
MA400: Financial Mathematics

Introductory Course

Lecture 1: Overview of the course

Preliminaries

A brief introduction

Beginning to program

Some example programs

Aims of this course

Students should have a familiarity with the basics of C++
programming. In particular, you will see

I fundamental data types

I arithmetic and operators

I tests and loops

I functions (encapsulating code)

I pointers and arrays

That is, you will see the C of C++.

However, this is not a software programming course.

Recommended reading

Find one that suits your learning requirements.

I Introducing C++ for Scientists, Engineers and
Mathematicians, 2nd Ed. D.M.Capper.

I The C++ Programming Language, Special Edition. Bjarne
Stroustrup.

I Online C++ language tutorial at
http://www.cplusplus.com/doc/tutorial/

I Thinking in C++ Vols 1 & 2. Bruce Eckel.
http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html

There are also a lot of free online tutorials and resources.

http://www.cplusplus.com/doc/tutorial/
http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html

Structure of this course

This is a 11 hour course, of which

I 2 hour (supervised) lab session [worksheet]
I 9 hours of lectures

I Week 1 (3 hours):
I Introduction to the course
I Fundamental types and operators
I Control structure

I Week 2 (6 hours):
I Functions
I Pointers and arrays
I Summary and tips. A look forwards.

I MA417 - Computational Methods in Finance

http://www.maths.lse.ac.uk/Courses/ma417.html

What is C++?

C++ is a general purpose programming language that is itself a
superset of the C programming language.

It is a compiled language, so that source files are used to generate
executables, rather than executed themselves.

It is a general-purpose programming language that is designed to
support:

I data abstraction

I object-oriented programming,

I generic programming.

Data abstraction

User-defined types which allow the user to model a particular
entity in their system, together with various operations on it.

This is done through classes

For example:

I matrices,

I complex numbers,

I even the term structure of interest rates!

The term structure of interest rates as an object

Note that the term structure of interest rates can be equivalently
specified in terms of either

I discount factors,

I spot interest rates, or

I forward interest rates.

Complex numbers as an object

class complex {

private:

double re, im;

public:

complex(double r, double i) { re = r ; im = i ; }

complex() { re = 0 ; im = 0 ; }

friend complex operator+(complex, complex);

...

friend bool operator==(complex, complex);

...

};

Complex numbers as an object

complex operator+(complex a1, complex a2)

{

return complex (a1.re + a2.re, a1.im + a2.im);

}

Object-oriented programming

Consider the following situations

I Suppose we have defined a Shape class, and alongside this we
also had a Disc class, a Triangle class and a Square class.

I Consider a Matrix class, and a class representing all invertible
matrices.

I Consider a Vector class, and a class representing all 3-vectors.

In all these cases, the latter classes clearly inherit, or derive,
properties from the former, parent, class.

Languages which allow such class hierarchies to be expressed and
used support object-oriented programming.

Generic programming

Using templates, or parameterised types, C++ allows us to
implement algorithms that are independent of the data types they
are used on.

E.g. arrays, lists and vectors are all data structures which are
amenable to sorting, copying and searching functions.

Integers and floating numbers are also amenable to the same sorts
of functions and operators, such as finding the maximum of two
numbers.

Programming experience

I C/C++

I Java

I Other (Perl, Python, etc)

I Maple/Mathematica/Matlab/etc

Learning to program

Program.

Think.

Document.

Your programming environment

What do you need to start programming in C++?

I A pencil and some paper.

I A text-editor to write the source code

I A compiler (GCC)

I Access to the command prompt

However, you may prefer to work within an IDE (Integrated
Development Environment)

I Bloodshed Dev-C++

I Eclipse

A comparison of various C/C++ IDEs can be found at Wikipedia:
http://tinyurl.com/comparison-of-cpp-ides

http://www.bloodshed.net/devcpp.html
http://www.eclipse.org/
http://tinyurl.com/comparison-of-cpp-ides

The simplest program possible

int main() {}

Hello, world!

// Print "Hello, world!" to the standard output stream

#include <iostream> // I/O stream facilities

int main()

{

/*

Use "put to" operator >> to print "Hello, world!"

to standard output stream

*/

std::cout << "Hello, world!\n"; // Note the newline

// Return 0 to indicate successful execution

return(0);

}

I Compile (Ctrl + F9)

I Run (Ctrl + F10)

I Compile & Run (F9)

Running from the command line

H:\>dir

09/11/2009 05:24 PM <DIR> .

09/11/2009 05:24 PM <DIR> ..

09/11/2009 05:23 PM 576 hello.cpp

09/11/2009 05:24 PM 475,852 hello.exe

2 File(s) 476,238 bytes

2 Dir(s) 37,365,292,800 bytes free

H:\>H:\>quadratic.exe

Compiling from the command line

Using the Gnu C Compiler (gcc):

I Windows

C:\Dev-Cpp\bin\g++ -o hello hello.cpp

I Linux, Mac OS X

gcc -lstdc++ -o hello hello.cpp

A basic program template

// Describe the program’s function

#include <iostream> // For input/output streams

#include <cstdlib> // For EXIT_SUCCESS

using namespace std; // Make all std names global

int main()

{

// Program code

system("PAUSE");

return(EXIT_SUCCESS);

}

	Preliminaries
	A brief introduction
	Beginning to program
	Some example programs

