}, \boldsymbol{A} \tilde{\boldsymbol{x}}=\mathbf{0}$ have maximum support

$$
S=\left\{j \mid \tilde{x}_{j}>0\right\}
$$

From Gordan to Tucker

Let $\tilde{\boldsymbol{x}}$ with $\tilde{\boldsymbol{x}} \geq \mathbf{0}, \boldsymbol{A} \tilde{\boldsymbol{x}}=\mathbf{0}$ have maximum support
$S=\left\{j \mid \tilde{x}_{j}>0\right\}, \quad$ write $x=\left(x_{J}, x_{S}\right), \quad A x=A_{J} x_{J}+A_{S} x_{S}$.

From Gordan to Tucker

Let $\tilde{\boldsymbol{x}}$ with $\tilde{\boldsymbol{x}} \geq \mathbf{0}, \boldsymbol{A} \tilde{\boldsymbol{x}}=\mathbf{0}$ have maximum support
$S=\left\{j \mid \tilde{x}_{j}>0\right\}, \quad$ write $x=\left(x_{J}, x_{S}\right), \quad A x=A_{J} x_{J}+A_{S} x_{S}$.

$$
x_{J}=0 \quad x_{S}>0
$$

want:
y

From Gordan to Tucker

Let $\tilde{\boldsymbol{x}}$ with $\tilde{\boldsymbol{x}} \geq \mathbf{0}, \boldsymbol{A} \tilde{\boldsymbol{x}}=\mathbf{0}$ have maximum support
$S=\left\{j \mid \tilde{x}_{j}>0\right\}, \quad$ write $x=\left(x_{J}, x_{S}\right), \quad A x=A_{J} x_{J}+A_{S} x_{S}$.

From Gordan to Tucker

Let $\tilde{\boldsymbol{x}}$ with $\tilde{\boldsymbol{x}} \geq \mathbf{0}, \boldsymbol{A} \tilde{\boldsymbol{x}}=\mathbf{0}$ have maximum support
$S=\left\{j \mid \tilde{x}_{j}>0\right\}, \quad$ write $x=\left(x_{J}, x_{S}\right), \quad A x=A_{J} x_{J}+A_{S} x_{S}$.

want:y	$x_{J}=0 \quad x_{S}>0$		$=$	
	D	0		
	E	F (basis of rows of $\boldsymbol{A}_{\boldsymbol{S}}$)		0
	V	II		
	0	0		

$$
\begin{array}{rlrl}
A x=0 & \Leftrightarrow & C A x=C A_{J} x_{J}+C A_{S} x_{S} & =0 \\
& \Leftrightarrow & D x_{J} & =0 \\
E x_{J}+F x_{S} & =0 .
\end{array}
$$

From Gordan to Tucker

Let $\tilde{\boldsymbol{x}}$ with $\tilde{\boldsymbol{x}} \geq \mathbf{0}, \boldsymbol{A} \tilde{\boldsymbol{x}}=\mathbf{0}$ have maximum support
$S=\left\{j \mid \tilde{x}_{j}>0\right\}, \quad$ write $x=\left(x_{J}, x_{S}\right), \quad A x=A_{J} x_{J}+A_{S} x_{S}$.

$$
\begin{aligned}
A x=0 & \Leftrightarrow & C A x=C A_{J} x_{J}+C A_{S} x_{S} & =0 \\
& \Leftrightarrow & D x_{J} & =0
\end{aligned}
$$

$E x_{J}+F x_{S}=0$.

Gordan \Rightarrow Tucker

$\boldsymbol{A} \tilde{\boldsymbol{x}}=\mathbf{0}, \tilde{\boldsymbol{x}} \geq \mathbf{0}, \tilde{\boldsymbol{x}}_{\boldsymbol{S}}>\mathbf{0}$ where $\tilde{\boldsymbol{x}}$ has maximum support \boldsymbol{S}.

$$
\begin{array}{rccc}
A x=0 & \Leftrightarrow & C A x=C A_{J} x_{J}+C A_{S} x_{S} & =0 \\
\Leftrightarrow & D x_{J} & =0,
\end{array}
$$

$E x_{J}+F x_{S}=0$.

Gordan \Rightarrow Tucker

$\boldsymbol{A} \tilde{\boldsymbol{x}}=\mathbf{0}, \tilde{\boldsymbol{x}} \geq \mathbf{0}, \tilde{\boldsymbol{x}}_{\boldsymbol{S}}>\mathbf{0}$ where $\tilde{\boldsymbol{x}}$ has maximum support \boldsymbol{S}.

$$
\begin{array}{rlrl}
A x=0 & \Leftrightarrow & C A x=C A_{J} x_{J}+C A_{S} x_{S} & =0 \\
\Leftrightarrow & D x_{J} & =0, \\
E x_{J}+F x_{S} & =0 .
\end{array}
$$

Suppose $\exists x_{J} \geq 0, x_{J} \neq 0, D x_{J}=0$.

Gordan \Rightarrow Tucker

$\boldsymbol{A} \tilde{\boldsymbol{x}}=\mathbf{0}, \tilde{\boldsymbol{x}} \geq \mathbf{0}, \tilde{\boldsymbol{x}}_{\boldsymbol{S}}>\mathbf{0}$ where $\tilde{\boldsymbol{x}}$ has maximum support \boldsymbol{S}.

$$
\begin{array}{rlrl}
A x=0 & \Leftrightarrow & C A x=C A_{J} x_{J}+C A_{S} x_{S} & =0 \\
\Leftrightarrow & D x_{J} & =0, \\
E x_{J}+F x_{S} & =0 .
\end{array}
$$

Suppose $\exists x_{J} \geq 0, x_{J} \neq 0, D x_{J}=0$.
F has full rank $\Rightarrow \exists x_{S}: E x_{J}+F x_{S}=0$.
$\Rightarrow C(A_{J} x_{J}+A_{S} \underbrace{\left(x_{S}+\tilde{x}_{S} \alpha\right)}_{>0 \text { as } \alpha \rightarrow \infty})=0, \quad S$ not maximal. ,

Gordan \Rightarrow Tucker

$\boldsymbol{A} \tilde{\boldsymbol{x}}=\mathbf{0}, \tilde{\boldsymbol{x}} \geq \mathbf{0}, \tilde{\boldsymbol{x}}_{\boldsymbol{S}}>\mathbf{0}$ where $\tilde{\boldsymbol{x}}$ has maximum support \boldsymbol{S}.

$$
\begin{array}{rlrl}
A x=0 & \Leftrightarrow & C A x=C A_{J} x_{J}+C A_{S} x_{S} & =0 \\
\Leftrightarrow & D x_{J} & =0, \\
E x_{J}+F x_{S} & =0 .
\end{array}
$$

Suppose $\exists x_{J} \geq 0, x_{J} \neq 0, D x_{J}=0$.
F has full rank $\Rightarrow \exists x_{S}: E x_{J}+F x_{S}=0$.
$\Rightarrow C(A_{J} X_{J}+\boldsymbol{A}_{S} \underbrace{\left(x_{S}+\tilde{x}_{S} \alpha\right)}_{>0 \text { as } \alpha \rightarrow \infty})=\mathbf{0}, \quad S$ not maximal. $\{$
Gordan \Rightarrow
$\exists w: w^{\top} \boldsymbol{D}>0^{\top}, \quad\left(\binom{w}{0}^{\top} C\right) A_{J}>0, \quad\left(\binom{w}{0}^{\top} C\right) A_{s}=0$.

Summary: minimax theorem \Rightarrow LP duality

Recall: Using Dantzig's game $\quad \boldsymbol{B}=\left[\begin{array}{ccc}\mathbf{0} & \boldsymbol{A} & -\boldsymbol{b} \\ -\boldsymbol{A}^{\top} & \mathbf{0} & \boldsymbol{c} \\ \boldsymbol{b}^{\top} & -\boldsymbol{c}^{\top} & \mathbf{0}\end{array}\right]$
with $\boldsymbol{B}=-\boldsymbol{B}^{\top}$ assumes Tucker's Lemma

$$
\exists z \geq 0, B z \leq 0, z_{k}-(B z)_{k}>0
$$

Summary: minimax theorem \Rightarrow LP duality

Recall: Using Dantzig's game $\quad \boldsymbol{B}=\left[\begin{array}{ccc}\mathbf{0} & \boldsymbol{A} & -\boldsymbol{b} \\ -\boldsymbol{A}^{\top} & \mathbf{0} & \boldsymbol{c} \\ \boldsymbol{b}^{\top} & -\boldsymbol{c}^{\top} & \mathbf{0}\end{array}\right]$
with $\boldsymbol{B}=-\boldsymbol{B}^{\top}$ assumes Tucker's Lemma

$$
\exists z \geq 0, B z \leq 0, \quad z_{k}-(B z)_{k}>0 .
$$

minimax theorem \Rightarrow Gordan's Theorem, \Rightarrow Tucker's Theorem

$$
\exists z \geq \mathbf{0}, B z \leq \mathbf{0}, \quad z-B z>0
$$

\Rightarrow LP duality with strict complementarity: for feasible LPs

$$
\begin{aligned}
\exists x, y: & \left(y^{\top} A-c^{\top}\right) x=0, & y^{\top}(b-A x)=0, \\
& \left(y^{\top} A-c^{\top}\right)+x^{\top}>0^{\top}, & y+(b-A x)>0 .
\end{aligned}
$$

Karp-type reduction from LP to Minimax [motivated by Brooks \& Reny, 2023]

Karp-type reduction from LP to Minimax [motivated by Brooks \& Reny, 2023]

Theorem Consider max-min strategy (y, x, s, v) for the game

$$
B_{M}=\left[\begin{array}{ccc}
0 & A & -b \\
-A^{\top} & 0 & c \\
b^{\top} & -c^{\top} & 0 \\
1^{\top} & 1^{\top} & -M
\end{array}\right]
$$

for sufficiently large \boldsymbol{M} (polynomial bit-size for rational $\boldsymbol{A}, \boldsymbol{b}, \boldsymbol{c}$).
Then \boldsymbol{v} is the value of $\boldsymbol{B}_{\boldsymbol{M}}, \quad \boldsymbol{v} \geq \mathbf{0}$

Karp-type reduction from LP to Minimax

 [motivated by Brooks \& Reny, 2023]Theorem Consider max-min strategy $(\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{s}, \boldsymbol{v})$ for the game

$$
B_{M}=\left[\begin{array}{ccc}
0 & A & -b \\
-A^{\top} & 0 & c \\
b^{\top} & -c^{\top} & 0 \\
1^{\top} & \mathbf{1}^{\top} & -M
\end{array}\right]
$$

for sufficiently large \boldsymbol{M} (polynomial bit-size for rational $\boldsymbol{A}, \boldsymbol{b}, \boldsymbol{c}$).
Then \boldsymbol{v} is the value of $\boldsymbol{B}_{\boldsymbol{M}}, \quad \boldsymbol{v} \geq \mathbf{0}$, and

$$
v=0 \Rightarrow s>0, \quad A x \frac{1}{s} \leq b, \quad A^{\top} y \frac{1}{s} \geq c, \quad b^{\top} y \frac{1}{s}=c^{\top} X \frac{1}{s} \text { (opt.) }
$$

Karp-type reduction from LP to Minimax

 [motivated by Brooks \& Reny, 2023]Theorem Consider max-min strategy $(\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{s}, \boldsymbol{v})$ for the game

$$
B_{M}=\left[\begin{array}{ccc}
0 & A & -b \\
-A^{\top} & 0 & c \\
b^{\top} & -c^{\top} & 0 \\
1^{\top} & \mathbf{1}^{\top} & -M
\end{array}\right]
$$

for sufficiently large \boldsymbol{M} (polynomial bit-size for rational $\boldsymbol{A}, \boldsymbol{b}, \boldsymbol{c}$).
Then \boldsymbol{v} is the value of $\boldsymbol{B}_{\boldsymbol{M}}, \quad \boldsymbol{v} \geq \mathbf{0}$, and

$$
\begin{aligned}
& \boldsymbol{v}=0 \Rightarrow s>0, \quad \boldsymbol{A} \boldsymbol{x} \frac{1}{s} \leq \boldsymbol{b}, \quad \boldsymbol{A}^{\top} \boldsymbol{y} \frac{1}{s} \geq \boldsymbol{c}, \quad \boldsymbol{b}^{\top} \boldsymbol{y} \frac{1}{s}=\boldsymbol{c}^{\top} \boldsymbol{x} \frac{1}{s} \text { (opt.) } \\
& \boldsymbol{v}>0 \Rightarrow s=0, \quad \boldsymbol{A x} \leq 0, \quad \boldsymbol{A}^{\top} \boldsymbol{y} \geq 0, \quad \boldsymbol{b}^{\top} \boldsymbol{y}<\boldsymbol{c}^{\top} \boldsymbol{x} \quad \text { (infeasible). }
\end{aligned}
$$

Minimax theorem: Proof by Loomis [1946]

min-max strategy $\boldsymbol{x} \in \boldsymbol{X}: \quad$ minimize \boldsymbol{v} s.t. $\boldsymbol{A x} \leq \mathbf{1 v}$, max-min strategy $y \in Y: \quad$ maximize u s.t. $y^{\top} A \geq u 1^{\top}$,

$$
u=u 1^{\top} x \leq y^{\top} A x \leq y^{\top} 1 v=v
$$

Minimax theorem: Proof by Loomis [1946]

min-max strategy $\boldsymbol{x} \in \boldsymbol{X}: \quad$ minimize \boldsymbol{v} s.t. $\boldsymbol{A x} \leq \mathbf{1 v}$, max-min strategy $y \in Y: \quad$ maximize u s.t. $y^{\top} A \geq u 1^{\top}$,

$$
\begin{gathered}
u=u 1^{\top} x \leq y^{\top} A x \leq y^{\top} \mathbf{1} v=v \\
u 1^{\top}=y^{\top} \boldsymbol{A} \text { and } A x=1 v \Rightarrow u=v, \text { done. }
\end{gathered}
$$

Minimax theorem: Proof by Loomis [1946]

min-max strategy $\boldsymbol{x} \in \boldsymbol{X}$: minimize \boldsymbol{v} s.t. $\boldsymbol{A x} \leq \mathbf{1 v}$, max-min strategy $y \in Y$: maximize u s.t. $\boldsymbol{y}^{\top} \boldsymbol{A} \geq u \mathbf{1}^{\top}$,

$$
u=u 1^{\top} x \leq y^{\top} A x \leq y^{\top} \mathbf{1} v=v
$$

$u 1^{\top}=y^{\top} A$ and $A x=1 v \Rightarrow u=v$, done.
Assume $(\boldsymbol{A x})_{\boldsymbol{k}}<\boldsymbol{v}$ for some row \boldsymbol{k}, let $\overline{\boldsymbol{A}}$ be \boldsymbol{A} without row \boldsymbol{k}. By inductive hypothesis, $\overline{\boldsymbol{A}}$ has game value $\overline{\boldsymbol{v}}, \overline{\boldsymbol{A}} \overline{\boldsymbol{x}} \leq \mathbf{1} \overline{\boldsymbol{v}}$.

$$
\overline{\boldsymbol{v}} \leq \boldsymbol{u}, \quad \overline{\boldsymbol{v}} \leq \boldsymbol{v}, \quad(\overline{\boldsymbol{A}} \text { better than } \boldsymbol{A} \text { for minimizer }) .
$$

Minimax theorem: Proof by Loomis [1946]

min-max strategy $\boldsymbol{x} \in \boldsymbol{X}$: minimize \boldsymbol{v} s.t. $\boldsymbol{A x} \leq \mathbf{1 v}$, max-min strategy $y \in Y$: maximize u s.t. $\boldsymbol{y}^{\top} \boldsymbol{A} \geq u \mathbf{1}^{\top}$,

$$
u=u \mathbf{1}^{\top} x \leq y^{\top} A x \leq y^{\top} \mathbf{1} v=v .
$$

$u 1^{\top}=y^{\top} A$ and $A x=1 v \Rightarrow u=v$, done.
Assume $(\boldsymbol{A x})_{\boldsymbol{k}}<\boldsymbol{v}$ for some row \boldsymbol{k}, let $\overline{\boldsymbol{A}}$ be \boldsymbol{A} without row \boldsymbol{k}. By inductive hypothesis, $\overline{\boldsymbol{A}}$ has game value $\overline{\boldsymbol{v}}, \overline{\boldsymbol{A}} \overline{\boldsymbol{x}} \leq \mathbf{1} \overline{\boldsymbol{v}}$.

$$
\overline{\boldsymbol{v}} \leq \boldsymbol{u}, \quad \overline{\boldsymbol{v}} \leq \boldsymbol{v}, \quad(\overline{\boldsymbol{A}} \text { better than } \boldsymbol{A} \text { for minimizer }) .
$$

Claim : $\overline{\boldsymbol{v}}=\boldsymbol{v}$. Intuition: maximizer avoids row \boldsymbol{k} of \boldsymbol{A} anyhow.

Proof that $\overline{\boldsymbol{v}}=\boldsymbol{v}$

 minimal \boldsymbol{v} s.t. $\boldsymbol{A x} \leq \mathbf{1 v}$, maximal u s.t. $\boldsymbol{y}^{\top} \boldsymbol{A} \geq u \mathbf{1}^{\top}, \quad u \leq \boldsymbol{v}$. $(\boldsymbol{A x})_{\boldsymbol{k}}<\boldsymbol{v}$, matrix $\overline{\boldsymbol{A}}$ is \boldsymbol{A} without row \boldsymbol{k}, value $\overline{\boldsymbol{v}} \leq \boldsymbol{u}, \overline{\boldsymbol{v}} \leq \boldsymbol{v}$.
Proof that $\overline{\boldsymbol{v}}=\boldsymbol{v}$

minimal \boldsymbol{v} s.t. $\boldsymbol{A x} \leq \mathbf{1 v}$, maximal u s.t. $\boldsymbol{y}^{\top} \boldsymbol{A} \geq u \mathbf{1}^{\top}, \quad u \leq \boldsymbol{v}$.
$(\boldsymbol{A x})_{\boldsymbol{k}}<\boldsymbol{v}$, matrix $\overline{\boldsymbol{A}}$ is \boldsymbol{A} without row \boldsymbol{k}, value $\overline{\boldsymbol{v}} \leq \boldsymbol{u}, \overline{\boldsymbol{v}} \leq \boldsymbol{v}$.

Suppose $\bar{v}<\boldsymbol{v}$. For $0<\varepsilon \leq 1$,
$\bar{A}(\underbrace{x(1-\varepsilon)+\bar{x} \varepsilon}_{x(\varepsilon) \in X(\text { convex })}) \leq 1(v(1-\varepsilon)+\bar{v} \varepsilon)=1(v-\varepsilon(v-\bar{v}))<1 v$

Proof that $\overline{\boldsymbol{v}}=\boldsymbol{v}$

minimal \boldsymbol{v} s.t. $\boldsymbol{A x} \leq \mathbf{1 v}$, maximal u s.t. $\boldsymbol{y}^{\top} \boldsymbol{A} \geq u \mathbf{1}^{\top}, \quad u \leq \boldsymbol{v}$.
$(\boldsymbol{A x})_{\boldsymbol{k}}<\boldsymbol{v}$, matrix $\overline{\boldsymbol{A}}$ is \boldsymbol{A} without row \boldsymbol{k}, value $\overline{\boldsymbol{v}} \leq \boldsymbol{u}, \overline{\boldsymbol{v}} \leq \boldsymbol{v}$.

Suppose $\overline{\boldsymbol{v}}<\boldsymbol{v}$. For $0<\varepsilon \leq \mathbf{1}$,
$\bar{A}(\underbrace{x(1-\varepsilon)+\bar{x} \varepsilon}_{x(\varepsilon) \in X(\text { convex })}) \leq 1(v(1-\varepsilon)+\bar{v} \varepsilon)=1(v-\varepsilon(v-\bar{v}))<1 v$

For missing row \boldsymbol{k} of \boldsymbol{A} and sufficiently small $\varepsilon>\mathbf{0}$:
$(A(x(1-\varepsilon)+\bar{x} \varepsilon))_{k}=\underbrace{(A x)_{k}}_{<v}(1-\varepsilon)+(A \bar{x})_{k} \varepsilon<v$,
overall $\boldsymbol{A x}(\varepsilon)<\mathbf{1 v}$, contradicting minimality of \boldsymbol{v}.
Hence $\bar{v}=\boldsymbol{v}$.

Proof that $\overline{\boldsymbol{v}}=\boldsymbol{v}$

minimal v s.t. $A x \leq 1 v$, maximal u s.t. $y^{\top} A \geq u 1^{\top}, \quad u \leq v$.
$(\boldsymbol{A x})_{\boldsymbol{k}}<\boldsymbol{v}$, matrix $\overline{\boldsymbol{A}}$ is \boldsymbol{A} without row \boldsymbol{k}, value $\overline{\boldsymbol{v}} \leq \boldsymbol{u}, \overline{\boldsymbol{v}} \leq \boldsymbol{v}$.

Suppose $\overline{\boldsymbol{v}}<\boldsymbol{v}$. For $0<\varepsilon \leq 1$,
$\bar{A}(\underbrace{x(1-\varepsilon)+\bar{x} \varepsilon}_{x(\varepsilon) \in X(\text { convex })}) \leq 1(v(1-\varepsilon)+\bar{v} \varepsilon)=1(v-\varepsilon(v-\bar{v}))<1 v$

For missing row \boldsymbol{k} of \boldsymbol{A} and sufficiently small $\varepsilon>\mathbf{0}$:
$(A(x(1-\varepsilon)+\bar{x} \varepsilon))_{k}=\underbrace{(A x)_{k}}_{<v}(1-\varepsilon)+(A \bar{x})_{k} \varepsilon<v$,
overall $\boldsymbol{A x}(\varepsilon)<\mathbf{1 v}$, contradicting minimality of \boldsymbol{v}.
Hence $\bar{v}=\boldsymbol{v}$.
$\Rightarrow \overline{\boldsymbol{v}} \leq \boldsymbol{u} \leq \boldsymbol{v}=\overline{\boldsymbol{v}}, \quad \boldsymbol{u}=\mathbf{v}$. Induction complete. $\quad \square$

"On a theorem of von Neumann"

Theorem Loomis [1946]
Let $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}, \boldsymbol{B}>\mathbf{0}$.
Then there exist $\boldsymbol{x} \in \boldsymbol{X}, \boldsymbol{y} \in \boldsymbol{Y}, \boldsymbol{v} \in \mathbb{R}$:

$$
A x \leq B x v, \quad y^{\top} A \geq v y^{\top} B .
$$

"On a theorem of von Neumann"

Theorem Loomis [1946]
Let $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}, \boldsymbol{B}>\mathbf{0}$.
Then there exist $\boldsymbol{x} \in \boldsymbol{X}, \boldsymbol{y} \in \boldsymbol{Y}, \boldsymbol{v} \in \mathbb{R}$:

$$
A x \leq B x v, \quad y^{\top} A \geq v y^{\top} B .
$$

$B=11^{\top}$: minimax theorem, $\quad A x \leq 1 v, \quad y^{\top} A \geq v 1^{\top}$.

"On a theorem of von Neumann"

Theorem Loomis [1946]
Let $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}, \boldsymbol{B}>\mathbf{0}$.
Then there exist $\boldsymbol{x} \in \boldsymbol{X}, \boldsymbol{y} \in \boldsymbol{Y}, \boldsymbol{v} \in \mathbb{R}$:

$$
A x \leq B x v, \quad y^{\top} A \geq v y^{\top} B
$$

$B=11^{\top}:$ minimax theorem, $\quad A x \leq 1 v, \quad y^{\top} A \geq v 1^{\top}$.
Conversely, theorem is implied by the minimax theorem:
value $(\boldsymbol{A}-\alpha \boldsymbol{B})<\mathbf{0}$ for $\alpha \rightarrow \infty$,
value $(\boldsymbol{A}-\alpha \boldsymbol{B})>\mathbf{0}$ for $\alpha \rightarrow-\infty$, continuous in α, hence value $(\boldsymbol{A}-\alpha \boldsymbol{B})=\mathbf{0}$ for some $\boldsymbol{v}=\alpha$.

Conforti, Di Summa, Zambelli [2007]

Theorem

$\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ minimally infeasible $\Rightarrow \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ minimally infeasible.

Conforti, Di Summa, Zambelli [2007]

Theorem

$\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ minimally infeasible $\Rightarrow \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ minimally infeasible.
\Rightarrow reversing any inequality $\boldsymbol{a}_{\boldsymbol{i}} \boldsymbol{x} \leq \boldsymbol{b}_{\boldsymbol{i}}$ creates feasible system:

$$
\forall \text { row } i \quad \exists x: a_{i} x>b_{i}, \quad \forall k \neq i: a_{k} x=b_{k}
$$

Conforti, Di Summa, Zambelli [2007]

Theorem

$\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ minimally infeasible $\Rightarrow \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ minimally infeasible.
\Rightarrow reversing any inequality $\boldsymbol{a}_{\boldsymbol{i}} \boldsymbol{x} \leq \boldsymbol{b}_{\boldsymbol{i}}$ creates feasible system:

$$
\forall \text { row } i \quad \exists x: a_{i} x>b_{i}, \quad \forall k \neq i: a_{k} x=b_{k}
$$

Then apply linear algebra (get $\mathbf{0}=\mathbf{- 1}$ from infeasible $\boldsymbol{A x}=\boldsymbol{b}$):
$\nexists x: A x=b \quad \Leftrightarrow \quad \exists y: y^{\top} A=0^{\top}, \quad y^{\top} b=-1$

Conforti, Di Summa, Zambelli [2007]

Theorem

$\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ minimally infeasible $\Rightarrow \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ minimally infeasible.
\Rightarrow reversing any inequality $\boldsymbol{a}_{\boldsymbol{i}} \boldsymbol{x} \leq \boldsymbol{b}_{\boldsymbol{i}}$ creates feasible system:

$$
\forall \text { row } i \quad \exists x: a_{i} x>b_{i}, \quad \forall k \neq i: a_{k} x=b_{k}
$$

Then apply linear algebra (get $\mathbf{0}=\mathbf{- 1}$ from infeasible $\boldsymbol{A x}=\boldsymbol{b}$):
$\nexists x: A x=b \quad \Leftrightarrow \quad \exists y: y^{\top} A=0^{\top}, y^{\top} b=-1$
to prove inequality-Farkas (get $\mathbf{0} \leq \mathbf{- 1}$ from infeasible $\boldsymbol{A x} \leq \boldsymbol{b}$):
$\nexists \boldsymbol{x}: \boldsymbol{A} \leq \leq \boldsymbol{b} \Leftrightarrow \exists y \geq 0: y^{\top} A=0^{\top}, y^{\top} b<0$.

How did the chicken cross the triangle?

Consider a triangle with corners $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and a chicken at \boldsymbol{b} that wants ???

How did the chicken cross the triangle?

Consider a triangle with corners $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and a chicken at \boldsymbol{b} that wants to get to the other side. ${ }^{[\text {citation needed] }}$

How did the chicken cross the triangle?

Consider a triangle with corners $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and a chicken at \boldsymbol{b} that wants to get to the other side.

Then the closest point to get there is c if and only if the angle at \boldsymbol{c} is not acute, that is,

$$
(b-c)^{\top}(a-c) \leq 0
$$

Supporting hyperplane theorem

Theorem

Let $\emptyset \neq \boldsymbol{C} \subset \mathbb{R}^{\boldsymbol{m}}$, closed, convex, $\boldsymbol{b} \notin \boldsymbol{C}$.
Let $\boldsymbol{c} \in \boldsymbol{C}$ with smallest $\|\boldsymbol{b}-\boldsymbol{c}\|$.
Consider hyperplane \boldsymbol{H} with normal vector $\boldsymbol{b}-\boldsymbol{c}$ through \boldsymbol{c} : then all of \boldsymbol{C} on one side, \boldsymbol{b} strictly on the other side of \boldsymbol{H},

$$
(b-c)^{\top}(b-c)>0, \quad \forall a \in C:(b-c)^{\top}(a-c) \leq 0
$$

Supporting hyperplane theorem

Theorem

Let $\emptyset \neq \boldsymbol{C} \subset \mathbb{R}^{\boldsymbol{m}}$, closed, convex, $\boldsymbol{b} \notin \boldsymbol{C}$.
Let $\boldsymbol{c} \in \boldsymbol{C}$ with smallest $\|\boldsymbol{b}-\boldsymbol{c}\|$.
Consider hyperplane \boldsymbol{H} with normal vector $\boldsymbol{b}-\boldsymbol{c}$ through \boldsymbol{c} : then all of \boldsymbol{C} on one side, \boldsymbol{b} strictly on the other side of \boldsymbol{H},

$$
(b-c)^{\top}(b-c)>0, \quad \forall a \in C:(b-c)^{\top}(a-c) \leq 0 .
$$

Supporting hyperplane theorem

Theorem

Let $\emptyset \neq \boldsymbol{C} \subset \mathbb{R}^{\boldsymbol{m}}$, closed, convex, $\boldsymbol{b} \notin \boldsymbol{C}$.
Let $\boldsymbol{c} \in \boldsymbol{C}$ with smallest $\|\boldsymbol{b}-\boldsymbol{c}\|$.
Consider hyperplane \boldsymbol{H} with normal vector $\boldsymbol{b}-\boldsymbol{c}$ through \boldsymbol{c} : then all of \boldsymbol{C} on one side, \boldsymbol{b} strictly on the other side of \boldsymbol{H},

$$
(b-c)^{\top}(b-c)>0, \quad \forall a \in C:(b-c)^{\top}(a-c) \leq 0 .
$$

Lemma of Farkas

Cone $\boldsymbol{C}=\{\boldsymbol{A x} \mid \boldsymbol{x} \geq \mathbf{0}\}$ and $\boldsymbol{b} \notin \boldsymbol{C}$.
Consider $\boldsymbol{c} \in \boldsymbol{C}$ with smallest $\|\boldsymbol{b}-\boldsymbol{c}\|$, and $\boldsymbol{y}=\boldsymbol{b}-\boldsymbol{c}$. Then

$$
y^{\top} b>0, \quad\left(\forall a \in C: y^{\top} a \leq 0\right) \quad y^{\top} A \leq 0^{\top} .
$$

Why is the cone $\boldsymbol{C}=\{\boldsymbol{A x} \mid \boldsymbol{x} \geq \mathbf{0}\}$ closed?

- show: limit \boldsymbol{a} of any sequence of points $\boldsymbol{a}^{(\boldsymbol{k})}$ in \boldsymbol{C} is in \boldsymbol{C}
- $\forall k \exists$ basis $B, x_{B} \geq 0: a^{(k)}=A_{B} X_{B}$
- only finitely many bases B
- restrict to subsequence with one \boldsymbol{B} that occurs infinitely often
- $a=\lim _{k \rightarrow \infty} a^{(k)}=A_{B} \lim _{k \rightarrow \infty} \underbrace{A_{B}^{-1} a^{(k)}}_{\geq 0} \in C$
- need theorem of Carathéodory (and Weierstrass).

Fourier-Motzkin elimination = projection

Lemma (ineq-Farkas, get $0 \leq-1$ from infeasible $A x \leq b$):
$\nexists x \in \mathbb{R}^{\boldsymbol{n}}: A x \leq b \Leftrightarrow \exists y \geq 0: y^{\top} A=0^{\top}, y^{\top} b<0$.

Fourier-Motzkin elimination = projection

Lemma (ineq-Farkas, get $\mathbf{0} \leq \mathbf{- 1}$ from infeasible $\boldsymbol{A x} \leq b$):
$\nexists x \in \mathbb{R}^{\boldsymbol{n}}: A x \leq b \Leftrightarrow \exists y \geq 0: y^{\top} A=0^{\top}, y^{\top} b<0$.

Proof By induction on \boldsymbol{n}.
Scale rows of $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ with affine $\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{b}_{\boldsymbol{j}}, \boldsymbol{c}_{\boldsymbol{k}}$ as $a_{i}\left(x_{2}, \ldots, x_{n}\right) \leq x_{1}, \quad x_{1} \leq b_{j}\left(x_{2}, \ldots, x_{n}\right)$, $c_{k}\left(x_{2}, \ldots, x_{n}\right) \leq 0$.

Fourier-Motzkin elimination = projection

Lemma (ineq-Farkas, get $\mathbf{0} \leq \mathbf{- 1}$ from infeasible $\boldsymbol{A x} \leq \boldsymbol{b}$):
$\nexists x \in \mathbb{R}^{\boldsymbol{n}}: A x \leq b \Leftrightarrow \exists y \geq 0: y^{\top} A=0^{\top}, y^{\top} b<0$.

Proof By induction on \boldsymbol{n}.
Scale rows of $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ with affine $\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{b}_{\boldsymbol{j}}, \boldsymbol{c}_{\boldsymbol{k}}$ as
$a_{i}\left(x_{2}, \ldots, x_{n}\right) \leq x_{1}, \quad x_{1} \leq b_{j}\left(x_{2}, \ldots, x_{n}\right)$, $c_{k}\left(x_{2}, \ldots, x_{n}\right) \leq 0$.

Eliminate $\boldsymbol{x}_{\mathbf{1}}$ by writing $\boldsymbol{a}_{\boldsymbol{i}} \leq \boldsymbol{b}_{\boldsymbol{j}}$ for all pairs $\boldsymbol{i}, \boldsymbol{j}$.

Fourier-Motzkin elimination = projection

Lemma (ineq-Farkas, get $\mathbf{0} \leq \mathbf{- 1}$ from infeasible $\boldsymbol{A x} \leq b$):
$\nexists x \in \mathbb{R}^{\boldsymbol{n}}: A x \leq b \Leftrightarrow \exists y \geq 0: y^{\top} A=0^{\top}, y^{\top} b<0$.

Proof By induction on \boldsymbol{n}.
Scale rows of $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ with affine $\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{b}_{\boldsymbol{j}}, \boldsymbol{c}_{\boldsymbol{k}}$ as
$a_{i}\left(x_{2}, \ldots, x_{n}\right) \leq x_{1}, \quad x_{1} \leq b_{j}\left(x_{2}, \ldots, x_{n}\right)$,
$c_{k}\left(x_{2}, \ldots, x_{n}\right) \leq 0$.
Eliminate $\boldsymbol{x}_{\mathbf{1}}$ by writing $\boldsymbol{a}_{\boldsymbol{i}} \leq \boldsymbol{b}_{\boldsymbol{j}}$ for all pairs $\boldsymbol{i}, \boldsymbol{j}$.

By inductive hypothesis: Either solve in $\boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}} \geq \mathbf{0}$ and choose any \boldsymbol{x}_{1} with $\boldsymbol{a}_{\boldsymbol{i}} \leq \boldsymbol{x}_{1} \leq \boldsymbol{b}_{\boldsymbol{j}}$ for all $\boldsymbol{i}, \boldsymbol{j}$, or linearly combine (then also in terms of rows of $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$) to get $\mathbf{0} \leq \mathbf{- 1}$.

Thanks for listening!

Thanks for listening!

