
MA400: Financial Mathematics

Introductory Course

Lecture 7: A tour of the C++ libraries



<cstdlib>

I Program termination: the exit() function, and the constants
EXIT SUCCESS and EXIT FAILURE.

I The rand(), which returns a pseudo-random integer between
0 and the constant RAND MAX.

// The following generated variables lie between ...

int a = rand(); // ... 0 and RAND_MAX

int b = rand() % 100; // ... 0 and 99

int c = rand() % 100 +1; // ... 1 and 100



Numerical libraries

I <cmath>

The common mathematical functions are defined here, e.g.
cos(), sin(), tan(), exp(), log(), sqrt(), pow().
These functions are overloaded, so there are versions for
float, double and long double.

I <complex>

Common arithmetical operations and functions for complex
numbers are provided by this library (or template).

I <valarray>

Provides a template for valarray based on arrays.
These have been optimized for numerical usage, so are more
in line with what vectors should be.

I <numeric>

Some numerical algorithms that can accumulate the results
of, or generate a sequence from, the operations on one or two
sequences. E.g. calculating the inner product of two vectors.



<string>

C++ provides a string type as well as some useful operations,
such as the string concatenation operator +:

string word1 = "Hello";

string word2 = "world";

string line1 = word1 + " , " + word2 + "!\n";

cout << line1;

Additional functions provide the ability to compare or to swap
strings.



Containers

Containers are objects that store other objects, and we mention
them here because the C++ vector class is an example of one,
provided by <vector>.

However, this does not provide what a mathematician would think
of as a vector (that is best served by <valarray>).

The vector class provides a container whose objects are accessible
by an index.
Like other containers such as list, queue and stack, this allows
for the insertion and deletion of objects from it (consider what
would be required to do this with an array).

Iterations on containers are provided by <iterator>.
Algorithms for manipulating and operating on containers are
provided by <algorithm>.



<ctime>

This header defines various functions connected with time, such as
time().
In particular, it can provide a very useful benchmarking
functionality for your programs.

double duration = 0.0;

clock_t start_time = clock();

// Code to time

clock_t stop_time = clock();

duration = static_cast<double>(stop_time - start_time)

/ CLOCKS_PER_SEC;

Note, we use clock() here, and convert the result to seconds with
the CLOCKS PER SEC constant, rather than the calendar date
function time().



<cstddef>
This defines the ptrdiff t and size t types – the latter being
the type returned by the sizeof() operator.
Both of these types are actually aliases for existing fundamental
types on the system (usually int) – defined by the typedef

specifier.

typedef double PRICE;

PRICE s0, s1, final;

Note that the sizeof() operator can be very useful in
determining the memory footprint of your program.
As well as giving you the size of the fundamental data types, you
can also use it to find the size of arrays too:

double A[2][3][4];

cout << sizeof(A) << ’\n’; // Returns (2*3*4)*8 = 192

cout << sizeof(A[2]) << ’\n’; // Returns (3*4)*8 = 96

cout << sizeof(A[2][3]) << ’\n’; // Returns 4*8 = 32



Some tips

I Do not begin unless you have a well-defined
method/algorithm - write out program in pseudo-code.

I Document everything - program function, method, sources,
references, debugging statements

I Do not try to optimise your program until you have a
program!

I Verify, whenever possible, your programs’ results.


	A tour of the C++ library
	Closing remarks

