
MA400: Financial Mathematics

Introductory Course

Lecture 3: Control Structure

Useful operators for control

Internal structures

Branch statements
The if statement
The if else statement
The switch statement

Iteration statements
The for statement
The while statement
The do statement

Additional topics

Relational operators

C++ provides 4 binary operators to compare the values of
arithmetic expressions.

< less than
<= less than or equal to
> greater than
>= greater than or equal to

These require two operands (left and right) and their results are
boolean values, true or false.

bool b;

b = 2 > 1; // Assigns b the value true

b = 2 < 1; // Assigns b the value false

b = 2 >= 2; // Assigns b the value true

b = 3.4 <= 2.4 // Assigns b the value false

Relational operators

The operands of relational operators can be expressions:

int i = 1, j = 2;

bool b = (i + 1) >= (j - 2); // TRUE: 2 >= 0

int i = 1 = 1, j;

bool b = i >= (j = 2); // FALSE 1 < 2

Associativity and precedence of relational operators

Relational operators have associativity and precedence:

I all share the same precedence, and

I all associate from left to right.

With reference to our earlier table, they form a row that sits:

I below the ∗, / and % precedence group, and

I above the + and - precedence group.

See Capper, Appendix B, p.521, for more details.

bool b = i < j < k; // Equivalent expressions

bool b = (i < j) < k; // Equivalent expressions

Exercises: Relational operators

Exercise
What are the results for

bool b = i < j < k;

when we have

I a = 1, b = 2, c = 3?

I a = 1, b = 4, c = 3?

Exercises: Relational operators

Exercise
What are the results for b1 and b2 in the following statements?

double x = 110.0;

bool b1, b2;

b1 = x > (x / 13.0) * 13.0;

b2 = x < (x / 13.0) * 13.0;

Logical operators

Logical operators return a result of type bool, i.e. a value of either
true or false.

The logical negation operator is denoted by the token !.
It is a unary operator, and exchanges true values for false values.

The logical AND operator is denoted by the token &&.
It is a binary operator and only returns a value of true if and only
if both its operands have value true.

The logical OR operator is denoted by the token ||.
It is a binary operator and returns a value of true if one or both of
its operands have value true.

Associativity and precedence of logical operators

! logical negation right to left

∗, /, %

+, -

&& logical AND left to right

|| logical OR left to right

=

As with all unary operators, logical negation associates from right
to left.
The binary logical operators associate from left to right.

Exercise: Logical operators

What values are assigned to the booleans p, q, r and s?

bool a = false, b = true, c = false;

bool p = a || b && !c;

bool q = !a && c || b;

bool r = !(b || c);

bool s = !(b && !c);

Equal and Not Equal Operators: == and !=
== and != are binary operators that are used to test operands of
arithmetic type.
They result in a boolean value of either true or false.

int i = 0, j = 10;

double x = 10.0, y = 3.0, z = 10.0 / 3.0;

bool b1 = i != j; // Assigns b1 the value true

bool b2 = y == x; // Assigns b2 the value false

bool b3 = x == j; // Assigns b3 the value true

bool b4 = z * y == x; // Assigns b4 either true or false

bool b5 = y == 3.0; // Assigns b5 the value true

Exercise: What are the boolean values above if we replace ==

with !=?

A word of warning

A particularly nasty error that can arise with the equality operator
is the following typo:

double x = 3.0; // Assigns x the value 3,0

bool b = (x = 5.0); // Assigns x the value 5.0

// 5.0 is non-zero, so

// Assigns b the value true

It should be clear here that the intention was more likely to check
if x was equal to 5.0, which would have returned a value for b of
false.

Expressions and statements

A statement is the smallest independent unit of a C++ program.
Simple statements are always terminated by a semicolon, ;.

The simplest statement possible is the null statement:

;

An expression is the smallest unit of computation. That is, it is a
statement that resolves to a value.

Blocks and scope

Using a pair of braces, { }, inside a program, we are able to group
together statements, definitions and declarations into a compound
statement.

A block, or compound statement, is equivalent to a single
statement.

However, there is no terminating semicolon after the trailing brace,
}.

A key property of such blocks is that any definition or assignments
made within a block are only valid within that block.

Blocks and scope

double x = 1.111; // x has type double, value 1.111

{

int x = 2; // x has type int, value 2

}

. // x has type double, value 1.111

{

char x = ’x’; // x has type char, value x

{

int x = 3; // x has type int, value 3

}

. // x has type char, value x

}

. // x has type double, value 1.111

Blocks and scope

We say that identifiers within a block are hidden from outside the
block.

Where a particular identifier is visible, or valid, is known as the
scope of that identifier.

The if statement

The basic form of an if statement is

if (condition)

statement

I The condition is any valid arithmetic expression;

I if the condition evaluates to true, the statement is executed’

I otherwise the statement is not executed.

The if statement

if (i == 0) {

x = 100.00 // x is assigned the value 100 if i is 0

}

if (!i) {

x = 100.00 // Equivalent to above

}

if (!i) {

x = 3.142; // If i is zero, then

y = 100.0; // All 3 statements

z *= x; // are executed

}

The if statement: A word of warning.

Forgetting braces around compound statements can also lead to
unforseen results.

if (!i)

x = 3.142;

y = 100.0;

z *= x;

This is equivalent to

if (!i)

x = 3.142

y = 100.0;

z *= x;

So only the x assignment is conditional upon the value of i, and
not all three of them.

The if statement: A word of warning. Again.

Consider the following fragment

if (temp = 100) {

boiling = true;

}

While correct, this is actually equivalent to:

temp = 100; // Assigns temp the value 100

boiling = true; // Assigns boiling the value true

It is more likely that the desired statement is to set boiling equal
to true only if temp equals 100.

if (temp == 100) {

boiling = true;

}

The if else statement

if (condition_1)

statement_1

else if (condition_2)

statement_2

.

else

statement_n

Once again, the conditions are valid arithmetic expressions, and
the n statements may be compound statements.

1. The program will start to evaluate each of the n conditions in
the order they are specified.

2. If condition i, for some i = 1, ..., n, evaluates to true, then
statement i is executed. Control then passes beyond the
final statement, statement n.

3. If none of the first n-1 conditions evaluate to true, then
statement n is executed, and control passes beyond the final
statement.

The if else statement

There is no requirement for a final else statement, which is
essentially a default action.

In such a situation, it is possible for an if else statement to be
executed with no action taken – if none of the conditions evaluate
to true.

Exercise: The if else statement
Exercise: Convert this fragment into a full program (see Capper,
§4.5.2, p.54).

double x, y, pi = 3.142;

int i;

// Get user to input an integer value for i

if (i == 0) {

x = pi;

y = 2.0 * pi;

}

else if (i == 1) {

x = 2.0 * pi;

y = 0.0;

}

else {

x = 0.0;

y = 0.0;

}

Exercise: A word of warning – The dangling else

// Get user to input an integer value for i

if (i == 0) {

if (j == 0)

cout << "Both i and j are zero\n";

}

else {

cout << "i is non-zero\n";

}

What is the intention here? What is the result?
The problem is that the else is dangling – it could be attached to
either of the ifs.
By default, it is associated with the nearest one, so that the code
in braces will never be executed.
To fix this, we can enclose the inner if statement in braces.
The program should now see the intended if else statement.

Exercise: Solving a quadratic equation

Exercise
Amend the quadratic program example you have been given to
deal with all three possible root cases.

Exercise
Amend your quadratic program to correctly handle anything the
user might try to input.

See Capper, p.56.

The switch statement

switch (expression) {

case constant_1:

statement_1;

case constant_2:

statement_2;

.

case constant_n:

statement_n;

default:

last_statement;

}

The switch statement: An example

cout << "Menu:\n\t1 Bermudan\n\t2 Asian\n"

<< "Enter a number to choose an option.\n";

int option;

cin >> option;

switch (option) {

case 1:

cout << "We shall look at Bermudan options.\n";

break;

case 2:

cout << "We shall look at Asian options.\n";

break;

default:

cout << option << " is not a valid option.\n";

break;

}

Menu:

1 Bermudan

2 Asian

Enter an initial to choose an option.

1

We shall look at Bermudan options.

The break statement

It is important to note that the flow of control is being affected by
the break statements, and not the default or case statements.

The break statement can only occur within a switch statement, or
from within an iteration loop (which we shall see next).

The break statement

cout << "Menu:\n\t1 Bermudan\n\t2 Asian\n"

<< "Enter a number to choose an option.\n";

int option;

cin >> option;

switch (option) {

case 1:

cout << "We shall look at Bermudan options.\n";

break;

case 2:

cout << "We shall look at Asian options.\n";

break;

default:

cout << option << " is not a valid option.\n";

break;

}

The default statement

Note that this can actually occur anywhere in the switch
statement, but it is usually good practice to place it after all the
case statements.

When placed at the end, the break statement associated with the
default case is redundant, but again it is usually good practice to
include it.

The Iteration Statements

C++ has three different statements to handle iteration:

I while

I for

I do

In fact, it is possible to use these interchangeably (given some
minor modifications of the code), and which one you will use will
depend on preference and the circumstances.

The for statement

for (initialize ; condition ; change)

statement

1. Firstly, the initialize statement is executed.

2. The condition expression is then evaluated.

3. If it is found to be true, then the statement is executed.

4. The change expression is then evaluated.

5. The iteration then returns to step 2 above.

6. If the condition expression evaluates to false at any step, the
iteration is terminated.

Example: Summing the first n integers

int i, n, sum;

n = 3;

sum = 0;

for (i = 0 ; i <= n ; ++i) {

sum += i;

}

cout << "Sum of first " << n << " integers is " << sum

<< " with i = " << i << ’\n’;

i sum

0 0
1 1
2 3
3 6
4

Sum of first 3 integers is 6 with i = 4.

The for statement: Some examples

What is the final value of sum in the following code fragments?

int n = 3, sum = 0;

int i;

for (i = 10 ; i <= n ; ++i)

sum += i;

int sum = 0, i = 1, n = 3;

for (; i <= n ; ++i)

sum += i;

int sum = 0, i = 1, n = 3;

for (; i <= n ;)

sum += i++;

The for statement: The loop variable

It is possible, and convenient, to define the loop variable within the
initialize statement.

int n = 3, sum = 0;

for (int i = 0 ; i <= n ; ++i) {

sum += i;

}

However, be aware that the scope of your loop variable is only for
the duration for the for.

int n = 3, sum = 0, i = 10; // i has value 10

for (int i = 0 ; i <= n ; ++i) {

sum += i;

}

After the loop, sum = 6, while i = 10 still (and not 4).

The while statement

while (condition)

statement

1. The condition expression is first evaluated.

2. If it evaluates to true, then the statement is executed.

3. The condition expression is then evaluated again.

4. If it evaluates to true again, then the statement is executed
again.

5. However, the moment the condition expression evaluates to
false, then the iteration is terminated.

The while statement: An example

What function does this code fragment attempt to calculate?

// Get user to input an integer greater than 1 for n

--n;

int gamma = n;

while (n > 2) {

--n;

gamma *= n;

}

The Gamma function for positive integers (greater than 2).

Γ(n) = (n − 1)! n > 2

Note how no terminating semicolon was needed after the
compound statement.

The while: Summing the first n integers

We have already seen this done with a for statement.

int i = 0, sum = 0;

while (i <= n) {

sum += i++;

}

The do statement

do

statement

while (condition) ;

Here, the terminating semicolon is required.

1. The fist thing that happens is that the statement is
executed, regardless of the condition

2. The condition is then evaluated.

3. If it evaluates to true, then the statement is executed again.

4. The condition expression is then evaluated again.

5. The moment the condition expression evaluates to false, the
iteration is terminated.

The do statement: Summing the first n integers

For comparison sake, here is the sum algorithm implemented in a
do statement.

int i = 0, sum = 0;

do {

sum += i++;

}

while (i <= n);

Note the statement is placed within braces, despite being only
one line, since it differentiates this from a while loop with an
empty statement.

The do statement: An example

int option;

do {

cout << "Menu:\n\t1\n\t2\n\t3"

<<

cin >> option;

} while (option < 1 || option > 3);

switch (option) {

case 1:

// Case 1 code

.

default:

// Default code

}

The do statement: A comparison

So the main difference between the do statement and the others is
that the statement:

I is executed at least once in the do statement, but

I may never be executed at all in the while and for statements,

Exercise: Iteration Statements

Exercise
Which of the iterations in the following code segments many never
terminate? Justify your conclusions.

a) int sum = 1;

for (unsigned i = 10 ; i >= 0 ; --i)

sum *= 2 * i + 1;

b) double i = 10, sum = 1;

while (i != 0)

sum *= 2 * i-- + 1;

c) int i = 0;

double sum = 1.0;

while (1) {

sum *= 2 * i++ + 1;

if (i = 10)

break;

}

Exercise: Fibonacci sequence

The Fibonacci sequence is a sequence of integers, defined
recursively by:

u1 = 1, u2 = 1, un = un−1 + un−2 n ≥ 3.

Write a program that prompts for a positive integer, n, and lists
the first n members of the sequence.
Notice how un increases very rapidly with n and soon exceeds the
largest integer that can be represented as a fundamental type on
your computer.
Verify your results by modifying your program to check that:

a) u1 + u2 + . . . + un = un+2 − 1,

b) u2n − un−1un+1 = (−1)n−1.

Additional topics

For those who are comfortable with what we have seen, three other
concepts you might wish to explore are:

I using the break statement in iteration loops;

I the continue statement in iteration loops: this causes an
immediate jump to the next iteration whenever it is
encountered;

I the conditional expression operator – ?: – which is of the
form:

condition ? result_1 : result_2

The break statement
What does the following code fragment do?

int test = 0;

for (int i = 0; i < 3 ; ++i) {

cout << "Testing i = " << i << "\n";

for (int j = 0 ; j < 3 ; ++j) {

cout << "\tTesting j = " << j << "\n";

for (int k = 0 ; k < 3 ; ++k) {

test = 10 * k;

if (test > 10)

break;

cout << "\t\tTesting k = " << k << "\n";

} // The break leaves us inside the i and j loops

}

}

While the k loops are curtailed at k = 2 due to the break,
the i and j loops run their full course.

The continue statement

What are the final values of x and y?

double x = 0.0, y = 0.0;

for (int i = 0; i < 10 ; ++i) {

++x;

if (i == 5)

continue;

++y;

}

cout << "x = " << x << ", y = " << y << ’\n’;

Conditional Expression Operator

This is the only ternary operator defined in C++, taking the form:

condition ? result_1 : result_2

It requires three operands and returns either result 1 if the
condition evaluates to true, or result 2 if it evaluates to false

For example, the following yield equivalent results:

max = (i > j) ? i : j;

and

if (i > j)

max = i;

else

max = j;

	Useful operators for control
	Internal structures
	Branch statements
	The if statement
	The if else statement
	The switch statement

	Iteration statements
	The for statement
	The while statement
	The do statement

	Additional topics

