Advanced Game Theory Applications:

Equilibrium Enumeration for 2 x 2 X 2 Games

and
Empirical Game-Theoretic Analysis of a Pricing Game

Sahar Jahani

A thesis submitted for the degree of

Doctor of Philosophy

LSk

Department of Mathematics
The London School of Economics
and Political Science

London, December 2024

Declaration

I certify that the thesis I have presented for examination for the PhD degree of the
London School of Economics and Political Science is solely my own work, with the

exceptions outlined below.

The copyright of this thesis rests with the author. Quotation from it is permitted,
provided that full acknowledgement is made. In accordance with the Regulations, I have
deposited an electronic copy of it in LSE Theses Online held by the British Library of
Political and Economic Science and have granted permission for my thesis to be made
available for public reference. Otherwise, this thesis may not be reproduced without my

prior written consent.

I declare that this thesis consists of 52,297 words.

Statement of co-authored work

I confirm that all chapters are joint work with my academic supervisor, Professor Bernhard

von Stengel.

A preliminary version of Chapter 1 has been published in Jahani and von Stengel [36]

(a refereed conference proceedings article).

Abstract

This thesis comprises two main projects. In the first project, we analyse the Nash
equilibria of three-player games in their simplest form, known as 2 X 2 X 2 games. We
explore the best-response surfaces for each player in detail and develop an algorithm that
computes the complete set of Nash equilibrium components, improving upon previous
algorithms that only guarantee finding a single equilibrium in these games. In addition to the
algorithm, we implemented a software tool that visually represents these games in 3D using
best-response surfaces and calculates and displays all Nash equilibria. Another significant
contribution of this project is our theoretical proof establishing an upper bound of nine on
the number of Nash equilibria in non-generic 2 X 2 x 2 games. Moreover, we extend the
definition of degeneracy from the two-player setting to these games and provide directions

for extending the upper bound result to the broader class of non-degenerate games.

The second project presents an Empirical Game-Theoretic Analysis (EGTA) of a
classical multi-round duopoly pricing game with an infinite strategy space. We employ
the Policy-Space Response Oracles (PSRO) framework to iteratively construct a finite
approximation of this infinite-strategy game, referred to as the “meta-game.” Within this
framework, single-agent reinforcement learning (RL) is utilised to compute best-response

strategies against Nash equilibria of the evolving meta-game.

Starting with custom implementations of basic RL algorithms, we encountered limita-
tions that motivated the adoption of advanced learning methods better suited to capture the
pricing game’s complexity. We discuss the strengths and weaknesses of each method applied,
alongside techniques developed to enhance their performance. Through comprehensive
experiments varying RL algorithms and model specifications, we analyse the resulting
meta-games, the estimated equilibria, and the emergent behaviours of RL-trained pricing
strategies. We further explore conditions leading to the emergence of collusive behaviour

among the trained strategies.

To support future research, we release our framework publicly, facilitating similar
analyses by adapting it to other duopoly pricing games. Our framework integrates seamlessly
with the advanced RL algorithms provided by the Stable-Baselines3 library and automates
the tracking and analysis of learning dynamics, meta-game approximations, and emerging

equilibria.

Acknowledgements

I would like to begin by thanking my supervisor, Professor Bernhard von Stengel, for
his invaluable guidance and support throughout my research, from whom I have learned so

much.

I am also grateful to LSE and its studentship scheme for providing a supportive and
inspiring environment that allowed me to focus on my research while developing valuable
skills. The opportunity to teach, lead, and collaborate with dedicated professors and talented

students has been an enriching experience.

I dedicate a special thank you to my mother, who always encouraged me to pursue
higher education. Though she is no longer with us, I hope she would be proud of what I

have achieved.

I am deeply thankful to my father and my sister, Sarah, for their unwavering support
and encouragement, which have been my point of strength throughout this journey and at

every milestone in my life.

A warm thank you goes to my husband, Dominic, for his support, patience, and
understanding through all the ups and downs. He has been a constant source of motivation,

and I am truly grateful for everything he has done to help me along the way.

Finally, I would like to thank my friends, PhD mates, students, and members of the
game theory reading group, who have made this experience truly unforgettable. I'd like to
thank Amedeo, Raymond, Justin, Mahsa, Jun, Rennie, Aron, Rebecca, Kashish, Charlotte,
Nadia, Pouya, Meshkat, Ed, Francisco, Johannes, Domenico, Galit, Katerina and Rahul,

with whom I have made many wonderful memories.

I would also like to thank the contributors of OpenAI’s ChatGPT tool, which was very

helpful for grammar checks, typesetting issues, and debugging code.

Contents

Declaration
Abstract

Acknowledgements

I. Equilibrium Enumeration in 2 x 2 x 2 Games
Introduction to Part |

1. Equilibrium Enumeration for 2 x 2 x 2 Games
1.1. Background
1.1.1. General Formofa2x2x2Game
1.1.2. Components of Best Response Correspondence
1.1.3. Formulation of Hyperbolas
1.1.4. Classification of Indifference Surfaces
1.1.5. Solving Indifference Equations System
1.1.6. Intersection of Two Indifference Surfaces IOS)
1.1.7. Types of Nash Equilibria
1.2. Generic and Non-Degenerate Games
1.3. Enumeration of Nash Equilibria
1.3.1. Computing Partially Mixed and Pure Equilibria
1.3.2. Computing Completely Mixed Equilibria
1.4. Graphical Representation of the Game
1.4.1. Selten’s Horse, a Well-Known Example

2. Upper Bound on the Number of Equilibria in 2 x 2 x 2 games
2.1. Preliminary Lemmas
2.2. Upper Bound Theorem
2.2.1. Concept of Equilibrium Index
2.2.2. Completing the Proof of Main Theorem
2.2.3. Discussion and OngoingWork

Conclusions to Part |

13
13
13
17
18
19
21
23
25
25
30
31
33
37
38

40
40
44
52
54
55

57

Contents

3. Appendix to Part | 59
3.1. Excluded Case of the Upper Bound Theorem 59
3.2. Instructions for Software L. 65

32.1. Code Structure 66

Il. Empirical Game-Theoretic Analysis of a Pricing Game 69

Introduction to Part Il 70

4. Foundations and Modelling 76
4.1. Learning Fundamentals 76

4.1.1. Single-Agent Reinforcement Learning 76
4.1.2. Markov Decision Process, 78
4.1.3. ValueFunctions. 79
4.14. Q-Learning e 81
4.1.5. Policy Gradient Algorithms 82
4.2. Policy-Space Response Oracles 83
43. ThePricingGame e 84
4.3.1. Subgame Perfect Equilibrium 88
4.3.2. Initial Deterministic Strategies 90
4.4. The Framework: Pricing Game, Reinforcement Learning and PSRO . . . 92

5. Initial Reinforcement Learning Experiments 95
5.1. REINFORCE Algorithm 96
5.2. REINFORCE with Baseline 103
53, Actor-Critic 110

6. PSRO Framework and Advanced RL Algorithms 119
6.1. PSRO Framework Using REINFORCE with Myopic Baseline 119
6.2. Advanced Learning Algorithms: New RL Framework 121

6.2.1. Proximal Policy Optimisation 122
6.2.2. Soft Actor-Critic 124
6.2.3. Comparison of the Learning Algorithms 126
6.3. Incorporating Advanced RL Algorithms into the PSRO Setting 126
6.3.1. Integrating PPO and SAC into a Unified Meta-Game 131
6.3.2. Hyperparameter Tuning of the Learning Algorithms 136
6.3.3. Equilibrium SelectioninPSRO 140
6.3.4. Initial Meta-Game oL 143
6.4. Final Experiments: Exploring Initial Meta-Games with Updated Equilib-
rium Selection Lo 147
6.4.1. Equilibria of the Meta-Game 151
6.4.2. Pricelnstability 156
6.4.3. Average Strategy Probabilities in Equilibria 158
6.4.4. Behaviour of Final Pricing Strategies 164

6

Contents

6.4.5. Replicator Dynamics, 165
Conclusion to Part Il 171
7. Appendix to Part Il 176

7.1. Plots of the Final Trained Agents 176
7.2. Software Guide 194

Part I.

Equilibrium Enumeration in
2 x2x2 Games

Introduction to Part |

Game theory provides mathematical models for multi-agent interactions. The primary
solution concept is Nash equilibrium, and its refinements (e.g., perfect equilibrium [61]) or
generalisations such as correlated equilibrium [2] (which arises from regret-based learning
algorithms). For two-player zero-sum games, finding a Nash equilibrium can be achieved
by solving a linear programming (LP) problem [48]. However, this is not the case for
non-zero-sum games or games with more than two players. Already for general-sum

two-player games, finding just one Nash equilibrium is PPAD-hard [10, 12].

However, this “intractability” of the Nash equilibrium concept applies to large games.
Many games that are used as economic models are small, with fewer than a dozen payoff
parameters, and often given in extensive form as game trees. It would be desirable to
have a complete analysis of all Nash equilibria of such a game, in order to study the
implications of the model. Such a complete analysis is known for two-player games. Their
Nash equilibria can be represented as unions of “maximal Nash subsets” [74]. These
are maximally “exchangeable” Nash equilibrium sets, that is, products of two polytopes
of mixed strategies that are mutual best responses. Their non-disjoint unions form the
topologically connected components of Nash equilibria, and are computed by the /rsNash
algorithm of Avis, Rosenberg, Savani, and von Stengel [3], which works well for games

with up to about twenty strategies per player.

For games with more than two players, the set of all Nash equilibria cannot be described
in such a way, because it is determined by equations and inequalities between nonlinear
polynomials. The Gambit software package [57] provides access to polynomial solvers in
order to compute the Nash equilibria of generic games. “Generic” means that the payoffs
do not represent edge cases. The edge cases can be encoded as the zeros of a suitable
polynomial in the game parameters and form a set of measure zero. Generic games have only

finitely many equilibrium points. Non-generic games can have infinite sets of equilibria.

However, rather remarkably, to our knowledge, there is no algorithm that computes (in
some description) the entire set of Nash equilibria for even the simplest game with more
than two players if the game is non-generic, which naturally occurs for games in extensive

form, such as “Selten’s horse” [61]; see Section 1.4.1 below.

This work describes an algorithm that computes the entire set of Nash equilibria for
arbitrary 2 X 2 X 2-games, that is, three-player games where every player has two strategies.

These are the simplest games with more than two players that do not have a special structure

Introduction to Part 1

(such as being a polymatrix game arising from pairwise interactions, see [31]). While this

seems like a straightforward task, it is already challenging in its complexity.

One contribution of our work is to reduce this complexity by carefully preserving the
symmetry among the players, and a judicious use of intermediate parameters (see (1.10)
in Section 1.3.2) derived from the payoffs. We define the notion of non-degeneracy in
2 x 2 x 2 games, which implies the game’s genericity and allows us to exclude edge cases
through conditions imposed on the payoff parameters. We determine a quadratic equation
(see (1.20)) that has a regular structure using determinants (not known to us before), which
also implies that a generic 2 X 2 X 2 game has at most two completely mixed equilibria
(shown much more simply than in [11] or [44]). The standard approach to manipulating

such complicated algebraic expressions is to use a computer algebra system [13].

As a “binary” game with only two pure strategies per player, the equilibria of a2 x 2 x 2
game can be visualised as points and surfaces inside a cube. However, making such

visualisations accessible requires 3D graphics.

We believe that effective visualisations of the geometry of a game’s equilibrium
solutions are essential for understanding their structure and properties, both for practical

applications and theoretical research in game theory.

To this end, we have implemented equilibrium computation algorithms (as discussed in
Section 1.3), along with graphical representations for 2 X 2 x 2 games, using Python. Our
tool is publicly available at [34]. Given a 2 X 2 X 2 game as input, the application generates
an interactive 3D visualisation of all best-response correspondences and equilibria, along

with a text output highlighting the key features of the game and its equilibrium structure.

All figures presented in Chapters 1 and 2 were generated using our tool. Throughout
these chapters, we reference a test number for each figure, which can be used to regenerate
the corresponding graphics and game descriptions by running our code with the predefined

test case.

Furthermore, numerous studies have explored the structure of equilibria in generic
games (e.g., [44], [29]). Upper bounds on the number of different types of equilibria have
been studied for bimatrix games [32], as well as for various forms of multiplayer games [28].
Our representation of 2 X 2 X 2 games provides a deeper understanding of the equilibria in

such games.

Another significant contribution of this work is the proof of an upper bound of nine for
the total number of equilibria in generic 2 X 2 X 2 games. One part of this proof, presented
in Section 2.2.1, relies on prior results regarding the concept of equilibrium index in generic
games to show the impossibility of a game having the case of 4 pure, 6 partially mixed, and 1
completely mixed equilibria. We also discuss that the rest of our proof of the nine-equilibria
bound applies to the broader class of non-degenerate games. To extend this upper bound to
non-degenerate games, further properties of the equilibrium index for this class need to be
established. Since the equilibrium index has a rather complex definition for games with
more than two players, we intend to specialise this definition for 2 X 2 x 2 games, where it

should be simpler, and to further complete our proof for non-degenerate games.

10

Introduction to Part 1

In Chapter 1, we begin by formulating 2 X2 X2 games using a symmetric parametrisation
for the players. We then study the best-response correspondences of the players and the
various forms these can take. We describe the edge cases in such games and extend the
previous definition of degeneracy from two-player games to 2 X 2 X 2 games in order to

identify these edge cases.

Next, we proceed to enumerate the equilibria of general 2 X 2 X 2 games using two
algorithms. The first algorithm identifies partially mixed equilibria (located on the faces or
edges of the cube of mixed strategies), which arise from the equilibria of reduced two-player
games where the third player plays a pure strategy that remains optimal. This method
generalises straightforwardly to games with a larger number of players, each with two

strategies, and may be particularly useful for preliminary analysis of such games.

The second part focuses on computing completely mixed equilibria, which is more
challenging and does not generalise as easily. While a substantial portion of the algorithm is
outlined, we do not describe it in full due to the large number of case distinctions required to
systematically handle non-generic scenarios (which can still arise in game trees even when

payoffs are generic). Both algorithms discussed have been implemented in our Python tool.

Our formulation of the 2 X 2 X 2 game in Chapter 1 corrects and extends the earlier

version presented in the unpublished undergraduate thesis by Zhu [76] at LSE.

In Chapter 2, we focus on non-degenerate and generic games, which can only have a
finite number of equilibria. We prove an upper bound on the number of Nash equilibria in
generic games, and outline the steps needed to generalise this proof to the broader class of

non-degenerate games.

In Theorem 2.9, we establish that generic 2 X 2 X 2 games can have at most nine

equilibria, and that this maximum can only occur in one of the following two configurations:
* 4 pure, 3 partially mixed, and 2 completely mixed equilibria;
* 4 pure, 4 partially mixed, and 1 completely mixed equilibrium.

This result fully establishes the cases above for both classes of generic and non-
degenerate games. However, our argument for excluding the configuration with 4 pure, 6
partially mixed, and 1 completely mixed equilibrium relies on prior work involving the

concept of the equilibrium index, which has so far been established only for generic games.

In generic games, each Nash equilibrium is isolated and has an index of either +1 or
—1, with the total sum of indices equal to 1. Pure equilibria always have index +1, while the
index of a partially mixed equilibrium equals that of the corresponding 2 X 2 subgame (in

which the third player plays a pure strategy).

To extend these index-based arguments to non-degenerate games, we need to adapt and
simplify the definition of equilibrium index specifically for 2 X 2 X 2 games. Currently, the
definition for games with more than two players relies on advanced topological results (see,
e.g., Ritzberger [55]), which we believe can be significantly simplified in the special case of

the 2 X 2 X 2 games considered in this work. Such an adaptation and verification of the

11

Introduction to Part 1

corresponding index properties would allow us to extend the upper bound of nine equilibria

to all non-degenerate games.

Furthermore, our result confirms the upper bound conjectured by Vuji¢ [69] for m-player
games with two strategies per player. For the case m = 3, studied here, our work provides a

proof of the conjectured maximum of nine equilibria.

Finally, we note that these results do not extend to degenerate games, which can have
sets of infinite number of equilibria forming components of various dimensions. Such
equilibrium components can be one-dimensional (lines or curves), two-dimensional surfaces,
or even three-dimensional regions (e.g., the entire cube when all payoffs are zero). A

complete algorithmic framework for analysing degenerate games is developed in Chapter 1.

12

Equilibrium Enumeration for 2 x 2 x 2
Games

The set of all Nash equilibria of a non-cooperative game with more than two players is
defined by equations and inequalities involving nonlinear polynomials, which makes it
challenging to compute. This chapter presents an algorithm to compute this set for the
simplest game with more than two players and arbitrary (possibly non-generic) payofts, a

task that has not been done before.

We provide new, elegant formulas for completely mixed equilibria, as well as an
algorithm to compute partially mixed equilibria by analysing the games between each pair
of players. Furthermore, we compute and visualise the best-response correspondences and

their intersections in 3D, which define the Nash equilibrium set.

These computations and visualisations have been implemented in Python and will be

part of a public, web-based software tool for automated equilibrium analysis.

For small games, which are often studied in economic models, a complete Nash
equilibrium analysis is desirable and should be feasible. This project demonstrates the

difficulties of this task and offers pathways for extensions to larger games.

1.1. Background

This section introduces the notations that will be used in subsequent sections and the proofs

of the next chapter.

1.1.1. General Form of a2 x 2 x 2 Game

The following table describes a normalised form of a three-player game in which each player

has two strategies:

1. Equilibrium Enumeration for 2 X 2 X 2 Games

111 . I .
I %eft: Right: I {Jeft: Right:
I -q q I —-q q
0 0 a 0%
Up: 1-p 0 a Up: 1-p 0 b
0 0 0 0
(1.1
0 0 B)
Down: p 0 c Down: p 0 d
A B C D
Front: 1 —r Back: r

This game is played by players I, II, III, choosing (simultaneously) their second strategy
with probability p, g, r, respectively. Player I chooses a row, either Up or Down (abbreviated
U and D), player II chooses a column, either Left or Right (abbreviated L. and R), and
player III chooses a panel, either Front or Back (abbreviated F and B). The strategy names are
also chosen to remember the six faces of the three-dimensional unit cube of mixed-strategy
profiles (p, g, r), shown in Figure 1.1. The coordinates of each point on this cube represent

the probability of each player choosing the second strategy.

URB
r
DRB
-
DLB DRE
DLF

P

Figure 1.1.: Cube of mixed-strategy probabilities (p, g,r) depicted with pure-strategy
names abbreviated from (1.1); for instance, DRB stands for the strategy profile
(Down, Right, Back)

Each of the eight cells in (1.1) has a payoff triple (T, ¢, T) to the three players, with the
payofts to player I, II, III in upper case, lower case, and Greek letters, respectively. The
payoffs in (1.1) are staggered and shown in colours to distinguish them more easily between

the players.

The payoffs have been normalised so that each player’s first pure strategy has payoft of

zero throughout.

This normalisation is obtained by subtracting a suitable constant from the player’s
payoffs for each combination of opponent strategies (e.g., each column for player I). This
does not affect best responses [67, p. 239]. With this normalisation, the first strategy of
each player always gives expected payoft zero, which makes the subsequent best-response

analysis more straightforward.

14

1. Equilibrium Enumeration for 2 X 2 X 2 Games

For each player’s second strategy, the expected payoffs are as follows:

playerI: S(gq,r) = (1-q¢)(1-r)A + qg(1—=r)B + (1-=g)rC + grD,
playerIT: s(r,p) = (1-r)(1=p)a + r(l=p)b + (1 =r)pc + rpd, (1.2
playerlIl: o(p,q) = (1 -p)(1—-g)a + p(1—q) B + (1 - p)gy + pqd,

where the payoff parameters A, B, C, D are the payoffs to player 1 for the four combinations
of pure strategies played by the other players. Similarly, a, b, ¢, d represent the payoffs to
player 2, and a, 3, y, ¢ are the payoffs to player 3, as shown in the payoff matrices (1.1).

With this definition, the three players can be treated symmetrically. The cyclic shifts
among p, g, r in (1.2), along with the corresponding choices of where to place b, c, 8, and

v in (1.1), lead to more symmetric solutions.

The mixed-strategy profile (p, q,r) is a mixed equilibrium if each player’s mixed
strategy is a best response against the other players’ strategies. That best response is a pure
(deterministic) strategy, unless the two pure strategies have equal expected payoffs [47, p.

287]. Hence, p is a best response of player I to (g, r) if the following conditions hold:

=0 it S(g,r) <0
P(q,r)=1{p e [0,1] if S(g,r)=0 (1.3)
=1 if S(g,r)>0.

We designate the g X r plane as the base plane for player 1. Similarly, g is a best response of

player Il to (r, p) and r is a best response of player Il to (p, q) if and only if

g=0 if s(r,p) <0 r=0 if o(p,q) <0
O(r,p) =4q €[0,1] if s(r,p)=0 R(p.q) =r €[0,1] if o(p,g)=0
g=1 if s(r,p)>0 r=1 if o(p,q)>0.

(1.4)
Similarly, » X p and p X g planes are called the base planes for players II and III, respectively.
For each player I, II, or 111, the triples (p, ¢,) that fulfil the respective conditions for p, ¢,
or r in (1.3) and (1.4) define the best-response correspondence (BR) of that player, a subset
of the cube [0, 1]°.

BRy = { (p.g.r)€[0,1]° | peP(qr) },
BRZ = { (p’qu) € [0’ 1]3 | qu(r7p) }’ (15)
BR3 = { (p’ q,l’) € [O’ 1]3 | re R(p’ Q) }

The set of Nash equilibria is defined as the intersection of the best-response corres-
pondences (BRs) of all players. Therefore, before analysing the structure of Nash equilibria,

we first examine the different possible forms that a best-response correspondence can take.

15

1. Equilibrium Enumeration for 2 X 2 X 2 Games

For instance, player I’s best-response correspondence can exhibit several distinct forms,
as shown in Figure 1.2. In particular, the vertical surface in panel (c) can itself take on

various shapes, which we study in detail later.

p

(a) (b) (©)

Figure 1.2.: Different forms of best-response correspondence.

*(@If A=B=C=D =0, then S(q,r) = 0 for all g,r € [0, 1], and player I's
best-response correspondence is the entire cube of [0, 1]3. This illustrates a case
where the player is completely indifferent between their two strategies. Such a
situation is an edge case that can lead to undesirable sets of equilibria. We say
it makes the game degenerate, and we exclude these games later, as explained in
Section 1.2.

e (b)IfA,B,C,D < 0, then S(g,r) <0 forall (¢,r) € [0, 1]? and strategy Up strictly
dominates Down, so that player I will always prefers to play Up, and the game
reduces to a two-player game between players II and III. The same happens when
A, B,C,D > 0, in which case Down strictly dominates Up. In these two cases, the
best-response correspondence of player I is the upwards “Up face” or downwards

“Down face” of the cube (as in Figure 1.2(b)), respectively.

* (c) In all other cases, the best response of player I to (g, r) is sometimes Up and
sometimes Down. The best-response correspondence of player I is then a surface that
consists of subsets of the Up or Down face according to (1.3), which are connected by
vertical parts, as in Figure 1.2(c) where player I is indifferent between Up and Down.
The shape of the indifference surface will be discussed comprehensively in Section
1.1.4.

Figure 1.3 shows the best-response correspondences of all three players ina 2 X 2 X 2 game.
The first player’s best-response correspondence is plotted in red, the second player’s in blue,
and the third player’s in green. In the top-left plot, all best-response correspondences are
displayed together. Additionally, the Nash equilibria are marked in black. We elaborate

further on our 3D representation in Section 1.4.

16

1. Equilibrium Enumeration for 2 X 2 X 2 Games

p

Figure 1.3.: Example of best-response surfaces of a game with two completely mixed
equilibria and one partially mixed equilibrium, marked by black dots. (This
example corresponds to Test 10 in our Python code, which can be visualised as
a 3D animation and explored interactively.)

1.1.2. Components of Best Response Correspondence

Building up on the formulation in (1.3) and (1.4), the best response correspondence of each

player can be represented as the union of two sets of surfaces:

* Indifference Surfaces (IS): the set of points in the cube where the expected payoff
is equal to zero. For instance, for player I the indifference surfaces are identified as

follows:
IS; = {(p.q.r) € [0,1]7 | S(q.r) = 0}. (1.6)

* Strict Surfaces (SS): the set of points in the cube where the expected payoft is positive

or negative. For player I, the strict surfaces are defined as follows:

SS1 ={(1,4,r) € [0,11* | S(g,r) >0} U{(0,q,r) € [0,1]* | S(g,r) <O}. (1.7)

Hence, the best-response correspondence for each player i is given by BR; = IS; U SS;.

17

1. Equilibrium Enumeration for 2 X 2 X 2 Games

strict zone

——indifference =—
strict zone surface g .

Player I's best response surface

Figure 1.4.: Components of best-response correspondence of player L.

Another concept aiding in the visualisation of best response surfaces, and later in the
proofs, is that of strict zones. The strict surfaces projected on the base plane consist of
two regions referred to as Strict Zones. Zone" includes points where the expected payoff is
negative; therefore, the best response is 0, while Zone! comprises points where the expected
payoff is positive. Strict zones are two-dimensional surfaces defined on the base plane. For

instance, for the first player, the zones are defined as follows:
Zone’ = {(g,r) € [0,11* | S(g,r) <0}, Zone' = {(g,r) € [0,1]* | S(g,r) > O}.

The strict zones are divided by indifference surfaces and may take different forms depending
on the shape of the indifference surface. By definition, it is evident that strict zones do not
intersect. Furthermore, each zone forms part of the best-response correspondence in three
dimensions as a strict surface with a fixed third coordinate,0 for Zone? and 1 for Zone!.
Consequently, the two distinct strict surfaces are located on different faces of the cube.

These surfaces are depicted in Figure 1.4 for an example of the first player’s best-response
correspondence.

1.1.3. Formulation of Hyperbolas

One of the common forms that an indifference surface can take when it is projected on the
base plane is a hyperbola.

Definition 1.1. In a two-dimensional setting, a hyperbola is the set of all points for which
the absolute difference of their Euclidean distances from two fixed points is constant.
A hyperbola consists of two continuous, disconnected curves called “branches”. These
branches approach two lines, known as asymptotes, but intersect them only at infinity.

The general equation for a hyperbola with asymptotes parallel to the coordinate axes in
the x X y plane is given by:

(x—a)(y-b)=c (1.8)

18

1. Equilibrium Enumeration for 2 X 2 X 2 Games

in which the lines x = a and y = b are the asymptotes.

In this thesis, the hyperbolas we study all have asymptotes parallel to the rectangular

axes and follow the formulation in (1.8).

If ¢ = 0 in (1.8), the hyperbola is called degenerate, as the branches become the

asymptotes. Otherwise, it is called non-degenerate.

Hyperbolas have interesting properties that assist us later in our proofs:

* The branches of a hyperbola approach the asymptotes and get arbitrarily close to

them but never intersect them, except at infinity.

* The branches are located on different sides of both asymptotes. Consequently, the

domain and range of the branches are divided by the asymptotes.

* Hyperbolas exhibit monotonic behaviour, except in between the two branches, where
there is a jump in the function. This means the branches are either both increasing or

both decreasing.

1.1.4. Classification of Indifference Surfaces

To analyse Nash equilibria, we begin by examining the different forms that indifference
surfaces can take, as their intersections correspond to equilibria within the interior of the
[0, 1]° cube. As defined in (1.6), the indifference surface IS; consists of the strategy profiles
for which the expected payoff function of player i is equal to zero. We can rewrite the

expected payoft equations (1.2) as:

S(q,r) = A+ Kg + Lr + Mgr
s(r,p) =a + kr +Ip + mrp (1.9)

o(p,q) = a + kp + Aq + upq

with
K=B-A, L=C-A, M=A-B-C+D,
k=b-a, l=c—-a, m=a-b-c+d, (1.10)
K=p-a, A=y-a, UH=a-F-v+9.

We now analyse the indifference surface of player I; the analysis for the other players is

analogous.
Figure 1.2 already illustrates examples of best-response correspondences:

(a) If (A,B,C,D) = (0,0,0,0), then the best-response correspondence (BR) is the

whole cube.
(b) If A, B, C, D are all positive or all negative, then the BR is only one face of the cube.
We now focus on the form of 1§ in part (c).

19

1. Equilibrium Enumeration for 2 X 2 X 2 Games

Using (1.10) and (1.9), the indifference condition S(q, r) = 0 defines the surface
1Sy ={(p,q,r) € [0, 1]3 | S(g,r) =A+Kqg+ Lr+ Mgqgr =0}, (1.11)

where /5] can take different forms in the g X r base plane depending on the values of the

parameters M, K, L, and A.

(i) Linear case: f M = A — B —-C+ D =0, then
A+Kg+Lr=0. (1.12)

If K=L=0,then A = B =C = D, and either case (a) or (b) from above applies; i.e.,
(1.12) has either infinitely many or no solutions. So let us assume (K, L) # (0, 0).

If K = 0, the line is defined by a constant value of 7, namely r = —A/L. If L = 0, the
line is defined by a constant value of ¢, namely ¢ = —A/K. Otherwise, (1.12) defines
a standard linear relationship between ¢ and r.

In all cases, the indifference surface is a vertical plane in the p-axis direction,
extending a line in the g X r base plane. According to (1.3), on this indifference plane,
Player I is indifferent between the first and second strategies. For points on each side

of the plane, the best response is p = 0 or p = 1 depending on the sign of S(q, r).

P
(ii) Hyperbolic case: Suppose M # 0. Then (1.11) is equivalent to:

K L A
qr+Mq+Mr+M=O. (1.13)

Adding % - % to both sides and using (1.10) gives:

L K KL-AM BC-AD
g+—||lr+—|= = , (1.14)
M M M? M?
which describes a hyperbola in the g X r plane with asymptotes g = —ﬁ andr = —%

(see Definition 1.1).

If BC — AD # 0, this defines a non-degenerate hyperbola with two branches.
Depending on the values of A, B, C, D, the [0, 1] x [0, 1] square may contain both
branches, one branch (as in the green and red best-response surfaces in Figure 1.3),

or neither (e.g., when the game has a dominated strategy, case (b) above).

20

1. Equilibrium Enumeration for 2 X 2 X 2 Games

For points (g, r) not lying on the hyperbola, Player I’s pure best response is determined
by the sign of S(g,). These form the strict surfaces. Note that when the equality in
(1.11) is replaced with ‘<” or >”, if M < 0, the inequalities in (1.13) will be reversed.

In this form, the points in the interior of the two hyperbola branches have the same
best response and, consequently, lie on the same strict best-response surface. In
contrast, the points located between the two branches have a different best response

and are situated on the opposite face of the cube.

(iii) Degenerate hyperbolic case: If M # 0 and BC — AD =0 in (1.14) above, then the

indifference condition reduces to
g=—-—— U r=-—— (1.15)

which defines two perpendicular lines on the base plane. This case corresponds
to a degenerate hyperbola on the base plane, extended in the p direction. It can
be interpreted as the limiting case of the previous scenario, where the hyperbola

branches converge to their asymptotes.

The blue best response in Figure 1.8 is an example of this case for player II (extended

in the ¢ direction).

1.1.5. Solving Indifference Equations System

In Section 1.1.4, we explained the different forms that indifference surfaces can take.
Equation (1.9) shows the system of equations for all indifference surfaces of all players. This

system consists of three equations with three parameters, representing the mixed strategies

21

1. Equilibrium Enumeration for 2 X 2 X 2 Games

of each player. To compute the intersections of these surfaces, we proceed to solve this

system as follows:

The expressions in (1.9) are linear in each of p, g, r, and we consider when they are

equal to zero, which defines the indifference surfaces:

A+Kqg+ (L+Mg)r =0
a+Ilp + (k+mp)yr =0 (1.16)
a+ kp + (A+up)g =0.

We first eliminate » by multiplying the first equation in (1.16) by (k + mp) and the
second by —(L + Mgq), and then adding the resulting expressions. This gives:

(A+Kq)(k+mp)—(L+Mgqg)(a+1lp)=0, (1.17)
or, using determinants:
A L A L K M K M
+ p+ q+ pq =0. (1.18)
a k [l m a k [l m
K M
In the same way, we eliminate ¢ by multiplying the last equation in (1.16) by +
a k
K M
p and equation (1.18) by —(A + up), then summing the resulting expressions.
I m
This gives:
K M K M A L A L
+ pl(a+«kp) - + pl(A+up)=0, (1.19)
a k [m a k I m

or (verified by expanding each 3 X 3 determinant in the last column),

A L «k A L « A L « A L «
K M plP+||K M 2|*|K M ullp+|k M 2| =0 (120

I m O I m O a k O a k O

which gives us a quadratic equation for p.

The system (1.9) can be solved in exactly the same manner to derive a quadratic equation
for g. In this case, we move the first equation to the last position and cyclically permute the

constants, replacing A, a, @ with a, , A respectively, and similarly for the other coefficients.

22

1. Equilibrium Enumeration for 2 X 2 X 2 Games

Then, similar to (1.20), for ¢ we have the following quadratic equation:

k m M|9 ||k m L|t|\k m M||la+ |k m L|=0. (L.21)

a A1 k a A1 a a A1 k a A a

ko om| T kou ||k o om||r e w1 0. (1.22)

L M 0 L M O A K O A K O

These quadratic equations reveal subsets of Nash equilibria. However, they must be
interpreted with care, as simply computing their roots is not sufficient to fully identify
the equilibria. We explain how to deduce the sets of equilibria from these equations in
Section 1.3.2. Before addressing the computation of equilibria, we first introduce some

foundational concepts that will assist us.

1.1.6. Intersection of Two Indifference Surfaces (I0S)

In the previous section, during the algebraic derivation of the quadratic equations, we
implicitly first computed the intersection of two indifference surfaces. This occurred when
we eliminated the first parameter and reached equation (1.18). That equation represents
the intersection of the indifference surfaces of players I and II. We then computed the
intersection of this curve with the third indifference surface, which led to the quadratic

equations.

In this section, we take a closer look at the curve formed by the intersection of two
indifference surfaces, which we refer to as I0S curves. Studying the properties of these

curves helps us better understand the possible equilibrium components.

We define 10S; as the intersection of the indifference surfaces of the two players other

than player i:

I0S| =1S, N1IS3, 10S, =1S3 NIS;, 1I0S; =1S| NIS,.

We have already computed IOS3 in equation (1.18), which represents the intersection
of the indifference surfaces of the first and second players. For this intersection (I0S3), we

have the following.

23

1. Equilibrium Enumeration for 2 X 2 X 2 Games

IS;: A + Kqg + Lr + Mqgr =0,
IS: a + kr + Ip + mrp =0,
= I0S; = IS, N IS,
(1.23)
:{ (p.q.r) € [0,1]°
AL AL KM KM
+ p+ q+ rq =0,
a k I m a k I m
A+Kgq a+lp }
roo= = .
L+ Mg k+mp

Although (1.23) resembles the third player’s indifference surface equation, it actually

defines a curve in 3D space, as the value of r is determined by the values of p and gq.

In contrast, in IS3, r is free to vary in the interval [0, 1]. Similarly, equations for the

intersection curves of any two players’ indifference surfaces can be derived.

These curves are displayed in the plots, such as Figure 2.1 and Figure 1.7, in purple.

For example, in the top-right cube, the first player’s indifference surface (IS;) is shown in

red, and the intersection curve of the other two players (I0S;) is depicted in purple.

10S curves exhibit several interesting properties that prove useful in subsequent proofs:

(a) Like the players’ indifference surfaces, in special edge cases, the IOS curves may
contain planes or surfaces rather than being purely one-dimensional curves. These
situations arise directly from edge cases in the indifference surfaces themselves,
whose intersection defines the IOS curves. However, since we will exclude such cases

in our analysis, we refer to these sets as /OS curves for simplicity.

(b) These curves are the intersection of two perpendicular indifference surfaces (e.g.,
I0S| = 1S, N IS3). As aresult, projecting the IOS curve onto the base plane of either
indifference surface preserves its form. For instance, projecting IOS; onto the r X p
plane yields the same form as IS,, and projecting it onto the p X g plane yields the
same form as IS3. However, this does not imply full coverage of the domain of the
indifference surfaces: certain regions of one surface may lie outside the domain of

the other and, consequently, outside the domain of their intersection.

(c) Interestingly, IOS; exhibits the same form as an indifference surface—namely, a line,
a degenerate hyperbola, or a non-degenerate hyperbola—when projected onto the
base plane of player i. This follows from the functional relationship between p and ¢
in (1.23). Considering part (b), we conclude that an IOS curve has a hyperbolic form

when projected onto any of the coordinate planes p X g, g X r,or r X p.

(d) 10S curves are monotonic when projected onto any two-dimensional coordinate plane.
This is a direct consequence of part (c), as each branch of a curve with hyperbolic

form is monotonic.

24

1. Equilibrium Enumeration for 2 X 2 X 2 Games

(e) When the IOS curve takes the form of a non-degenerate hyperbola in its base-plane
projection, fixing any one of the coordinates p, g, or r uniquely determines the

corresponding values of the remaining coordinates for points on the curve.

1.1.7. Types of Nash Equilibria

The set of Nash equilibria of a game can be categorised based on the strategies employed by

the players:

* Pure Equilibria (PRE): In these equilibria, all players choose pure strategies,
meaning each player’s mixed strategy parameter is either O or 1. These equilibria

correspond to the vertices of the cube of mixed strategies.

 Partially Mixed Equilibria (PME): In these equilibria, at least one player employs a
pure strategy, but not all players do. These equilibria are situated on the edges and

faces of the cube.

¢ Completely Mixed Equilibria (CME): In these equilibria, none of the players

employs a pure strategy. They are located in the interior of the cube.

To compute all Nash equilibria of 2 X 2 X 2 games, we employ two distinct algorithms:
one for identifying pure and partially mixed equilibria, and another for computing completely
mixed equilibria. The rationale for using separate approaches lies in the nature of the best
response correspondences. On the boundaries of the cube, a best-response correspondence
manifests as strict surfaces, whereas in the interior, they appear as indifference surfaces.
Consequently, for each player, one algorithm examines the intersection of the other players’
best-response correspondences with the player’s strict surfaces, while the other algorithm
considers their intersection with the player’s indifference surface. The union of the equilibria
identified from these two methods yields the full set of Nash equilibria.

In both algorithms, certain edge cases can arise that result in unstable equilibria under
small perturbations of the payoffs or lead to infinite sets of equilibria. Before presenting the
algorithms, we introduce the concept of degenerate games, which captures these edge cases.

We then explain how each algorithm accounts for them.

1.2. Generic and Non-Degenerate Games

The term generic game is often used somewhat loosely in the literature on non-cooperative
games. Broadly speaking, a generic game refers to one whose payoffs are drawn from a
general or "typical" set of real-life scenarios, meaning that no two distinct strategy profiles
yield exactly the same payoff for any player. In one-shot strategic-form games, genericity
implies that players strictly prefer one strategy profile over another, and ties in payoffs of

pure strategies occur only in special, finely tuned cases.

However, when we convert extensive-form games to their strategic form, such ties are

quite common even when the payoffs are generic. As a result, non-generic games arise more

25

1. Equilibrium Enumeration for 2 X 2 X 2 Games

frequently in these settings, as the tree structure often leads to multiple strategy profiles

having the same payoff.

From a mathematical perspective, generic games correspond to a set of payoff con-
figurations with full measure (i.e., measure one), while non-generic games lie in a set
of measure zero. These measure-zero cases are considered edge cases and are typically
excluded from general theoretical analysis. This is because they can exhibit problematic
or unstable behaviour. For example, best-response surfaces may align exactly, resulting
in infinitely many equilibria that are not robust under small perturbations in the payoff
parameters. In contrast, generic games avoid such cases and are more stable, making them
more representative of real-world scenarios where slight changes in preferences do not

cause drastic shifts in strategic outcomes.

For two-player games, von Stengel [67, p. 164] introduced the notion of degeneracy as

a way to more directly identify games that represent edge cases.

Definition 1.2. A two-player non-cooperative game is called degenerate if there exists a
player with a mixed strategy whose support has size k > 1, such that the other player has
more than k pure best responses to this strategy. Equivalently, if no such strategy exists for

either player, the game is called non-degenerate.

In [66], the author proved the equivalence of Definition 1.2 with the earlier notion
of degeneracy introduced in [42], where the Lemke—Howson algorithm was developed to

enumerate equilibria of non-degenerate games.

An important consequence of Definition 1.2 is that non-degenerate games cannot have
components of infinitely many equilibria; that is, the number of equilibria is finite, and each

equilibrium is isolated.

Both non-degenerate and generic games aim to exclude pathological edge cases, but the
two concepts are not equivalent. Every generic game is non-degenerate, but the converse
does not hold: some games with repeated or symmetric payoffs can be non-degenerate yet

still non-generic.

Since the set of generic games is contained within the set of non-degenerate games,

results proven for non-degenerate games also apply to generic games.

Since the subgames between each pair of players in our setting are 2 X 2 games, the

following lemma specifies the condition for non-degeneracy in such games.

Lemma 1.3. A normalised 2 X 2 game with the payoff table (1.24) is non-degenerate if and
only if the payoff parameters of both players, (x,y,w, z), are nonzero.

26

1. Equilibrium Enumeration for 2 X 2 X 2 Games

n Left: Right:

I I-gq q
0 w
Up: 1-p
0 0
(1.24)
0 z
Down: p
X y

Proof. Because each player has only two strategies, degeneracy occurs if and only if a
pure strategy has two pure best responses. This happens if at least one of x, y, w, z is zero.

Therefore, excluding this case ensures that the game is non-degenerate.

O

When the game involves more than two players, extending this definition of degeneracy
becomes challenging, as each player now has multiple opponents to consider. However,
studying degeneracy in subgames (i.e., games played between any two players while other
players’ strategies are fixed) provides valuable intuition for understanding degeneracy in

three-player games.

Building on the concept of non-degeneracy in two-player games, we extend the definition

of non-degeneracy to our three-player game setting as follows.

Definition 1.4. A 2x2x 2 game G, represented as in Table 1.1, is said to be non-degenerate

if the following conditions hold:

i. Every 2 x 2 subgame, obtained by fixing one player’s strategy to a pure strategy,
is non-degenerate. In terms of payoffs, this means that all payoff parameters of all

players are nonzero:

A,B,C,D, aabacvd’ a9ﬂ77’6¢0-

ii. If all the quadratic equations (1.20), (1.21), and (1.22) have at least one real solution
in the interval [0, 1], then

— no such solution equals O or 1,
— none of the equations admits infinitely many solutions (i.e., is of the form 0 = 0),

— any equation that is properly quadratic (i.e., not linear) has exactly two distinct

real solutions (i.e., no double root).

In the first condition of Definition 1.4, the games played on the faces of the cube [0, 1]
are examined. On each face of the cube, one player’s strategy is fixed as a pure strategy, and
the resulting 2-player subgame between the remaining players is analysed for degeneracy.
If any of these 2-player subgames is degenerate, it may result in components of partially

mixed Nash equilibria located on the edges of the cube in the 3-player game.

27

1. Equilibrium Enumeration for 2 X 2 X 2 Games

Although when the 2-player game is degenerate, it is possible to modify the fixed
player’s payoffs to not allow the equilibrium component to lie on the remaining best response
correspondence, the overall game is still considered degenerate. This is because, under such
conditions, one player is indifferent between their pure strategies when the other two players
both play pure strategies. The enumeration of such partially mixed equilibrium components

is discussed in more detail in Section 1.3.1.

The second condition addresses types of degeneracy that either result in a continuum of
completely mixed equilibria or in edge cases arising from the intersections of indifference
surfaces. In Section 1.1.5, we derived a system of quadratic equations from the intersection
of all indifference surfaces. Any completely mixed equilibrium must satisfy these equations,
as it lies on all indifference surfaces. Typically, these quadratic equations admit at most
two isolated (singleton) roots, unless they reduce to the trivial equation 0 = 0, in which
case they correspond to infinitely many solutions. If the game has no completely mixed
equilibrium, this is reflected in the system of equations either by the absence of real roots in
the interval (0, 1) or by a contradiction of the form “non-zero constant = 0”. Moreover, in
previous work proving the oddness of the number of equilibria [24], double roots of the
intersection equations were shown to be edge cases, and we therefore exclude them here for

compatibility.

Condition (ii) ensures that when completely mixed equilibria exist, the system does
not contain any trivial equations of the form 0 = 0, thereby ruling out the possibility of

infinitely many solutions.

If a game admits a component of infinitely many equilibria, this is typically due to
the presence of at least one coordinate that is unrestricted, i.e., it can vary freely within an
interval. In such cases, the corresponding quadratic equation becomes trivial, allowing for
infinitely many solutions along that direction. When none of the coordinates are unrestricted,
all quadratic equations must be satisfied throughout the component. In this case, degeneracy
is indicated by all quadratic equations admitting infinitely many solutions. Condition (ii)
excludes these degenerate configurations in the interior of the cube. A more detailed

discussion on the enumeration of these components is provided in Section 1.3.2.

Since our definition of degeneracy extends the concept of degeneracy defined for
2-player games, we prove that this definition also excludes the games with components of

infinite equilibria.

Lemma 1.5. [f2 X2 X2 game G, represented as in table (1.1), is non-degenerate according
to Definition 1.4, then G has a finite number of equilibria; that is, G does not have any

components of infinite equilibria.

Proof. Towards a contradiction, suppose that G is non-degenerate and has a component of
infinite equilibria. Denote this set of equilibrium points by V. There are two possible cases
for V: either the equilibria in V are partially mixed, or they are completely mixed (possibly

except for endpoints that lie on the boundary). If V is partially mixed, then the component

28

1. Equilibrium Enumeration for 2 X 2 X 2 Games

lies on the boundary of the mixed strategy cube. If V is completely mixed, then it lies in the

interior of the cube.

» If V is partially mixed, then at least one coordinate is fixed for all equilibria in V
to a pure strategy (i.e., either 0 or 1). This corresponds to a face of the cube and
a corresponding 2 X 2 subgame G’ which we analyse. Without loss of generality,
assume G’ is the game on the face r = 1 (the back face of the cube). The table on the
right in (1.1) shows the 2 X 2 subgame between players I and II corresponding to G’
(the payoffs of the third player are ignored in this subgame analysis).

In the 3-player game G, by the definition of Nash equilibrium, any point in V lies on
all players’ best response correspondences. Therefore, in the 2-player subgame G’,
any point in V must also lie on the best response correspondences of both players
I and II. Hence, V constitutes an infinite equilibrium component of the subgame
G’, which implies that G’ is degenerate. However, by Lemma 1.3, we know that if
the payoff parameters of the subgame, C, D, b, d, are all non-zero, then the game is
non-degenerate. Therefore, at least one of C, D, b, d must be zero, contradicting the
assumption that G is non-degenerate (since condition (i) in Definition 1.4 requires all

these parameters to be non-zero).

Considering the other subgames of G, the union of conditions from all of them makes
it clear that the payoff parameters of all players must be non-zero. This condition
is necessary to avoid degeneracy in subgames that would otherwise give rise to

components of infinite partially mixed equilibria.

* If V is completely mixed, then the mixed strategy parameters at every point in V must
satisfy equations (1.20), (1.21), and (1.22). Therefore, all three quadratic equations

must admit solutions.

Since V is not a single point, at least one mixed strategy parameter must vary among
the points in V. The associated quadratic equation for this parameter must be satisfied
for all values it takes within V. This is only possible if the corresponding quadratic
equation has infinite solutions; that is, it reduces to the form 0 = 0. However, this
contradicts the non-degeneracy assumption of the game because the trivial quadratic

equation violates condition (ii) in Definition 1.4.

Since both cases lead to a contradiction, the assumption must be false: therefore, a

non-degenerate game has only a finite number of Nash equilibria. O

In summary, the relationship between generic games, non-degenerate games, and games

with finitely many isolated equilibria can be expressed as follows:
Generic games C Non-degenerate games C Games with finitely many equilibria (1.25)

This implies that the converse of Lemma 1.5 does not hold: there exist 2 X 2 X 2 games with
a finite number of equilibria that are nonetheless degenerate. Figure 1.5 illustrates such a
case: the game has a single completely mixed equilibrium but does not satisfy condition (i)

in the definition of non-degenerate games, as some payoff parameters of player III are zero.

29

1. Equilibrium Enumeration for 2 X 2 X 2 Games

III III
) a q) a q
0 0 -2 0
Uil-p | o0 2 Uil-p | o0 1
0 0 0 0
0 0 0 3
D P 0 -1 D: »p 0 -3
-3 1 -1 2
F:1-r B:r

T

Figure 1.5.: Example of a degenerate game with one single equilibrium (Test 2 in the Python
code).

Moreover, there exist non-degenerate games that are not generic. For example, games
where the indifference surface takes the form of a degenerate hyperbola in the base plane are
non-generic, as this form changes with the smallest perturbations in the payoff parameters.
However, they are not necessarily degenerate. Figure 3.1 in the Appendix shows an example

of such a game.

1.3. Enumeration of Nash Equilibria

So far, we have discussed the types of Nash equilibria in 2 X 2 X 2 games and introduced
the concept of degeneracy in such games. In this section, we present our method for

enumerating all Nash equilibria, whether the game is degenerate or non-degenerate.
Our approach divides the computation into two parts:
* Computation of partially mixed and pure equilibria.
* Computation of completely mixed equilibria.

We employ different algorithms for each part. The union of the equilibria obtained
through these algorithms constitutes the full set of Nash equilibria for the game.

30

1. Equilibrium Enumeration for 2 X 2 X 2 Games

1.3.1. Computing Partially Mixed and Pure Equilibria

In an equilibrium, each player’s strategy is a best response to the strategies of the other
players. In a pure or partially mixed equilibrium, at least one player plays a pure strategy.
We can exploit this property to identify such equilibria by examining six subgames, each

obtained by fixing one of the three players’ strategies to a pure strategy.

These equilibria arise when the indifference surfaces intersect the boundaries of the
[0, 1]3 cube. On these boundaries, the best-response correspondence of the pure-strategy
player takes the form of strict surfaces, while the best responses of the other players
appear as projections of their indifference surfaces onto the corresponding face of the cube.

Consequently, this algorithm examines each face of the cube to identify such equilibria.

In each subgame, we fix the strategy s; of one player (i = 1,2, 3) to be 0 or 1. Fixing
one player’s strategy results in a 2 X 2 game, for which we compute all equilibria. This can
be done by simple case distinction for 2 X 2 games or using the IrsNash algorithm [3], which

enumerates all equilibria of any two-player game.

In the next step, for each equilibrium component of the subgame, denoted as s_;, the
strategies of the two players in the subgame, along with the pure strategy of the fixed player,
form the strategy profile for the three-player game. We then change the fixed player’s
strategy to the opposite value (0 if s; = 1 and 1 if s; = 0). If the original strategy profile
yields a payoff that is at least as high for the fixed player as the modified strategy profile,
then the original strategy profile is a partially mixed or pure Nash equilibrium (PMNE) of

the game.

Algorithm 1 provides a simplified pseudo-code.

Algorithm 1 Finding partially mixed and pure equilibria
Input: Payoff table (1.1) of a2 X 2 X 2 game

Output: Set of partially mixed and pure equilibria of the game
1: PMNE « 0
2: for each player i do
for s; € {0,1} do
SG « 2 x 2 game when player i plays s;

cand « all Nash equilibria of SG > using 1rsNash or case distinction

if U;(s;,5-;) = U;(1 — s, 5_;) then » U; is the expected payoff for player i
add (s;, s_;) to PMNE
end if
10: end for

3
4
5
6: for each s_; € cand do > strategy pair of the other two players
7
8
9

11: end for
12: end for
13: return PMNE

31

1. Equilibrium Enumeration for 2 X 2 X 2 Games

Lemma 1.6. Assume P, is the set of equilibria found using Algorithm I and P, is the set
of all partially mixed and pure equilibria of the game. Then, P, = P,,.

Proof. We start with proving P, € P,,. Suppose x € P, is found using the algorithm.
Then, 3, such that x; € {0, 1} and x = (x;,x_;), where i is the player from the first for
loop, and x; is the fixed strategy. Clearly, since x; is a pure strategy, if x is an equilibrium,
then it would be either partially mixed or pure. Thus, it is sufficient to show that x is an

equilibrium.

Towards a contradiction, assume that x is not an equilibrium. Then, representing the

expected payoff function of player i as U; we have:
35 Hx_jE [0,1] : Uj(x'j,x_j)>Uj(xj,x_j).

Player j cannot be any index other than i because x_; is an equilibrium of the 2 X 2 game (
line 4 of algorithm). From the expected payoff function U; of player i, and line 7 of the

algorithm, we have:

Ui(Xi,x-) = %5.Ui(0,x_;) + (1 =x)U; (1, x—;) > Ui(xi,x-;)

= max(U;(0,x_;), Ui (1,x_;)) > Ui(xi,x-;) = max(U;(0,x-;), Ui (1,x_;))

which is a contradiction. So, the assumption does not hold and x € P,,.

For the second part of the proof, we assume x € P,,. According to the definition of
partially mixed equilibria, 3i : x; € {0, 1}, a player who plays a pure strategy. Since x is an
equilibrium, it will be an equilibrium for the 2 X 2 games when we fix player i’s strategy
to be x;. This means x € cand in line 5 of the code, when player = i and s; = x;. Then

because x is an equilibrium,
Vi Vx; €[0,1]: Ui(x) > U;(x;,x-;).

This means the condition in line 7 of the algorithm holds, and x will be added to PMNE. So
x € P,. Combining the two parts of the proof, we have P, = P,,. O

Algorithm 1 also applies when the 2 X 2 subgame is degenerate and cand is an infinite
component of equilibria. Such a component may be a line segment or even the entire face
of the cube.

The case where cand spans an entire face of the cube implies that all points on player i’s
strict surface on that face are equilibria of the game. Since the intersection of a face of
the cube with the best-response correspondence of the player has parametrised boundaries,
either straight lines or hyperbolic branches (see Section 1.1.4), this case is straightforward
to handle.

In the remaining case, where cand contains a line segment, the algorithm identifies
the intersection of player i’s indifference surface with cand, as this is where player i’s

best response may change. This intersection is efficiently computed using the fact that

32

1. Equilibrium Enumeration for 2 X 2 X 2 Games

equilibrium line segments in 2 X 2 games are either horizontal or vertical. As a result, one
player’s strategy remains fixed along the segment, while only a single variable changes,

making the intersection point simple to compute.

1.3.2. Computing Completely Mixed Equilibria

In this section, we assume that all partially mixed equilibria have been computed using the
previous algorithm. Here, we focus on computing the completely mixed equilibria, if they

exist.

In Section 1.1.4, we illustrated the geometric representation of indifference surfaces.
The intersection of these surfaces for all players corresponds to the completely mixed
equilibria of the game. Therefore, in Section 1.1.5, solving the indifference equation system

led us to three quadratic equations, one for each player’s mixed strategy.

The quadratic equation of each player, unless it simplifies to 0 = 0, has at most two
solutions for the player’s mixed strategy parameter. These solutions must lie within (0, 1)

to represent valid mixed equilibrium strategies.

An important result derived from the quadratic equations is that a non-degenerate (and
therefore generic) 2 X 2 X 2 game has at most two completely mixed equilibria, as proved in

more complex ways by [11] and [44].

Theorem 1.7. Any non-degenerate 2 X 2 X 2 game has at most two completely mixed

equilibria.

Proof. According to Definition 1.4 of non-degenerate games, either the quadratic equation
of one player has no solution in (0, 1), or the quadratic equations of all players have at most

one or two solutions in (0, 1) (but never infinitely many).

In the first case, the game has no completely mixed equilibria, since the coordinates of
any such equilibrium must satisfy all players’ quadratic conditions. This aligns with the

statement of the theorem.

In the second case, a solution to one player’s quadratic equation determines their mixed
strategy, which then reduces the indifference equations of the other two players to linear

equations with at most one solution for their respective mixed strategies.

For instance, in the indifference equation system (1.16), fixing a value of p reduces the
second and third equations to linear equations in r and g, respectively, with at most one
solution for each. In a non-degenerate game, these reduced equations cannot yield a trivial
equation 0 = 0, as that would correspond to a degenerate game where the original quadratic

equation also has infinitely many solutions.

Therefore, for each solution of the quadratic equation, at most one equilibrium can be
defined, which is feasible only if the other mixed strategies can be derived from this solution
and all mixed strategies lie within the [0, 1]? cube. Hence, the number of completely mixed

equilibria is at most two. O

33

1. Equilibrium Enumeration for 2 X 2 X 2 Games

To compute the completely mixed equilibria of a 2 X 2 X 2 game, we begin with the
quadratic equations. If any of these equations has no solution in the interval (0, 1), then the
game admits no completely mixed equilibrium. By examining the solutions of the quadratic

equations, we can already determine whether the game is non-degenerate.

When the quadratic equations do admit solutions in (0, 1), we substitute these values
into the players’ indifference equations to compute the remaining mixed strategies. If all

resulting parameters lie within the interval (0, 1), the solution constitutes an equilibrium.

It is worth noting that if p, g, and r are the solutions to the quadratic equations, they may
be irrational numbers in a completely mixed equilibrium. These values can be represented
as approximate floating-point numbers or symbolically as algebraic numbers involving

square roots, assuming the payoffs are given as rational inputs.

In degenerate games, the quadratic equations may hold trivially in the form 0 = 0,
which can indicate an infinite solution set. For example, equation (1.20) becomes trivial in
case (a)when A=K =L=M =0.

Moreover, even if equation (1.20) has two real solutions for p, the third equation in
system (1.16) may simplify to O = O for one or both values of p, leaving ¢ undetermined. In
such cases, equation (1.21) may also reduce to 0 = 0, resulting again in an underdetermined

solution.

Another source of infinite solutions arises when any of the mixed strategy variables p,
g, or r take boundary values O or 1. In such cases, the corresponding player plays a pure
strategy and is not required to satisfy an indifference condition, allowing the indifference
equations to hold trivially. These cases are addressed in the analysis of partially mixed

equilibria, as discussed in the previous section.

To compute all completely mixed equilibria, we begin by solving the quadratic equations.
If any of these equations has no solution in the interval [0, 1], then the game does not admit
any completely mixed equilibria. Determining the solutions to the quadratic equations also

reveals whether the game is non-degenerate.

For non-degenerate games, for a quadratic equation that has solutions in [0, 1], we
substitute these into the indifference equations of the players to compute the other mixed
strategies (if possible). If all resulting parameters lie within [0, 1], then the resulting strategy

profile defines a completely mixed equilibrium.

A noteworthy point is that if p, g, and r are the solutions to the quadratic equations,
they may be irrational numbers. In such cases, these can be represented approximately using
floating-point numbers or symbolically using square roots as algebraic numbers, assuming

rational payoffs as input in our code.

In degenerate games, quadratic equations may reduce trivially to 0 = 0, which can
indicate an infinite set of solutions. For instance, equation (1.20) becomes trivial in case (a)
whenA=K=L=M=0.

Furthermore, even when equation (1.20) has two real solutions for p, the third equation in

system (1.16) might simplify to O = O for one or both values of p, leaving ¢ undetermined. In

34

1. Equilibrium Enumeration for 2 X 2 X 2 Games

11T 111
I . I:: R: I | [_4: R:
I a q ! a q
0 0 -7 1
Uil-p 0 2 U:l-p 0 2
0 0 0 0
0 0 1 1
D p 0 -2 D p 0 -2
-3 1 -3 1
F:1-r B:r

p p

Figure 1.6.: Example of a game with a line of mixed equilibria, when the quadratic equations
have infinitely many solutions (Test O in the Python code).

such cases, equation (1.21) often also reduces to 0 = 0, again leading to an underdetermined

system.

Another source of infinite solutions arises when any of the strategy parameters p, g, or
r take boundary values O or 1. In such cases, the corresponding player uses a pure strategy
and is not required to satisfy an indifference condition, allowing the indifference equations
to hold trivially. These cases are covered in the analysis of partially mixed equilibria, as

discussed in the previous section.

To compute all completely mixed equilibria in degenerate 2 X 2 X 2 games, one must
consider not only the quadratic equations but also the indifference surface equations that

express the relations between each pair of mixed strategy parameters.

An example of this case is the game shown in Figure 1.6. In this game, all the quadratic

equations yield 0 = 0, which, according to condition (ii) of Definition 1.4, implies the game

35

1. Equilibrium Enumeration for 2 X 2 X 2 Games

is degenerate. To determine the nature of this degeneracy and compute all completely mixed
equilibria, we examine the functional relations between each pair of strategy parameters:
ISi(g,r) : Ogr +4q +0r —3=0
IS,(r,p) : Orp +0r —4p +2=0

I1S3(p,q) : 8pg +8p + 8¢ —7=0

p=flg) = 35, q=f(p) = 3%
p=fr)= 1 q = f(r) 2.

As the coefficients of the r terms are zero in /S| and 1.S», r cannot be written as a function

of the other variables (as this would require division by zero). This also implies that during
the derivation of the quadratic equation in terms of r, multiplication by zero occurred.

Therefore, the parameter r is unrestricted, while p and ¢ are fixed. This defines a line

3

of equilibria in the r-direction, where p = % and g = 7, as observed in each player’s

best-response correspondence in Figure 1.6.

Taking into account all possible edge cases that arise in the quadratic equations and the
indifference surfaces, we compute all completely mixed equilibria using our Python code.

Below, we explain key ideas in our implementation.

When all payoff parameters of a player are zero (see Figure 1.2 (a)), the equilib-
rium computation reduces to finding the intersection of the other players’ best-response

correspondences. All points in this intersection are equilibria.

Additionally, when a player’s indifference surface has the form of a degenerate hyperbola
in the base plane, we decompose it into its two asymptote planes (see (1.15)) and compute
the intersection of each plane with the other players’ indifference surfaces. The union
of these intersections yields the equilibria. This method is preferred because degenerate
hyperbolas introduce edge cases in the formation of quadratic equations, and the resulting
equilibrium components may take different forms. Considering the asymptote planes

separately simplifies the interpretation.

Our analysis determines the number of unrestricted parameters and their relations to the
others, which define the structure of the infinite components of completely mixed equilibria.
The union of this set with the pure and partially mixed equilibria yields the complete set of

Nash equilibria. The infinite components of equilibria in a 2 X 2 X 2 game can be:
* 3-dimensional (e.g., the entire cube),
» 2-dimensional (e.g., parts of best-response correspondences, Test 37),
* 1-dimensional (e.g., lines, Test 0, or curves, Test 32), or
* O-dimensional (singleton points, Test 34),

where, for non-degenerate games, only 0-dimensional components (singleton points) are

possible.

36

1. Equilibrium Enumeration for 2 X 2 X 2 Games

You can run the test cases mentioned above in our Python code.

1.4. Graphical Representation of the Game

All the figures used in Chapters 1 and 2 of this thesis are generated by our Python code.
By specifying the payoff parameters of a 2 X 2 X 2 game, our program computes the
game’s equilibria, provides relevant details in text format, and generates an interactive 3D
representation of the game surfaces and equilibria, which can be rotated and examined in
detail.

We have also included a set of interesting test cases in the code, each corresponding to
a predefined game and identified by a test number. Throughout these chapters, we refer to
these test numbers for both the examples discussed and other notable cases not covered in
detail. You can run any of these test numbers in our program to view the corresponding

game.

In this section, we explain the graphical representation of the game (the output produced

by our code), which applies to all the figures used in this project.

Each graphical presentation consists of six subplots, arranged either horizontally (e.g.,
Figure 1.8) or vertically (e.g., Figure 2.1). The cube of mixed strategies, introduced in

Section 1.1.1, is shown in all these plots.

In each subplot, we display some of the best response correspondences and the curves
defined earlier, allowing us to examine them individually. The subplots are numbered row

by row, and we explain each one below:

1. The first subplot displays the best-response correspondence of all players along with
all equilibria. Due to the difficulty in distinguishing them, we also provide separate

plots in the subsequent subplots.

2. In the second subplot, the best-response correspondence of player I is plotted in red.
1081, the intersection of IS; and IS3, is represented in purple. The completely mixed
equilibria, found at the intersection of I0S; and BR;, are displayed in black, while
partially mixed (including pure) equilibria are shown in grey. Similar representations

are employed for other players.

3. The third subplot displays the best-response correspondence of player II in blue, along
with IOS; in purple, and equilibria in black and gray.

4. In the fourth subplot, the best-response correspondence of player III is depicted in

green, along with IOS3 in purple, and equilibria in black and gray.

5. The fifth subplot illustrates the intersection curves: 10S; in red, 10S; in blue, and
I0S3 in green. Equilibria are also represented in black and grey.

6. The final plot exclusively features equilibria, with completely mixed equilibria in

black and partially mixed (including pure) equilibria in grey.

To conclude this chapter, we work through a classic example from the literature.

37

1. Equilibrium Enumeration for 2 X 2 X 2 Games

Figure 1.7.: Example of best-response surfaces of a game with 9 equilibria: 4 pure, 3 just
partially mixed (not pure), and 2 completely mixed equilibria (Test 12 in the
Python code).

1.4.1. Selten’s Horse, a Well-Kknown Example

The extensive-form game shown in Figure 1.8 is a well-known example from Selten [61,
Figure 1]. Due to the shape of its game tree, it is commonly referred to as “Selten’s horse.”

The corresponding strategic form is displayed on the right.

This game is known to exhibit two segments of partially mixed equilibria and no
completely mixed equilibria. The best-response correspondences and equilibrium segments
are plotted below. These segments include the pure strategy equilibria ULF and DRB.

This example illustrates how degeneracy can arise naturally from extensive-form games.

38

1. Equilibrium Enumeration for 2 X 2 X 2 Games

In the computation of completely mixed equilibria for this game, the quadratic equation
in g (1.21) simplifies to 2 = 0, indicating that no real solution exists. This confirms that the

game admits no completely mixed equilibria.

Figure 1.8.: A well-known example: “Selten’s horse”, see Section 1.4.1 (Test 1 in the Python
code).

39

Upper Bound on the Number of
Equilibria in 2 X 2 x 2 games

In this chapter, we investigate bounds on the number of isolated equilibria in 2 X 2 X 2 games.
As explained through several examples in the previous chapter, components of infinite
equilibria can arise in degenerate games when the best response correspondences of the
players intersect in specific ways. However, we do not address such cases here. To establish
a bound on the number of isolated equilibria, we restrict our attention to non-degenerate
games, as defined in Definition 1.4. In Lemma 1.5, we proved that non-degenerate games

do not contain any components of infinite equilibria.

As shown by Nash [47], every finite game has at least one equilibrium in mixed
strategies. The example in Figure 2.1 shows a non-degenerate game with exactly one
(completely mixed) equilibrium point. This demonstrates that the lower bound on the

number of equilibria cannot be improved.

We now turn to studying upper bounds on the number of isolated equilibria in such

games.

2.1. Preliminary Lemmas

In Theorem 1.7, we proved that non-degenerate games can have at most two completely
mixed equilibria. In the following, we present lemmas that will help us in the subsequent

proofs.

Lemma 2.1. No non-degenerate 2 X 2 X 2 game has more than one equilibrium on any
edge of the cube.

Proof. Towards a contradiction, assume there are two isolated equilibria £; and E, on an
edge. Without loss of generality we assume E1 = (p’, q’,r]) and E> = (p’, ¢, 1)) where
p’.q €{0,1},r{,r5 € [0,1] and r| < rj. We want to prove that the line segment [E, E>]
is on all players’ best response correspondences.

Since E| and E» are equilibria, they are located on all players’ best-response corres-
pondences. Dependent on the coordinates of the points, the expected payoff of players I

and II are equal, greater or less than zero (from best response functions 1.3 and 1.4) but

2. Upper Bound on the Number of Equilibria in 2 X 2 X 2 games

Figure 2.1.: Example of a non-degenerate game with only one equilibrium (Test 43 in the
Python code).

the same for both points since the first two coordinates are equal. However, since the third
coordinate is different between the two points, both points have to be on the indifference
surface of player III (as it extends in the direction of the third coordinate). Without loss of

generality, We assume S(q’,77),S(q’,r5) < 0 and s(r{, p’), s(r}, p’) 2 0, then using the

41

2. Upper Bound on the Number of Equilibria in 2 X 2 X 2 games

notation in (1.9) we have:

Mgq'ri + Kq" + Lri + A < 0

IA
)

Mq’ré + Kq' + Lré + A

+

=
+
IS}
v
[e]

7’ 7 ’
mrip’ + krj
mrép’ + kré + Ip + a =2 0

!’ ! ’

up’'qs + «kp' + A¢ + a = 0
We define E; to be on the convex combination of E; and E>.

E =tEy+(1-0)Ey=(p'.q',tri+(1=0)r}), t€][0,1]

by multiplying first and third equation by ¢, second and fourth equation by (1 — ¢), and

summing them up,

Mgq'(tri+(1-0r)) + Kq' + Ltri+(1-0r)) + A < 0
m(tri+ (1 =0r)p" + k(@ri+1-0r)) + Ip’ + a > 0
up’'q’ + «p’ + Aq’ + a = 0

This proves that E, is located on the best response correspondence of players I and
II and on the indifference surface of player III. Therefore, E;, for all ¢+ € [0, 1], is also
an equilibrium. Hence, the points on the segment [E1, E»] form a component of infinite

equilibria, which contradicts the non-degeneracy of the game. O
Corollary 2.2. Any 2 X 2 X 2 non-degenerate game has at most 4 pure Nash equilibria.

Proof. This can be inferred from Lemma 2.1, because if we have more than 4 pure equilibria,
i.e., at least 5 pure equilibria, then at least 2 equilibria must be located on the same edge of

the cube, which, according to the previous lemma, results in degeneracy. 0

We explained what hyperbolas are in Definition 1.1, as the set of points (x, y) satisfying
the following equation:
(x—a)(y-b)=c (2.1)

where a, b, c € R.

Building on this definition, we now introduce the notion of a hyperbola function.

Definition 2.3. A hyperbola function h is a function i : R\ {a} — R\ {b}, defined by

C

x> h(x)=y=b+ 2.2)

X—da
for a non-degenerate hyperbola, that is, when ¢ # 0.

42

2. Upper Bound on the Number of Equilibria in 2 X 2 X 2 games

The following lemmas are straightforward to prove.

Lemma 2.4. The hyperbola function h in (2.2) is a bijection from R \ {a} to R\ {b}. Its

inverse is the hyperbola function h', given by

C

yeh(y)=x=a+—:. (2.3)
Lemma 2.5. Let d,e, f,g € Rwith f #+ 0and ef # dg. Then the function
XHy=jfi:Z (24)
is a hyperbola function of the form
oy 4, S0l 0s)

f x+g/f

The condition e f # dg in Lemma 2.5 ensures that the function in (2.4) is not constant.

We observe that the composition of two hyperbola functions is either linear or a
hyperbola function, except for being undefined on some points where one function takes
values of the respective asymptotes. This gives the formulation for IOS curves, which are

the intersection of Indifference Surfaces (IS), explained in Section 1.1.6.

Lemma 2.6. Leta,b,c,A,B,C € R, ¢ #0, C # 0, and consider the hyperbola functions
x> yforx #ain(22)andy v zfory + Ain

C

=B+ . 2.6
ym—z y_A (2.6)
Then the composition x — z of these functions is either a line, if b = A, given by
C C
xr—>z=—x——a+B (x #a), 2.7
c c
or, if b # A, is the hyperbola function
C —Cc/(b - A)? c
=B+ + N + . 28
T b—A x—-a+c/(b-A) (x#a x#a A—b) (2.8)

Proof. If b = A, then (2.7) holds as factors in » and A in the denominator of the equation

below cancel each other. c

b—A+ =<

X—a

z=B+

If b # A then (2.8) is obtained by substituting y from (2.2) into (2.6) as above and applying
Lemma 2.5 with x — a instead of x and d = C, e =0, f = b — A, g = c. The inequality

xX#a+ ﬁ prevents the case y = A and a zero denominator in (2.8).]

The next lemma may appear simple, but it plays a key role in the proof of our main

theorem.

43

2. Upper Bound on the Number of Equilibria in 2 X 2 X 2 games

Lemma 2.7. Any two distinct non-degenerate hyperbolas intersect in at most two points.

C
X—a

a+A,b+#B,c#0,and C # 0 (to exclude degenerate cases).

Proof. Supposey =b + andy =B+ X_LA are two non-degenerate hyperbolas, where

The intersection points are the solutions to

which can be rearranged to
B-b)(x-A)(x—a)+C(x—a)—-c(x—A)=0.

This is a quadratic (or possibly linear) equation in x, which has at most two real solutions.

Therefore, the hyperbolas intersect in at most two points. O

Finally, the next lemma shows that the branches of a hyperbola never meet.

Lemma 2.8. In a non-degenerate hyperbola with ¢ # 0 as in (refhyp), the branches maintain
a positive distance of 2N2c from each other.

Proof. Without loss of generality, assume the hyperbola is centred at the origin, so that

a = b = 0 in (rethyp). The equation becomes:
Xy =c.

The two branches of this hyperbola are symmetric with respect to the origin. The shortest

distance between them occurs along the line y = xif ¢ > 0,or y = —x if ¢ < 0.

Consider the case ¢ > 0; the case ¢ < 0 follows by symmetry. Substituting y = x into

the equation xy = ¢ gives:

Thus, the minimum distance between the branches is 2V2c.]

2.2. Upper Bound Theorem

The main result of this chapter is the following theorem.

Theorem 2.9. Any generic 2 X 2 X 2 game has at most nine equilibria.

44

2. Upper Bound on the Number of Equilibria in 2 X 2 X 2 games

The proof of Theorem 2.9 requires several preliminary discussions and results, which we

present first. The complete proof is provided towards the end of this section in Section 2.2.2.

From Theorem 1.7 and Corollary 2.2, we have established that each non-degenerate
game contains at most two completely mixed and four pure equilibria. To derive the upper
bound on the total number of equilibria in a non-degenerate game, we focus on the scenario
in which a game attains the maximum number of completely mixed and pure equilibria. We

then analyse the possible existence of partially mixed equilibria.

Theorem 2.10. Let G be a non-degenerate 2 X 2 X 2 game with four pure Nash equilibria.
On the cube of mixed strategies, define player i’s faces as those on which player i’s strict
surfaces lie. Then, for any 10S; curve of playeri € {1,2,3} (as defined in Section 1.1.6), if
both endpoints of 10S; that lie on player i’s faces correspond to partially mixed equilibria,

then the game G cannot have two completely mixed equilibria.

Proof. Starting with the assumption of four pure equilibria, Lemma 2.1 establishes that no
other equilibrium points can exist on the edges of the cube, as each edge already contains

one pure equilibrium.

Thus, the pure equilibria must be non-adjacent and located on opposite sides of each
face of the cube. There are only two possible configurations for the four pure equilibria.

Without loss of generality, we assume the four pure equilibria are:
(1,0,0), (0,1,0), (0,0,1), and (1,1,1).

For the other configuration, the structure of the proof remains the same.

Moreover, we exclude indifference surfaces that take a linear form, as these can be
viewed as simplified hyperbolas containing only a single branch. In non-degenerate games,

such linear cases yield fewer equilibria and are therefore excluded from our analysis.

In games where the indifference surface of at least one player takes the form of a
degenerate hyperbola on the base plane, the IOS curves and corresponding strict zones
reduce to linear forms. This simplification makes the enumeration of partially mixed

equilibria more tractable. Therefore, we analyse these cases separately in Appendix 3.2.

Consequently, in this theorem, we focus on games in which the best-response corres-
pondences of all players take the form of non-degenerate hyperbolas in the base plane.
We present the proof for the IOS;3 curve, noting that the analysis for the other IOS curves

proceeds analogously.

Consider the base plane of player III, which we denote by the set Z = [0, 1] x [0, 1]
representing the mixed strategies (p, ¢) of the opponents (players I and II). As described
and illustrated in Section 1.1.2, the indifference surface 1S3 of player 3 divides the set Z
into two strict zones, denoted Zy and Z, (short for Zone” and Zone'), corresponding to the

regions where the best response lies on the r = 0 and r = 1 planes, respectively:

Zo={(p,q) € Z|o(p,q) <0}, Z1={(p,q) € Z|o(p,q) > 0}. (2.9)

45

2. Upper Bound on the Number of Equilibria in 2 X 2 X 2 games

Since 1S3 projected on its base plane is I3 = {(p,q) € R | o(p, q) = 0}, we have that
Z is the disjoint union of Zy, I3, and Z;. By our assumption on pure equilibria, (1,0) and
(0, 1) belong to Zy, and (0,0) and (1, 1) to Z;.

The best-response correspondence BR3 for player 3 is given by the set
BR3 = (Zox{0}) U (I3 x [0,1]) U (Z; x {1}), (2.10)

as shown in Figure 2.2 as an example.

[T

v P

4

Figure 2.2.: Left: Cube of mixed-strategy probabilities (p, ¢, r) drawn (as in game table 1.1)
down, right, and backwards. Right: A best-response surface of player 3.

We consider the indifference surfaces, projected on their base planes, /1, I, I3 as
hyperbola functions h;, hy, hsz, respectively, restricted to those arguments where their

domain and range are in [0, 1].

From the assumption of four pure equilibria, it follows that the hyperbola functions
hi, hy, and h3 must each have two branches in their respective base planes, in order for the
best-response correspondences to intersect at the specified pure equilibria. This assumption
excludes simpler cases with fewer branches that can potentially lead to a smaller number of
partially mixed equilibria. For example, if I} does not intersect the edge » = 1 of the top
face, then /053 cannot have a partially mixed equilibrium on the face r = 1 of the cube

since it is not defined there.

Therefore, the hyperbola function h; for i = 1,2, 3 is restricted to a pair of suitable
intervals [0, u;] U [v;, 1] with O < u; < v; < 1 such that {h;(u;), h;(v;)} = {0,1}. We

consider 4 and &, as functions of r, and /A3 as a function of p (this is arbitrary), as follows:

q = hi(r), Iy = {(hi(r),r) [r€[0,u1] U vy, 1]},
p = ha(r), L = {(ha(r),r) | r € [0,uz] U [v2, 1]}, 211
q = h3(p), I3 ={(p.h3(p)) | p € [0,uz] U [v3, 1]}.

46

2. Upper Bound on the Number of Equilibria in 2 X 2 X 2 games

hy(1)

V2

h3(1)

v

P

Figure 2.3.: The indifference sets I (red branches, top face of the cube), I, (blue branches,
left face of the cube) and /3 (green branches, front face of the cube) drawn as
hyperbola functions % (r), hy(r), and h3(p), respectively. The purple branch
segments of a hyperbola on the front face of the cube are the projections (p, g) =
(ha(r), hi(r)) of the curve 10S3 = (hy(r), hi(r), r) that is the intersection of
indifference surfaces of players 1 and 2, here for r € [0, u3] U [vy, 1] because
U <up <vy <Vvi.

Figures 2.3 and 2.4 show examples of these hyperbola functions, drawn on the sides of

the mixed-strategy cube for players 1, 2, 3 in the colours red, blue, and green, respectively.

We show how the completely mixed equilibria of the game can be completely identified
by considering the two-dimensional square Z, drawn as the front face of the cube (where

r = 0) in the figures and projecting I0S3 on this face.

The Nash equilibria of the game are the elements of the intersection of the three
best-response correspondences BR; N BR, N BR3. The strict surfaces of different players
can only intersect on the edges of the cube as they are located on different faces. In this
setting, they can only intersect in the pure equilibria, as there are no equilibria on edges.

Therefore, to find the partially mixed equilibria, we study the intersection of opponents’

47

2. Upper Bound on the Number of Equilibria in 2 X 2 X 2 games

ui

ha(1)

B3O\ (0) ¥

h3(1)

v

P

Figure 2.4.: Here, the intersection of the best-response correspondences of players 1 and 2
consists of three curve segments, given (hy(r), hi(r),r) for r € [0,us] U
[vo,u1] U [vy, 1] because u; < v, < u; < vy. Projected to the front face, the
endpoints V and W of the first and last segment are in different zones Zy and Z;
and define partially mixed equilibria for » = 0 and r = 1, respectively. There is
only one completely mixed equilibrium, shown with its projection K.

indifference surfaces (I0S curves) with the players’ strict surfaces. The completely mixed

equilibria are the intersection of all players’ indifference surfaces.

The set I0OS; = IS; N IS,, which is the intersection BR; N BR; restricted to the interior
of the cube, is the curve parametrised by r given by (p, ¢) = (ha(r), h1(r)).

Hereby, the I0S3 curve (including its endpoints for » = 0, 1) consists of up to three
continuous parts, where r is defined both for £, and £, so that the hyperbolas are restricted
to [0, 1]?, that is, for

reR=([0,uz2] U [va, 1]) N ([0, u1] U [vy,1]), (2.12)

48

2. Upper Bound on the Number of Equilibria in 2 X 2 X 2 games

which may be a union of two intervals (as in Figure 2.3) or three intervals (as in Figure 2.4),
depending on the relative order of uy, vy, us, vo, where uy, v are the endpoints of /; and

uy, vy are the endpoints of /.

The key observation is that the projection of 1083 = (hy(r), hi1(r)) to Z is again a
hyperbola (or a line), which we denote by H, with the additional restriction (2.12). Namely,
as a function of p, this composition is given by

g =h(hy'(p)) = H(p), (2.13)

which, within Z, is either a hyperbola or a linear function, as established by Lemmas 2.4
and 2.6.

Note that the hyperbola function H(p) is a function defined on all of R except for up to
two points for p where A5 I(p) and h, (hy '(p)) are undefined.

Projected on Z, this hyperbola H is drawn on the front face of the cube in Figures 2.3
and 2.4 in purple (including the dashed curve). The intersection of H with the (green)
hyperbola I3 is given by the pairs (p, g) where ¢ = H(p) = hl(hz‘l (p)) = h3(p), which
are the projections of completely mixed equilibria onto the front face. In Figure 2.3, these
are the points Y and K. The third-dimensional coordinate of these points is r = h; L(p),

which defines the completely mixed equilibrium (p, ¢, r).

A line and a non-degenerate hyperbola have at most two points in common, and so do
two hyperbolas by Lemma 2.7. Hence, a generic 2 X 2 X 2 game has at most two completely
mixed equilibria, which are intersections of H and /3. We emphasise here that these two

hyperbolas and their intersections are not limited to the range [0, 1].

Imagine the endpoints of 7053 on the front and back faces of the cube are (p’, ¢, 0)
and (p”’,q”’,1). These points correspond to partially mixed equilibria if, by the definition
(2.10) of BRs, the points are in different zones, since they are on different faces of the cube.

We define their projections V and W to Z as
V=(p'.q") = (h(0),11(0)) € Zy, W=(p",q") = (ha(1), (1)) € Z;. (2.14)

Examples of these points V and W are shown in Figures 2.3 and 2.4, projected onto the
front face, although (W, 1) is actually located on the back face in the 3D representation.
Only in Figure 2.4 we have that V € Zy and W € Z; and hence the equilibrium property.
This is not the case for Figure 2.3 as only (V, 0) is an equilibrium and (W, 1) is not.

For V and W to represent equilibria and therefore be in different zones, they must be
separated by a branch of h3. For example, if W in Figure 2.3 were located at the position
of W, then W’ € Z;. The claim is that, in this case, we would lose the completely mixed

equilibrium (K, r) for a suitable r.

The main idea behind the rest of the proof is that the configuration of H (purple) and
hsz (green) depicted in Figure 2.5, where V and W are in different zones and the game has

two completely mixed equilibria K and Y, is not possible because V and W are on the same

49

2. Upper Bound on the Number of Equilibria in 2 X 2 X 2 games

branch of H. This then results in the loss of the mixed equilibrium that would exist between

them if the game were not restricted to the [0, 1]° cube, on the dashed line in Figure 2.4.

Figure 2.5.: The impossible intersection of H and /3.

Because V and W are of the form (h,(r), h1(r)) for some r and therefore of the form
(p, hi(hy I(p)) (where r = hy '(p)), we have argued that V and W are part of the hyperbola
or line H on the front face Z, by Lemma 2.6. We now show that they belong to the same
branch of H, with a missing part (shown as a dashed curve in Figures 2.3 and 2.4) where H
does not intersect with the hyperbola A3 if V and W are in different zones (as in Figure 2.4).

Because this intersection is missing, it accounts for the lost completely mixed equilibrium.

As part of a branch of H, consider the path (projected to the square Z) of pairs
(ho(r), h1(r)) which starts at V for r = 0 and is increasing in r. In both Figure 2.3 and 2.4,
p = ha(r) is a decreasing function of » and becomes zero when r = u; (by our assumption

on pure equilibria, uy < 1, otherwise (0,0, 1) would not be a pure equilibrium).

In Figure 2.3, g = h)(r) is decreasing in r, and and in Figure 2.4, i (r) is increasing
in 7. When r = u;, we obtain A (r) = 0 in Figure 2.3 respectively & (r) = 1 in Figure 2.4.
In both cases we plotted here u; > uy, so the path (hy(r), h1(r)) ends when r = u, at the
point U at the top edge of the front square Z of the cube, where ¢ = hj(u2). This could
equally have ended on the left or right edge, depending on the order of u; and u; or if Ay

was increasing.

A similar consideration applies to the path of pairs (h,(r), h1(r)) when started at the
point W for r = 1 and reducing r, except that the path now goes in the opposite direction
and terminates at some other edge of Z, at the point X. Here in both figures X = hy(vy),
because v{ > vy and h(r), ha(r) € [0,1] when r € [vy, 1]; if vi < v, then that path of
pairs (h(r), hi(r)) would end at the bottom edge of Z when r = v,.

To summarise, the segments of the /0S5 curve correspond to the intervals in (2.12). The
endpoints of these segments on the faces of the cube are determined by the monotonicity of
h1 and hy (increasing or decreasing), as well as the order of uy, vy, u, and v,. For instance,

in Figure 2.4, the segment between X and W corresponds to values of » € [vy, 1], while the

50

2. Upper Bound on the Number of Equilibria in 2 X 2 X 2 games

segment between V and U corresponds to values of r € [0, u;]. The third segment, which
may contain the completely mixed equilibrium not discussed in this proof, corresponds to

values of r € [vy, u1].

We prove that the points V and W are on the same branch of the hyperbola H, defined
by the pairs (hy(r), hi(r)) = (p, q) where ¢ = H(p)) when p is also allowed to take values
between h,(0) and /5 (1). This interval corresponds to the part of the hyperbola /; that is
not located on the [0, 1]? face on the left, because r = h; !(p) becomes negative or greater
than 1. Consequently, for the hyperbola H = hy(h; (p)), this part is shown as the dashed

line, as it lies outside the [0, 1] cube.

Let

C
p|—>r=h2_1(p):b+ ¢ , r—qg=h(r)=B+
r—

(2.15)

Note that the asymptotes a, b, A, B of both hyperbolas in (2.15) are between 0 and 1. If
¢ > 0then hy(0) < hp(1) as in Figures 2.3 and 2.4; if ¢ < 0 then A,(0) > hy(1).

First, suppose that b = A. According to Lemma 2.6, the composition p — g =
hi(hy Y(p)) = H(p) is then a linear function. The corresponding line (obtained when
p € R —{a}) contains the points V and W, which determines the line uniquely (H as a line
has only one branch). This line, which can have at most two intersections with /3, loses the

gap of the line between W and V in Z when
p € (h2(0), ha(1)) = {a} (ifc >0), p € (ha(1),h2(0)) - {a} (ifc <0), (2.16)

respectively. This implies that the completely mixed equilibrium between V and W does
not exist. While this intersection point of H and /&3 must exist for V and W to be in different
zones, it is not a completely mixed equilibrium of the game because, for values in the
interval (2.16), r does not lie within [0, 1].

Now assume b # A. Then, as r — —oco and r — oo, the value of p = h,(r) approaches

a arbitrarily closely. Consequently, ¢ = i (r) approaches B arbitrarily closely.

This implies that the gap between W (as r — oo) and V (as r — —oo) disappears, which
is only possible if V and W lie on the same branch of H. According to Lemma 2.8, the two

branches of a hyperbola have a positive distance between them.

Therefore, similar to the line case, the intersection point of /3 and H, (p, g¢) = (a, B),
which explains why V and W are in different zones, is not a mixed equilibrium of the game.

This is because, for p being in the interval (2.16), we have that » ¢ [0, 1].

The two hyperbolas H and /3, when unrestricted, intersect in at most two points, but
one of these intersection points is on the said gap of the branch of H between W and V as
we saw in the cases above. Hence, H and /3 lose one of the intersections, and the game has

at most one completely mixed equilibrium, as claimed. O

Corollary 2.11. Any non-degenerate 2 X 2 X 2 game with four pure and two completely

mixed equilibria has at most three partially mixed equilibria.

51

2. Upper Bound on the Number of Equilibria in 2 X 2 X 2 games

Proof. Theorem 2.10 establishes that, in the presence of two completely mixed equilibria,
no two opposite faces of the cube can both contain non-pure partially mixed equilibria.
Therefore, a game with four pure and two completely mixed equilibria can have at most one
non-pure partially mixed equilibrium per 10S curve, which is one along each axis, yielding

a maximum of three partially mixed equilibria. O

Corollary 2.11 proves an upper bound on the number of partially mixed equilibria by
assuming the maximum number of pure and completely mixed equilibria, which gives an

upper bound of nine on the total number of equilibria.

In general, the projected IOS curves on any face of the cube form hyperbolas (according
to Lemma 2.6). Therefore, they have at most two intersections on the two opposing faces of
the cube. These intersections could be partially mixed equilibria, namely if they are also on
the best-response correspondence of the remaining player. Thus, the three IOS curves can

lead to at most 6 partially mixed equilibria in non-degenerate games.

To better understand these hypothetical partially mixed equilibria, assume that our
2 X 2 x 2 game has four pure equilibria. Each face of the cube is given by one player playing
a pure strategy and defines a 2 X 2 game between the other two players with two pure and
one mixed equilibrium. This mixed equilibrium defines a partially mixed equilibrium of the

three-player game if the fixed player’s pure strategy is a best response.

Harsanyi [24] proved that the total number of Nash equilibria in a generic game is odd.
Corollary 2.11 leaves open the possibility that there exists a partially mixed equilibrium on
each face of the cube. Together with the four pure and one completely mixed equilibrium,
this would yield a total of 4 + 6 + 1 = 11 equilibria.

We show that this configuration is not possible by invoking the concept of the index
of an equilibrium. This concept also rules out the scenario in which there are four pure
and five partially mixed equilibria, but no completely mixed equilibrium (which would still

yield only nine equilibria).

2.2.1. Concept of Equilibrium Index

For any finite game, its set of Nash equilibria in mixed strategies is the union of closed
connected sets, called the (topological) equilibrium components; this follows from the fact
that equilibria are the fixed points of a suitable continuous map on the set of mixed-strategy
profiles, such as the map used by Nash [47]. In a generic game, all equilibria are isolated

points; that is, all components are singletons.

The index is an integer that is assigned to every equilibrium component. It has the
following properties for any generic game (we deliberately talk about generic rather than

non-degenerate games in the remainder of this section).

1. Every equilibrium is isolated and has index +1 or —1.

52

2. Upper Bound on the Number of Equilibria in 2 X 2 X 2 games

2. In a two-player game, the endpoints of any path computed by the algorithm of Lemke
and Howson [42] are equilibria of opposite index, including an artificial equilibrium

(which is not a Nash equilibrium) that has index —1.
Every pure-strategy equilibrium has index +1.
The sum of the indices over all Nash equilibria is +1.

The index only depends on the payoffs in the equilibrium support.

SN

In a 2 X 2 game with two pure equilibria, the mixed equilibrium has index —1.

For two-player games, the definition of the index, and proof of these properties, is due
to Shapley [63]. For a streamlined account, see von Stengel [66], with a summary in [32].
Giil, Pearce and Stacchetti [22] showed that these properties extend to n-player games by
defining the index via the fixed points of a suitable map, and a corresponding definition of

an index for such fixed points.

In a mixed equilibrium of a generic two-player game, the players’ mixed strategies have
supports of equal size, and, assuming positive payoffs, the sub-matrices of the two players’
payoff matrices for these supports have nonzero determinants. The index of the equilibrium
is defined as the product of the signs of these determinants for each player, times —1 if the

support size is even. It is easy to see that this implies properties 3., 5., and 6. above.

Property 2. proves the important Property 4.1t also implies Property 3. as every pure
equilibrium can be reached from the artificial equilibrium via a Lemke—Howson path by

selecting an appropriate missing label.

Properties 1. and 4. together imply that there is exactly one more Nash equilibrium of
index +1 than of index —1. Moreover, the total number of Nash equilibria in a generic game
is odd, since each Lemke—Howson path connects two unique equilibria of opposite index,
and the artificial equilibrium should not be counted. The odd number of equilibria was

shown independently by Harsanyi [24] for n-player games.

For an n-player game, the definition of the index is more complex. We think that it is
possible to give a much simpler self-contained definition and proof of the above properties
for a2 x2x?2 game. We discuss this further below. For now, we assume the above properties

also for 3-player games.

53

2. Upper Bound on the Number of Equilibria in 2 X 2 X 2 games

The index of partially mixed equilibria

Consider a generic 2 X 2 X 2 game with 4 pure equilibria. Then if one player plays a pure
strategy, the resulting 2 X 2 subgame between the other two players has two pure equilibria,
and a mixed equilibrium of index —1 by property 6. (Note that our normalisation in (1.1)
allows for positive and negative payofts; to apply the definition of the index in terms of
signs of determinants, all payoffs need to be shifted to become positive, but this is otherwise

immaterial.)

The mixed equilibrium of the 2 X 2 subgame defines a partially mixed equilibrium of
the 2 X 2 X 2 game if the pure strategy of the fixed player is a best response. Crucially, the
index of this partially mixed equilibrium (with two further pure equilibria on the same face
of the mixed-strategy cube) remains —1. This is a consequence of property 5., because the

pure-strategy player is inactive. This leads to the following lemma.

Lemma 2.12. No generic 2 X2 X2 games can have 4 pure, 6 partially mixed equilibria, and
1 completely mixed equilibrium, nor can it have 4 pure, 5 partially mixed, and 0 completely

mixed equilibria.

Proof. For a game with 4 pure equilibria, all partially mixed equilibria have index —1. The
described possibilities have too many equilibria of negative index to achieve an overall
sum of 1 over all indices according to property 4. If there are 6 partially mixed equilibria
with index —1, then the remaining 5 equilibria will not lead to sum 1 even if they all have
index +1. The same applies to a game with 4 pure, 5 partially mixed, and O completely

mixed equilibria. 0

2.2.2. Completing the Proof of Main Theorem

Using the results of the previous sections, we now conclude the proof of Theorem 2.9. For

2 x 2 x 2 games, we have established the following:

1. In Corollary 2.2, we showed that the number of pure equilibria in non-degenerate
games cannot exceed four. The main idea was that if there are two equilibria on the
same edge, any point between them must also be an equilibrium. This argument also

applies to the class of games with finitely many equilibria.

2. In Theorem 1.7, we proved that the number of completely mixed equilibria in

non-degenerate games is at most two.

3. For partially mixed equilibria, the endpoints of the IOS curves on the faces of the
cube serve as potential candidates. Since there are three I0S curves, there can be
at most six partially mixed equilibria. In Corollary 2.11, we proved that if a game
has four pure and two completely mixed equilibria, then there can be at most three
partially mixed equilibria, giving a total of nine equilibria. This result holds for

non-degenerate games.

54

2. Upper Bound on the Number of Equilibria in 2 X 2 X 2 games

4. The fact that the number of equilibria must be odd was established by both Harsanyi
[24] and Wilson [73], under their respective definitions of n-player non-degenerate

games.

5. The concept of equilibrium index is defined for generic games. In Lemma 2.12,
based on prior work on index theory, we proved that the combination of four pure,
six partially mixed, and one completely mixed equilibrium is impossible in generic

games.

All the results above apply to generic games, as generic games are a subset of both non-
degenerate games and games with finitely many equilibria. Therefore, we have completed
the proof of the upper bound of nine equilibria in generic games, as no other combination

of equilibrium types can yield a higher number.

Furthermore, from the equilibrium index theory, we saw that this upper bound can only

be attained through the following combinations:
* 4 pure, 3 partially mixed, and 2 completely mixed equilibria, or

* 4 pure, 4 partially mixed, and 1 completely mixed equilibrium.

2.2.3. Discussion and Ongoing Work

The results used in the proof of the upper bound of 9 equilibria in Section 2.2.2 indicate
that many of the arguments extend beyond the class of generic games. In particular, to
generalise Theorem 2.9 to non-degenerate games and establish the same upper bound for

this broader class, it suffices to verify parts 4. and 5. for non-degenerate games.

Part 4., concerning the oddness of the number of equilibria, has already been established
for an alternative definition of non-degenerate games. To extend this result to our setting,
it remains to demonstrate either the equivalence or inclusion of our definition of non-

degeneracy within the framework introduced by Wilson [73].

Regarding part 5., for the extension of the index properties to non-degenerate games,

further investigation is required.

Much of the literature on the equilibrium index (which we do not survey here) relies
on advanced concepts from topology and fixed point theory. One key reason for this is
that the index is often studied in the context of equilibrium components, which may be
non-singleton sets when the game is not generic. In such cases, the index of a component is
defined by perturbing the game to a nearby generic one and summing the indices (+1 or —1)
of the resulting nearby equilibria. (It must be shown that this definition is well-defined, i.e.,

independent of the specific perturbation, which is not trivial.)

One question that arises in this context concerns the “strategic stability” of an equilibrium
component, that is, whether the component can vanish entirely, with no nearby equilibrium,
under a small perturbation of the payoffs. A necessary (though not sufficient) condition for

such instability is that the component has index zero (see, e.g., [15]).

55

2. Upper Bound on the Number of Equilibria in 2 X 2 X 2 games

Another question is the relationship between the index and the properties of evolutionary
dynamics. For example, the index can provide insights into which equilibria are dynamically
stable; see DeMichelis and Germano [14] and Demichelis and Ritzberger [15]. In the case
of generic games, Hofbauer [30] has shown that only equilibria with index +1 can exhibit

dynamic stability.

For our 2 X 2 X 2 games, an accessible geometric intuition of the index should be
the orientation of the normal vectors to the three best-response surfaces that meet at the
equilibrium. This orientation (right-handed or left-handed) corresponds to the sign of the
determinant of these normal vectors. It is easy to assign a normal vector to a player who
plays a pure strategy, namely the respective unit vector. However, normal vectors are not
uniquely defined where the best-response surfaces are not differentiable, and the partially
mixed equilibria appear exactly at the “edges” of these surfaces. A proper definition should
ignore the unused payofts of the pure-strategy player, in line with property 5. of index in
Section 2.2.1.

The fact that the overall index sum is +1 (property 4. of index) should then be the
consequence of applying Lemke-Howson paths in our three-player setting. These paths
have been generalised by Rosenmiiller [56] and Wilson [73] to N-player games. It would be
useful to demonstrate them for our 2 X 2 X 2 games and then to show property 2. of index,
which should not be too difficult.

For games with more than two players, Lemke—Howson paths are no longer line
segments but curves. In this context, the equivalence of the two definitions of non-
degeneracy, as mentioned in the discussion on extending part 4, becomes crucial. This
is because non-degeneracy is required for the Lemke—Howson algorithm, not only at
equilibria but along the entire path. The corresponding technical condition is likely to
be the “transversality” of best-response correspondences, meaning that their intersections
have the expected dimension reduction, similar to the intersection of linearly independent

hyperplanes. For a recent discussion, see Hertling and Vujic [29].

An important point in the proposed extension is that our Definition 1.4 of non-degeneracy
allows for games where indifference surfaces take the form of degenerate hyperbolas in the
base plane (which are clearly not generic). These can still yield isolated equilibria, provided
the asymptotes differ across players. Such games are considered by Hertling and Vujic [28]
in the context of n-player games with two actions per player, as their mixed equilibria are
relatively tractable and analytically accessible. For the case n = 3, we study these games in

Theorem 3.2 in the Appendix.

56

Conclusions to Part |

The computational complexity of finding Nash equilibria is often concerned with asymptotic
properties such as PPAD-hardness. In Section 6.3.3 in Part II of this thesis, we discuss
that PPAD-hardness, which concerns the problem of finding one Nash equilibrium, does
not imply intractability for games with a few hundred strategies. In contrast, finding all
Nash equilibria of a game definitely requires exponential effort, because the game may have

exponentially many Nash equilibria.

However, many concrete games are small and would benefit from a complete analysis
of all their Nash equilibria. This has been done for two-player games, but it is significantly
more difficult for general games with more than two players. Solvers based on solving
polynomial equations and inequalities often fail in degenerate cases, which can have an

infinite number of equilibria [57].

We considered the simplest multiplayer game, namely three players with two strategies

each, which had not been done before in this generality.

In Chapter 1, we studied the best-response correspondence of each player and its
representation in 3D. We investigated the intersection of best-response correspondences
algebraically and streamlined the corresponding expressions using determinants in the
quadratic equations (1.20), (1.21), and (1.22), exploiting the symmetry of the setup. We took
advantage of the fact that mixed-strategy profiles can be displayed in a three-dimensional

cube.

We extended the definition of non-degeneracy from 2-player games to our setting,
allowing identification of edge-case games based solely on the players’ payoffs. We showed
that non-degenerate games can only have finitely many singleton equilibria. Moreover, we

proved that in such games, the number of completely mixed equilibria does not exceed two.

To compute all equilibria of a general 2 X 2 X 2 game, we presented two algorithms.
The first algorithm computes the pure and partially mixed equilibria by investigating all six
subgames. An important insight is that computing partially mixed equilibria is a fruitful
approach. For larger games, this involves reducing the number of players and analysing the
subgames, which can already yield useful information about equilibria with relatively little

additional effort.

The second algorithm enumerates the completely mixed equilibria by identifying the
type of degeneracy (if any). Implementing this algorithm required a large number of case

distinctions for different forms of degenerate games.

Conclusions to Part 1

Another contribution of this chapter is a “proof of principle” that the complete
equilibrium set can be computed and visualised in full, regardless of how degenerate the
game is. We implemented a Python tool to compute the equilibria and visualise the games

using 3D graphics, which is available for public use [34].

In Chapter 2, we focused on bounds on the number of equilibria in 2 X 2 X 2 games. For
non-degenerate games, we established an upper bound of nine on the number of equilibria
under the assumption that there are four pure and two completely mixed equilibria. This
result was achieved through a step-by-step analysis of the indifference surfaces and their

intersection curves.

We showed that this upper bound can be realised in two different ways, and we explicitly
demonstrated one case with 4 pure, 3 partially mixed, and 2 completely mixed equilibria.
Furthermore, we discussed that by changing the payoffs, one of the completely mixed
equilibria (of negative index) may move towards a face of the cube and become a partially

mixed equilibrium.

Using results on the concept of the equilibrium index, we completed the proof of the
upper bound of nine equilibria for the class of generic games. We also noted that most of
our results apply to a broader class of non-degenerate games. The next step toward fully
establishing the upper bound of nine equilibria for all non-degenerate games is to prove

further properties of the index in this broader setting.

For analysing the Nash equilibria of larger games, it seems advisable to proceed
incrementally in the same manner: identifying degenerate cases, computing partially mixed
equilibria via subgame analysis, and employing algebraic solvers such as those used by

Datta [13], under the assumption of non-degeneracy.

The main question in this context is what types of multiplayer games researchers aim
to address. Restricting attention to models like polymatrix games, which rely on pairwise

interactions [8, 21, 31], may be a promising next step in this direction.

58

Appendix to Part |

3.1. Excluded Case of the Upper Bound Theorem

In our proof of Theorem 2.10, we excluded the case in which the indifference surface of at

least one player takes the form of a degenerate hyperbola on the base plane.

Since these forms are unstable under small perturbations (as they change into non-
degenerate hyperbolas), one might think that such cases do not require separate consideration
because the game is not generic. However, our proof of Theorem 2.10 applies to the broader
class of non-degenerate games, as defined in Definition 1.4. Non-degenerate games may
include indifference surfaces that take the form of degenerate hyperbolas, as these do not

necessarily lead to degeneracy in the game.

In fact, these cases were our starting point for proving the upper bound in Theorem 2.9,
as their special structure simplifies the study of IOS curves. Nonetheless, degenerate
hyperbolas can be viewed as the limiting case of hyperbolas in which the branches approach

their asymptotes.

The following lemma assists us in the analysis of these cases.

Lemma 3.1. In non-degenerate games, completely mixed equilibria do not lie on a line
parallel to any coordinate axis within the cube of mixed strategies. In other words, the

completely mixed equilibria cannot have two common coordinates.

Proof. The reasoning is similar to that of Lemma 2.1, with the key distinction that, in this
case, equilibria must lie on all indifference surfaces. Therefore, the inequalities used in

Lemma 2.1 are replaced by equalities.

It follows similarly that if two completely mixed equilibria lie on a line parallel
to any coordinate axis, then every point on the convex combination of these equilibria
would also satisfy the equilibrium conditions, leading to degeneracy, which contradicts the

assumption. O

We now study the cases involving degenerate hyperbolas in the following theorem.

Theorem 3.2. Let G be a non-degenerate 2 X 2 X 2 game with four pure and two completely

mixed Nash equilibria, in which the indifference surface of at least one player takes the

3. Appendix to Part I

form of a degenerate hyperbola. Then, for any 10S; curve of playeri € {1,2,3}, at most

one endpoint of 10S; corresponds to a partially mixed equilibrium.

Proof. We begin with the case where the indifference surfaces of all players are degenerate
hyperbolas on their respective base planes. Then, we progressively replace one of these

surfaces at a time with a non-degenerate hyperbola to study the subsequent cases.

As we focus solely on indifference surfaces of hyperbolic form in this theorem, we
rewrite the expected payoff equations in a “product form” to highlight the degenerate cases

of hyperbolas.
Thus, by considering M, m,u # 0 (i.e., only hyperbolas) in the expected payoff

equations (1.9), and using the hyperbolic representation introduced in (1.14) with renamed

parameters for clarity, we obtain:

S(g,r) = (q—q1) X (r—r2) - K
s(r,p) = (r=r1) X (p-p2) - Kz (3.1)

o(p.q) = (p—-p1) X (g—q2) — K5 .

This formulation expresses the expected payoff equations as hyperbolas, with asymptotes
given by g = g1 and r = r, for player I, r = r; and p = p, for player II, and p = p; and
q = q for player III. This reflects the symmetry of the formulation, which is based on the

cyclical order of the players as before.

Importantly, if K; = 0 for any j € {1, 2, 3}, then the corresponding indifference surface

IS j projected onto the base plane takes the form of a degenerate hyperbola.

As we study the upper bound on the intersections of indifference surfaces, we assume
that all players’ hyperbolic asymptotes lie within the open interval (0, 1). Otherwise, some
of the indifference surfaces would lie entirely outside the mixed strategy cube and, therefore,
would not yield feasible equilibria. Hence, we assume (p;, ¢;,7;) € (0,1)3 fori = 1,2, and
K; € Rfor j = 1,2,3. The edge cases where the asymptotes are equal to O or 1 are already

excluded by the assumption that the game is non-degenerate.

Moreover, the non-degeneracy of the game implies that p; # p2, q1 # g2, and r| # 1o,
as otherwise components of infinitely many equilibria could form in the interior of the cube,

which would violate condition (ii) in Definition 1.4 of non-degenerate games.

Now, for each of the following cases, we show that under the assumption of having four
pure and two completely mixed equilibria, any 10S; curve, for j € {1, 2, 3}, intersects the

strict surface of player j (SS;) in at most one partially mixed equilibrium.

60

3. Appendix to Part I

Case 1: Degenerate hyperbolas for all players

In this case, we assume that the indifference surfaces of all players have the form of

degenerate hyperbolas. Consequently, in equation (3.1), we have

Ki=K,=K;=0.

In this case, the intersection of any two indifference surfaces consists of three mutually
perpendicular lines. Therefore, the IOS curves have the following symmetric form, with an

example illustrated in Figure 3.1:

(p,g2.r1) p€0,1] (p,g2.r2) p€0,1]
I0S1 = Y(pr,q.r) qel0,1] I0S2 = 1(pi.q,r2) ¢€[0,1]
(p2.q2,1) 1 €[0,1] (p1.q1,x) 1 e€[0,1]
(p.q1.r1) pel0.1]
I0S; = 3(p2,q.72) ¢q€[0,1]

(p2,q1,x) re0,1]

Figure 3.1.: Example of a game with degenerate hyperbolas as indifference surfaces of all
players

Each IOS; consists of three lines parallel to the coordinate axes, with exactly one line
parallel to the j-th axis, along which player j’s indifference surface (/S;) extends. This
line can intersect player j’s strict surface SS; at exactly one point, since both endpoints of
the line lie within the same strict zone for player j. Consequently, each intersection of two
indifference surfaces can produce at most one partially mixed equilibrium (PME).

61

3. Appendix to Part I

Case 2: Two degenerate hyperbolas

Now, without loss of generality, we assume that IS, and 1S3 take the form of degenerate
hyperbolas, while IS is a non-degenerate hyperbola. Thatis, K; € R\ {0}and K, = K3 =0
in (3.1).

S(g,r) = (g—q1) x (r—-r2) - Kj
s(r,p) = (r—r1) x (p—p2)
o(p.q) = (p—p1) X (g-q2) .

Figure 3.2 illustrates an example of this configuration.

The curve I0S; remains the same as in the previous case, consisting of three perpen-
dicular lines. The argument from the previous case still applies: only one of these lines
aligns with the direction of IS;. Since this is a straight line, it can intersect the strict surface
SS; in at most one PME.

Now, we turn our attention to the other two intersection curves.

10S; = IS\ N1S; = (p’ rllilr2+Q1’rl) p € [0,1]
(P2.q.1) (q-a)x(r-r) =K, q.rel0]1]
K
108, = 153015, = 4 P92 @mq *r2) P € 01]
(Plaq,l') (Q—QI)X(F—rZ):Kl’ q7r€ [071]

Each of the curves IOS, and I0S3 consists of:
(i) a vertical line parallel to the p-axis,
(ii) a hyperbola fully contained on a plane with fixed p-coordinate.
We now prove the claim for IOS3; the same argument applies to IOS,.

Line (i) of IOS; is parallel to the p-axis, so it cannot intersect SS3. Therefore, any

possible endpoints of IOS3 that intersect SS3 must lie on the hyperbola part (ii).

Moreover, the game has two completely mixed equilibria (CMEs). According to
Lemma 3.1, at most one of these equilibria can lie on the line (i). Consequently, the
hyperbola (ii) must pass through at least one CME. This hyperbola lies on the plane p = p»
and therefore cannot intersect the IS3 on the plane p = p; (since p; # p3). Thus, the

remaining CME must lie on the intersection of this hyperbola with the plane ¢ = g, of ISs.

We claim that no indifference surface 1S3 in the form of a degenerate hyperbola can
intersect the hyperbola part (ii) of IOS3 in more than one PME.

Now, consider the two endpoints of this hyperbola on the faces r = 0 and r = 1 of the
cube, which are the possible candidates for PMEs. The hyperbola is entirely located on one
side of the asymptote plane p = p; of IS;. Therefore, considering the strict zones of 1S3
(which is a degenerate hyperbola), the two endpoints of hyperbola (ii) lie in different zones
only if the plane g = g lies strictly between the two branches of the hyperbola (ii), without
touching either branch.

62

3. Appendix to Part I

This contradicts the existence of a CME on the intersection of the hyperbola and the
plane ¢ = g». Hence, the endpoints of IOS3 on the faces r = 0 and = 1 project to the same
strict zone of player I1I, and therefore at most one of them can be a PME.

r

Figure 3.2.: Example of a game with two degenerate hyperbolas and one non-degenerate
hyperbola as indifference surfaces.

Case 3: One degenerate hyperbola

Here, we assume that players I and III have indifference surfaces that are non-degenerate

hyperbolas on their respective base planes. Thus, we define:

S(q.r) = (q—q1) x (r—r2) — K
s(r,p) = (r=r1) X (p—-p2)
o(p.q) = (p—-p1) X (¢—q2) - K3,

where K, K3 € R\ {0}, and K, = 0.

The I0S; and I0OS3 curves have the same structure as IOS3 in the previous case,
consisting of one hyperbola and one line. We therefore adapt the same idea to this case,
where the indifference surface of the player has changed to a non-degenerate hyperbola:

@) (P2 5y +q2.0) re[0,1]

10S; = IS, N 1S3

(”) (psq’rl) (P—PI)X(Q_QZ):K.% p,q € [091]
. K
i): ,——+qg1,r e [0,1
05, - 15 s, = 1@ @R rar) pelo]
@) (p2.q.x) (g—q1) x(r-r)) =Ky, gq,r€|0,1]

63

3. Appendix to Part I

Figure 3.3.: Example of a game with one degenerate hyperbola and one non-degenerate
hyperbola as indifference surfaces.

We now consider I0S;N IS, to illustrate how the proof adapts when applied to a
different player. The same reasoning applies to I0S3N IS;.

As in the previous case, the linear component (i) of IOS; cannot intersect IS; in more
than one CME. Therefore, the hyperbolic component (ii) of IOS; must intersect IS in at
least one CME to satisfy the assumption that the game has two CMEs. Additionally, the

line (i) cannot intersect SSy, since it is parallel to the r-axis.

Note that IS is a hyperbola on the ¢ X r base plane, extended in the p direction. Hence,
specifying a value of r uniquely determines a corresponding value of ¢ on this hyperbola,
while p can vary freely in [0, 1], resulting in a vertical line segment parallel to the p-axis

on IS;.

Because the hyperbola (ii) of IOS; lies on the plane r = ry, it can intersect IS; in at
most one CME point (p’, ¢’, r1). This is because fixing r = r| uniquely determines g’ on
ISy, and this ¢’ in turn uniquely determines p’ on the hyperbola (ii) of 10S;.

Therefore, following the same logic as in the previous case, the endpoints of hyperbola
(ii) on the r = 0 and r = 1 faces of the cube will lie in the same strict zone of player I. They
are both on the same side of the CME, which lies on the boundary between strict zones.

Thus, IOS; can intersect IS in at most one PME.

The only remaining analysis in this case concerns I0S,N IS,. Here, IOS, represents
the intersection of two non-degenerate hyperbolas. The projection of IOS; onto the p X g
plane has the form of 1S3, and the projection onto the ¢ X r plane has the form of ISy,
as 10S; is the intersection of these surfaces. Since both IS and IS3 are non-degenerate
hyperbolas, specifying the value of any one coordinate on this curve uniquely determines

the other two coordinates via the corresponding hyperbola functions.

By assumption, I0S; intersects IS, at two CMEs. Note that IS,, being a degenerate

hyperbola, is the union of two planes: r = r; and p = p,. By setting r = r; or p = p», the

64

3. Appendix to Part I

coordinates of a CME on IOS; can be uniquely determined. Therefore, IOS; intersects each

of these planes at exactly one CME.

Now consider the endpoints of IOS, on the ¢ = 0 and ¢ = 1 planes, which are potential
PME candidates. Towards a contradiction, suppose that IOS; intersects SS; in two PME:s,
meaning these two endpoints lie in different strict zones of player II. Given the structure of
strict zones in non-degenerate hyperbolas, this can only happen if the endpoints lie on the
same side of one of the planes » = r{ or p = p;, and on opposite sides of the other, as these
planes define the zone boundaries. However, if the endpoints lie on opposite sides of one of
these planes, then I0S, would not intersect that plane, contradicting the assumption that

I0S; intersects IS, in exactly one point on each of the planes » = r; and p = p».

This concludes the proof of the theorem. O

An interesting observation from the proof of Theorem 3.2 is that when one of the
completely mixed equilibria approaches a face of the cube and becomes a partially mixed
equilibrium located on an indifference surface of the player, it leads to a boundary case
where the two endpoints of an IOS curve lie in different strict zones. This is possible because
the indifference surface on the base plane forms the boundary between strict zones and can
be considered as belonging to both. This transition reveals a new configuration of Nash
equilibria, where a completely mixed equilibrium is effectively replaced by a partially mixed
one. The resulting configuration consists of 4 pure, 4 partially mixed, and 1 completely

mixed equilibrium, still yielding the same upper bound of 9 equilibria.

3.2. Instructions for Software

In this section, we provide a comprehensive guide to using our 3D graphics and Nash
equilibrium computation software, available at [34]. The instructions are designed to ensure
clarity and ease of use, while also serving as a resource for users interested in further

developing the software.

To use the software, follow the steps below to configure the desired settings. Commands
can be specified as arguments when running the RUN. py file. Alternatively, the file can
be executed without arguments, prompting an interactive mode where the instructions are

displayed, and commands can be entered dynamically.

Please enter the payoff in one of the following formats:

Normalised form payoff: -n [A,B,C,D] [a,b,c,d] [alpha,beta,gamma,deltal
K-coefficients payoff: -k [M,K,L,A] [m,k,1,a] [mu,kappa,lambda,alphal
Product payoffs (p-p1)(g-92)-K1 etc.:-r [p1,92,K1] [r1,p2,K2] [q1,r2,K3]
Defined tests (@ to 40): -t testID/No

From file (default game.stf): -f inputfile

Options can be specified as follows:

65

3. Appendix to Part I

Verbose (default 1: print, @: no print): -v 0

Save as GIF (default @: do not save, 1: save): -g 1 name
Orientation (default 1: horizontal, @: vertical): -0 @

Write output to file (default: out.txt): -w outputfile
Show plot (default 1: show, @: do not show): -p 0

Save plot (default @: do not save, 1: save): -s 1

Only plot the best response of one player (1,2,3): -b player

[Enter options, -q to quit]

The game payoffs can be input as a file in the . stf format, compatible with the Game
Theory Explorer [19]. Alternatively, payoffs can be entered using one of the supported

formats outlined below:
* Normalised payoft, as formulated in (1.2).
* Hyperbolic representation, as described in (1.9).
* Product representation, defined in (3.1).

Additionally, 47 predefined test cases are available for execution. These tests cover a
variety of interesting scenarios, including both degenerate and non-degenerate cases. The
test cases explore diverse sets of best response correspondences and degenerate equilibria
of varying dimensions, as well as numerous non-degenerate cases with different numbers of

equilibria, many of which have been presented above.

Several options are provided for saving outputs, including saving plots as GIF or PNG
files and writing output to a file. Default values are specified alongside each command; to

modify them, the desired values must be explicitly provided.

The resulting output plot, displayed after entering the game commands, is a 3D
interactive plot. Each subplot can be rotated to view it from different angles. While the
interactive 3D plot cannot be saved in its original format, it can be saved as a GIF file that

rotates the plot to display views from different directions.

3.2.1. Code Structure

The RUN. py file serves as the main entry point for executing the software. Upon receiving
the payoff matrix, it initialises an instance of the PartialAlg class. This class computes
the K-coeflicients of the payoffs, which are the coefficients of the expected payoff function
as outlined in (1.9). These coefficients form the foundation for subsequent computations.
The PartialAlg class also implements the algorithm described in Section 1 to compute
all pure and partially mixed equilibria of the game. Furthermore, it solves the roots of the
quadratic equations (1.20), (1.21), and (1.22), and provides detailed output in written form.

To compute all completely mixed equilibria and generate the 3D visual representation,

an instance of the GamePlot class is created using the K-coeflicient matrix as input.

The GamePlot class performs the following key tasks:

66

3. Appendix to Part I

* Defines the best-response correspondence as the union of polygons representing

indifference and strict surfaces.

* Computes the 10S curves, which result from the intersection of two indifference

surfaces.

* Identifies completely mixed equilibria by computing the intersection of the IOS curve

with the remaining indifference surface.

* Represents these intersections using the IntersectionComponent class, which

generalises points, curves, or even 2D surfaces as equilibrium components.
Each IntersectionComponent is characterised by the following attributes:
* Base parameter: This can be p, g, or r.
* Base parameter interval: The range or value of the base parameter.

* Set of unrestricted parameters: Parameters that are not constrained in the given

component.

* List of functions: For each parameter that is neither basic nor unrestricted, it is

expressed as a function of the base parameter.
Some examples of IntersectionComponent for degenerate or non-degenerate cases:

* In non-degenerate cases, each IntersectionComponent corresponds to a single
equilibrium point. Here, the base parameter interval consists of a single value, and
the other parameters are expressed as functions of the base parameter. The set of

unrestricted parameters is empty.

* In degenerate cases, such as when an entire plane represents equilibria (e.g., the plane
p = 0), the base parameter is p with an interval of zero, and the set of unrestricted

parameters includes both ¢ and r.
The GamePlot class further provides the following functionalities:

* Generates all visual representations, including subplots, of the best-response corres-

pondences and equilibria.

* Produces a written description of all completely mixed equilibria in terms of the

IntersectionComponent structure.

* Displays a 3D interactive plot of the equilibria, which can be rotated for different

viewing angles.
The workflow of our code can be summarised as follows:
(i) Receives the payoff matrix and initialises an instance of the PartialAlg class.
(ii) Computes the K-coefficients of payoffs required for further calculations.

(iii) Implements Algorithm 1 to determine all pure and partially mixed equilibria and
solve the roots of the quadratic equations (1.20), (1.21), and (1.22).

67

3. Appendix to Part I

(iv) Creates an instance of the GamePlot class to compute all completely mixed equilibria,
using the quadratic equation results and analysis of degenerate cases, and generates

the 3D representation of the game.

(v) Constructs the best-response correspondence and identifies IOS curves and completely

mixed equilibria.

(vi) Produces the 3D interactive plots and provides a written description of the equilibria.

68

Part Il.

Empirical Game-Theoretic
Analysis of a Pricing Game

Introduction to Part Il

This part investigates the Empirical Game-Theoretic Analysis (EGTA) of a multi-round
duopoly pricing game using model-free Reinforcement Learning (RL) methods. We apply
the Policy-Space Response Oracles (PSRO) framework to approximate the infinite-strategy
“hyper-game” that encompasses all possible pricing strategies available to the players
in the pricing game. In this framework, single-agent reinforcement learning is used to
compute best-response pricing strategies against previous Nash equilibrium strategies of
the approximating game. Using this approximation, we study the equilibria to which
the learning dynamics converge and the behaviour that emerges from RL-trained pricing

strategies.

Central to our study is a multi-round pricing game of a duopoly with demand inertia,
which belongs to the class of games introduced by Selten [62]. This pricing game is
asymmetric, non-zero-sum, allows for varying degrees of cooperation among players, and

is analytically intractable.

Selten analysed this class of games by introducing the concept now known as subgame
perfect equilibrium (SPE), which was cited in his Nobel Memorial Prize award [49].
The unique SPE of these games prescribes very competitive behaviour between the two
price-setting firms. This equilibrium, explained in Section 4.3.1, although computed by
Selten, is considered too complicated for general players to reach. He mentioned that, due to
bounded rationality and other psychological factors, this SPE does not model actual human

behaviour.

Another important behaviour in this game is that firms could cooperate by colluding
and repeatedly setting high prices. Similar to a finitely repeated prisoner’s dilemma, this
is not a Nash equilibrium of the multi-period game because it unravels under backward
induction. Nevertheless, such price collusion may occur between players who do not look
too far into the future, where this unravelling begins. If this collusion occurs, it can yield
higher returns for both firms compared to the SPE.

Reinhard Selten was a pioneering analyst of the strategic interaction of both fully
rational players (game theory) and real human beings with bounded rationality (experimental
economics) [50]. Selten’s reference to different human behaviour in his work is presumably
one motivation for the work of his PhD student, Claudia Keser, who experimentally studied
his multi-period pricing game in 1990. She used the strategy method, where game theorists
submitted strategies for this game in the form of flowcharts for both firms, determining the

next price for each period. (The two firms were not symmetrical to avoid an easy focal point

Introduction to Part 11

for price collusion.) These strategies were then played against each other in a tournament.
Afterwards, participants were informed about their performance and invited to submit a
revised strategy for a second tournament. Both tournaments are described and analysed in
Keser [37, 38].

My supervisor and co-author, Bernhard von Stengel, was a successful participant in
Keser’s two tournaments. His success was due to a detailed understanding of the game
mechanics, particularly the trade-off between long-term and short-term profits, and—in
particular, for the second tournament—his exploitation of more naive opponents. Due to
von Stengel’s familiarity with the game, we chose it for our experiments with machine

learning techniques, not least to assess whether the learned strategies performed well.

We study the same pricing game explored in Keser’s experiment, framing it as a machine
learning problem to model the competitive dynamics of firms. Specifically, we represent
the pricing game as a reinforcement learning environment, where the firms are learning
agents that seek to optimise their policies to perform effectively against an opponent strategy.
Since the primary objective of firms in this game is to maximise cumulative payoffs, the RL
environment is designed to provide feedback in the form of payoffs corresponding to the

agents’ chosen actions (prices). This feedback is used to iteratively refine their strategies.

The aim of this project is, first, to leverage reinforcement learning algorithms to train
strategies for playing a complex pricing game that presents significant challenges, even for
human decision-makers; and second, to explore the equilibria in the space of strategies,

analysing their behaviour in terms of collusion and competition.

The emergence of collusive behaviour among machine learning-trained models has
been studied across various classes of pricing games. Beginning with repeated Cournot
oligopoly games, Waltman and Kaymak [70] used computer simulations to show that players

trained using Q-learning can learn to collude.

In a notable recent study, Calvano, Calzolari, Denicolo and Pastorello [9] observed
and analysed collusion between pricing strategies learned by Q-learning algorithms in a
repeated Bertrand oligopoly game. They interpreted the agents’ behaviour as collusion with
punishments for deviation, consistent with classical theoretical results on repeated games.
Furthermore, they found that collusion was less likely in asymmetric pricing games, where

agents struggled to coordinate on a socially optimal solution.

In more recent work on Q-learners, Bertrand, Duque, Calvano and Gidel [4] theoretically
proved the conditions under which agents learn a specific cooperative strategy when playing

the repeated Prisoner’s Dilemma.

Askenazi-Golan, Cecchelli and Plumb [1] argue that collusion should be understood as
an emergent behaviour of trained agents arising from learning dynamics. They investigate the
convergence properties of various learning dynamics in general repeated games. Crucially,
for some learning dynamics, they show that certain Nash equilibria have a basin of attraction,
meaning that if the initial strategies lie within a sufficiently small neighbourhood of such an

equilibrium, the learning process will converge to it.

71

Introduction to Part 11

Brown and MacKay [7], analysing competition in different pricing games, observed that
high-frequency pricing algorithms can reduce competition and lead to higher profits for the
firms in equilibrium. They suggested regulations to prohibit firms from conditioning prices

on rivals’ prices, or limiting the storage of rival firms’ prices to avoid collusive behaviour.

In Miklés-Thal and Tucker [46], the authors studied pricing algorithms currently in use
and argued that the risk of collusion may be overstated in recent works. They explained that
algorithms with better demand forecasting capabilities may reduce collusive behaviour, as
accurate demand predictions make sustaining collusive prices more difficult. Conversely,
collusive behaviour is more likely in pricing algorithms that allow firms to peg their prices
to rivals’ prices. These findings suggest that the potential for collusive behaviour heavily
depends on both the type of pricing algorithm and its implementation. In a recent paper
by Douglas, Provost and Sundararajan [16], the repeated game of Prisoner’s dilemma was
analysed using bandit algorithms. The authors argued that a class of deterministic bandit
algorithms can settle on collusive behaviour without conditioning on rivals’ prices. This
suggests that prohibiting algorithms from conditioning on rivals’ prices is not sufficient to

avoid collusion.

Our approach differs from the previously mentioned papers both in terms of the structure

of the pricing game and the learning methodology employed.

In prior work, the pricing game studied is a repeated game, whereas ours is not. We
consider a fixed-length, 25-round game, where the demand potential at the start of each
round depends on the pricing history of previous rounds. This setup introduces unique
complexities. Agents’ actions depend not only on the opponent strategy they face but also
on their current position within the game. For instance, in the final rounds, agents no
longer need to compete over future demand potential, as there are no subsequent rounds.
Punishment strategies also lose effectiveness in later stages. Furthermore, unlike many
previous models, our action space is continuous, and agents can choose from an infinite set

of prices. These differences significantly increase the learning complexity of the game.

The increased complexity necessitates a different learning approach from those used
in the aforementioned studies. The common methodology in multi-agent reinforcement
learning is known as independent contemporaneous learning, where all agents interact
and learn simultaneously by updating their respective policies. In contrast, we adopt the
Policy-Space Response Oracles (PSRO) [40] framework, which is rooted in Empirical
Game-Theoretic Analysis (EGTA) [72].

In PSRO, agents are trained sequentially; only one agent learns at a time while its
opponent remains fixed. This approach is motivated by two main factors: first, our aim
to approximate a “hyper-game” that spans the space of all possible pricing strategies; and
second, the need for stable training due to the complexity of our pricing game. Since the
strategy space is infinite, direct mathematical analysis and explicit equilibrium computation
have their limitations. PSRO enables us to study a reduced subgame, referred to as the

meta-game, which evolves iteratively to approximate the full strategy space.

72

Introduction to Part 11

To approximate a Nash equilibrium of the hyper-game, we use the equilibrium of the
meta-game to guide the generation of new strategies, following the standard EGTA method-
ology. The meta-game is represented as a bimatrix game, with each row corresponding
to a strategy for the low-cost agent and each column to one for the high-cost agent. This
game is initialised with one or more base strategies. At each iteration, we compute at
least one Nash equilibrium of the current meta-game using an algorithmic implementation
of the Harsanyi—Selten tracing procedure [26]. New agents are then trained against this
equilibrium profile. If a new strategy achieves a higher payoff than the equilibrium payoff,

it is added to the strategy pool, allowing the meta-game to evolve.

Despite adopting a different learning approach, we employed many ideas from previous
studies. These works also inspired us to analyse not only the meta-game equilibria but also

the emergence of collusion among trained agents, in addition to their competitive behaviour.

Unlike prior work that observes emergent collusion and proposes regulation to prevent
it, our analysis takes a reverse-engineered approach. Early experiments did not reveal signs
of collusion. Instead, we actively explored factors that might foster collusive behaviour. Our
objective was to identify such factors so they can be deliberately avoided in future market

designs.
In this research, we address the following key questions:

* Is there an alternative equilibrium in the specified pricing game that yields higher
expected payoffs for both firms compared to the subgame-perfect equilibrium of the

game?

* Which reinforcement learning algorithms can effectively train agents that optimally
compete in the pricing game against a fixed opponent? Furthermore, how do these
requirements evolve when agents face a mixed strategy of opponents, as arises in the
PSRO framework?

* Do agents trained within the PSRO framework naturally learn to collude in a pricing

game of this complexity?

* What factors lead to cooperation or competitiveness among agents trained using this

framework?

* Does the equilibrium selection method employed in the PSRO framework significantly

influence the final outcomes?
* How do agents behave when they converge to an equilibrium that is more cooperative?

In Chapter 4, we begin by explaining the framework, the pricing game, and the
PSRO setting. We then provide an overview of the foundations of reinforcement learning
algorithms, which form the basis for the algorithms we implement in Chapter 5, or utilise

methods from the Stable-Baselines3 framework in Chapter 6.

In Chapter 5, we explain and implement basic policy gradient methods. We detail
the technical aspects and explain the reasoning behind each decision made during the
implementation. We define preliminary goals and highlight the limitations of these methods,

which led to the development of the next algorithm. Finally, we demonstrate that these basic

73

Introduction to Part 11

models cannot adapt to playing against mixed strategies of opponents, as required in the
PSRO setting.

In Chapter 6, we adopt more advanced reinforcement learning algorithms implemented
in the Stable-Baselines3 framework, namely Soft Actor-Critic (SAC) and Proximal Policy
Optimisation (PPO). These algorithms enable us to focus more on the meta-game as they
can capture the complexity of PSRO settings. We explain the two algorithms, outline their
differences, and conduct experiments using agents trained with both methods. We compare
their performance in the meta-game in Sections 6.4.2 and 6.4.3. In our final experiments,
we study the effects of different equilibrium selection methods and initial strategies in
the meta-game in detail. We further analyse the equilibria found in these experiments,
referred to as the empirical mixed equilibrium, studying the behaviour of strategies within
this equilibrium in Section 6.4.4 and comparing it to the subgame-perfect equilibrium in
Section 6.4.1. Finally, in Section 6.4.5, we present the results of replicator dynamics in the

final meta-games.

The main contributions of this work include demonstrating that two key factors
significantly influence the emergence of cooperative behaviour between agents trained in
PSRO (Policy Space Response Oracles) settings: the choice of Nash equilibrium for training

the next agents, and the specific initial strategies of the meta-game.

In our results, we show that selecting a Nash equilibrium that maximises social welfare
strongly promotes collusive behaviour among new agents, provided that collusive strategies
are introduced to the agents during the initial iteration of the meta-game, where new
strategies are developed and compete against them. Our experiments indicate that these two
factors must be combined, as neither factor independently leads to cooperation between

agents.

Another new contribution of this work is the application of the Harsanyi-Selten tracing
procedure for equilibrium computation. This method proves computationally efficient for
the medium-sized meta-games that are created. We demonstrate that the equilibrium most
frequently identified using this Bayesian approach, where the tracing procedure is started
from random priors of agents’ beliefs, does not lead agents trained in the PSRO setting

toward cooperative behaviour.

Furthermore, we observe that when collusive behaviour emerges, the agent’s payofts of
the mixed equilibrium approached in the limit are rather similar across all experiments. The
strategies in these equilibria exhibit specific behaviours: a weakly cooperative behaviour
for the low-cost player and a highly cooperative behaviour for the high-cost player. This
empirically derived equilibrium yields higher returns for both agents in the pricing game

compared to the subgame-perfect equilibrium, and is closer to the Pareto frontier.

In addition, we present a framework, available online for public use [35], for studying
two-player pricing games, which can be extended to other pricing game scenarios in future
research. Our framework is compatible with the Stable-Baselines3 reinforcement learning
library, which supports a wide range of value-based and policy-based reinforcement learning

algorithms. It includes multi-processing capabilities for efficient computation, database

74

Introduction to Part 11

creation for recording various aspects of the game (such as meta-game equilibria and the
details of trained agents and their competitions), and comprehensive logging of every aspect

of the game under study.

75

Foundations and Modelling

In this chapter, we begin by introducing the foundational concepts of single-agent reinforce-
ment learning, followed by an overview of the core algorithms that form the basis of our
approach. We then explain how these algorithms are integrated into a broader framework
to approximate a more complex multi-agent game. Subsequently, we detail the structure
and unique challenges of the pricing game examined in this study. Finally, we bring these
components together to present our proposed learning framework, illustrating how both

theoretical foundations and game-specific characteristics shape its design.

4.1. Learning Fundamentals

Machine learning techniques enable the development of agents that learn from experience
and generalise to previously unseen situations. These agents can act effectively even in
environments they have not directly encountered. Among these approaches, Reinforcement
Learning (RL) allows agents to discover (semi-)optimal actions through trial and error,
guided by feedback from repeated interactions with their environment. A key strength of
RL is its ability to uncover underlying patterns and structures without requiring an explicit
model of the environment. In the single-agent setting considered here, the objective is to
train an agent to learn an approximate best-response strategy in an environment whose
dynamics are influenced by the agent’s own actions, for instance, when playing a multi-round

game against a fixed opponent.

In this section, we introduce the foundational concepts of RL and the key algorithms
employed in this work, following the notations and framework introduced by Sutton and
Barto [64].

4.1.1. Single-Agent Reinforcement Learning

This section is adapted from [64, Chapter 1].

Reinforcement learning is a subclass of machine learning that relies on trial-and-error
interactions with an environment. In the single-agent setting, each learning episode proceeds
as follows: the agent observes the current state of the environment, selects an action based
on its model parameters and the observed state, and then executes that action (we elaborate

on these concepts shortly). The action causes the environment to transition to a new state,

4. Foundations and Modelling

and the agent receives a corresponding reward. This process continues until a terminal state
is reached, marking the end of the episode. The agent then updates its model parameters

based on the actions taken and rewards received during the episode.

Through a large number of interactions with the environment, the agent learns how
to make decisions by trying different actions and using the rewards as feedback. These
rewards show how effective the chosen action is with regard to the final goal. An important
aspect of this process is that the action taken not only influences the immediate reward but
also affects future states and rewards. Therefore, the agent should consider the long-term
effects of its actions as well. By playing in the environment repeatedly and learning from

each step, the agent enhances its strategy to achieve the final goal.

In reinforcement learning, the balance of two concepts plays a crucial role in the
efficiency and performance of the model. Firstly, when the agent finds a series of actions
that lead to a high overall reward, then these actions should be employed more to get closer
to optimal behaviour. This concept is known as exploitation. Secondly, the agent cannot
find a sequence of actions with high rewards unless it explores new actions in the action
space. This concept is called exploration. For the agent to learn efficiently, both concepts
should be balanced. If a model only explores without exploiting successful strategies, then
it will never learn an optimal strategy since it does not learn from experiences. Moreover,
if a model uses only exploitation, then the probability of finding the optimal strategy on
the first try is very low. Also, with low exploration, the model cannot move beyond local
optima to find global optimum points. The trade-off between exploration and exploitation
has high importance in reinforcement learning and should be controlled by tuning the
hyperparameters of learning methods. We discuss the hyperparameters for each of the

implemented algorithms in the next chapters.

We next explain each component of reinforcement learning within the context of our
setting, where agents play the pricing game. The details of the pricing game are presented
in Section 4.3. In short, this is a 25-round duopoly pricing game in which two firms
simultaneously set the prices of their products in each round. The total demand is then split
in favour of the agent offering the lower price. Each agent receives a reward based on its

sales in that round, and the game proceeds to the next round.

Now, if the opponent is fixed, each agent can treat the opponent and their actions as
part of the dynamics of a single-player game. Within this framework, the components of

reinforcement learning can be described as follows:

* Agent: An agent, or player, is the decision-maker that interacts with the environment
by observing its state and taking actions that transition the environment to a new state.
Through repeated interactions and feedback, the agent learns an optimal policy to
maximise its cumulative reward over each episode, i.e., the sum of rewards from all
rounds of the pricing game. In our setting, each player (firm) participating in the

pricing game is an agent.

* Environment: The environment is the system with which the agents interact. It

defines the game dynamics, including how rewards are computed and how states

77

4. Foundations and Modelling

transition in response to the agents’ actions. In our experiments, the pricing game
itself represents the environment. Based on the prices selected by the players, the

environment updates the game state, computes payoffs, and moves to the next round.

» State: The state (or observation) provides all the information an agent needs to
make a decision. It includes parameters of the game that are relevant for decision-
making. The design of the state representation is crucial: if too simple, the agent
may not distinguish between situations that require different actions, leading to poor
performance; if too complex, learning becomes slower and more difficult due to
the high dimensionality. We describe the specific state representations used in each

model later.

* Action: Agents interact with the environment by taking actions, which move the
game to a new state. The action space may be continuous or discrete; in this project,
we consider both types and specify the choice in each model. In our setting, the
action corresponds to the price each agent sets in the pricing game, which in turn

affects demand and determines the reward received in that round.

* Reward: After selecting an action, the agent receives a reward from the environment.
This scalar value indicates the agent’s performance in that particular round. In our
experiment, the reward corresponds to the player’s payoff at that stage of the pricing

game.

* Policy: A policy, denoted by 7, is the reinforcement learning equivalent of a strategy
in game theory. It defines the agent’s behaviour by mapping states to actions. The
agent’s objective is to learn an optimal policy that maximises expected cumulative

rewards.

The mathematical framework to model these agents’ interactions with the environment

is the Markov Decision Process (MDP), which we explain in the next section.

4.1.2. Markov Decision Process

This section is adapted from [64, Chapter 3].

A Markov Decision Process (MDP) provides the mathematical framework for repres-
enting decision-making scenarios where an agent interacts with an environment across
discrete time steps. At each time step, the agent observes the current state, selects an action,
and the system transitions to a new state. This process continues until a terminal state is
reached. This model allows us to systematically compute the optimal policy required in

reinforcement learning (RL).
Definition 4.1. A Markov Decision Process (MDP) is characterised by the following
components:

* § - the set of feasible states describing the system’s situation. Sy denotes the initial

state, and S7 is the set of terminal states at the last time step 7.

* A - the set of possible actions available at each state.

78

4. Foundations and Modelling

* R - the set of all possible rewards the agent can receive when the system transitions

to a new state.

* P:SXRXAXS — [0, 1] -is the dynamics function of the system. P(s’,r | s, a) is the
(possibly deterministic) probability of the system transitioning to state s” and receiving
reward r when action a is taken in state s. Building on this definition, the transition
function P : S X AX S — [0, 1] can be defined as P(s’ | s,a) = X, cr P(s',7 | 5,0).
The function P(s’ | s, a) represents the probability of transitioning to state s” when
action a is taken in state s. We use the same notation for both of these functions, as
both define the probabilities of transitions. They can be distinguished by the number

of arguments.

An important property that MDPs have is known as the Markov property, which states
that the next state the system transitions to depends only on the current state and the chosen
action. It is independent of the sequence of states and actions in previous time steps. If
S;, a, represent the system’s state and chosen action at time ¢, according to the Markov

property, we have:

P(St+1 | st’at) =P (5141 | St,az,st—l,at—l,---,SO,ClO)-

This means the state should include all information that affects the future. This property
simplifies decision-making and is essential for many reinforcement learning algorithms
because it allows the use of the current state to make decisions, instead of the trajectory of

all previous events.

Another important point to highlight is that the model we implement in this project
corresponds to a Partially Observable Markov Decision Process (POMDP). In the next
chapter, we will see that while each agent receives observations representing the state of the
pricing game, the transition probabilities remain uncertain for the agent. This uncertainty
arises because the transitions depend not only on the agent’s own actions but also on
the opponent’s actions, which are not observable at the time the agent acts. Instead, the
opponent’s current behaviour may sometimes be inferred through the observation of past

behaviour.

4.1.3. Value Functions

This section is adapted from [64, Chapters 3 and 4].

The goal of RL is to maximise the cumulative rewards. This is only possible if we
have an estimation of future rewards following each path. In reinforcement learning, this
estimation is done by approximating value functions. The value functions can be defined

for each state or state-action pair.

The state-value V() of policy r at state s is defined as the expected return from state

s onwards :

(o)

Ve(s) =Ex[Y ¥R | 50 = 5]

t=0

79

4. Foundations and Modelling

where R; is the reward at stage ¢ of the environment and vy is the discount factor which
determines the current valuation of future rewards. Similarly, the action-value Q . (s, a) is

defined as the expected future return starting at state s and choosing action a.

(o)

Qn(s’a) = EH[Z tht | 5o =s,a0=al].

t=0

These value functions can be written in terms of each other:

Va(s) =) n(al$)Qx(s.a),

acA;

Qr(s,a) =r(s,a)+y), p(s' | s,)Va(s').

s’eS

In finite MDPs, the optimal policy 7* can be defined as the policy which has equal or
higher state value than other policies, in all states:

Var(s) 2 Va(s), Vse S, Vrell

where 7* is not necessarily unique. The optimal state-value and action-value functions can

be defined similarly:
V*(S) = max vﬂ'(s)’ Q*(S,a) :maXQﬂ-(S,a) .
Vs T

Bellman optimality equations state that under an optimal policy, the value of a state
is equal to the expected reward that follows the best action. Similarly, for action-values,
the value of a state-action pair under an optimal policy is equal to the expected return of

choosing the action that maximises the action-value function:

V.(s) = max Z p(s’,rls,a)[r +yV.(s)],
e

Qu(s.a) =) p(s'orls.a)lr+y max Qu(s".a)]
(s',r)

Since these value functions already take the value of future rewards into account, it suffices to
select the action that maximises these values. In finite MDPs, the system of equations for V.,
one equation for each state, has a unique solution. Once V. is known, Q. can be computed.
Then, any policy that selects only the actions (not necessarily unique) maximising the

action-values is an optimal policy.

Although it is ideal to compute the optimal policy by solving the Bellman equations
directly, in most real-life problems, and in our experiment, this is not feasible due to the

large number of equations involved, caused by a large state space.

In settings where the dynamics of the environment (i.e., transition probabilities and

rewards) are completely known, the policy iteration method can be used to derive the

80

4. Foundations and Modelling

optimal policy. Policy iteration consists of two steps that are repeated until the optimal

policy is found. These two steps are known as policy evaluation and policy improvement.

In the policy evaluation step, the value function for the current policy is calculated for
all states. This involves determining the expected return (sum of discounted future rewards)

of following the current policy from each state, using the Bellman equations:
Vﬂ(s) = IE:a~7r(.|s), s'~P(.|s,a) [I‘ +vy Vﬂ(s/)] .

In the policy improvement step, the current policy is updated by acting greedily with
respect to the evaluated value function. This means that for each state, the policy is updated
to select actions that maximise the value function, resulting in a new policy that is guaranteed

to be at least as good as, if not better than, the previous policy:

JTI(S) = arng?XEs%PHs,a) [r +7V7r(s,)] .

Policy iteration, which involves repeating these two steps, continues until the new

policy is the same as the old policy. This indicates that the optimal policy has been reached.

However, in many cases such as our experiment, the dynamics of the game are not
completely known, and policy iteration cannot be applied since the transition probabilities
depend on the opponent’s actions. In these cases, Monte Carlo methods are often used to

estimate the policies.

4.1.4. Q-Learning

This section is adapted from [64, p. 131-133].

We did not use Q-learning in our early experiments. However, in the final experiments,
we employ SAC (Soft Actor-Critic), which can be viewed as a more advanced version of
Q-learning for continuous action spaces. Therefore, we first explain the basics of Q-learning

here.

Q-learning [71] is one of the most successful value-based reinforcement learning
algorithms, especially for discrete action spaces. In Q-learning, Q-values are maintained as
pairs Q(s, a) for state-action pairs (s, a), similar to Q (s, @) in Section 4.1.3 above. They
are iteratively updated to approximate the optimal action-values using the Bellman equation
update rule. Once the Q-values converge, the optimal policy can be inferred by selecting

the action that maximises the Q-value at each state.

An important property of Q-learning is that it is an off-policy algorithm. This means
that the actions used to collect new observations (executed under the behavioural policy)
may differ from the actions used to update the Q-values. The Q-values are updated based on
a target policy, which is usually the greedy policy that selects the best actions (i.e., actions

that maximise the Q-values).

81

4. Foundations and Modelling

This is how the Q-values are updated in Q-learning. Iterations take place at time
steps t =0, 1,...,T, where the current state is s;. At that state s;, an action a, is chosen
according to the behavioural policy. One example of this policy is e-greedy, which chooses
the action with the highest value with probability 1 — € and chooses a random action with
probability €. Then the process transitions to the next state s,.; and receives the reward R;.
This reward is used to update the Q-value of the previous state s; according to the following

assignment, based on the target policy, which is shown here as the greedy policy:

O(st,ar) «— Q(s,ar) + @R +ymax Q(sp1,a’) — Q(se,ar) |, 4.1

where « is the learning rate, vy is the discount factor, and max, Q(s.+1,a’) represents
the maximum Q-value of the next state s;4; over all possible actions a’. This procedure

continues for the next states.

In equation (4.1), the first two terms inside the brackets represent the new approximated
Q-value based on the observed reward and the expected future value, while the last term is
the previous Q-value. The Q-values are updated in the direction of the new observation,

with « as the learning rate.

The off-policy property of Q-learning arises from the new Q-value approximation,
R; + ymax, Q(s:;+1,a’). Here, the Q-value of the next state is not computed using the
policy that generated the observation (behavioural policy). Instead, the update uses the

greedy policy, which selects the action with the maximum Q-value.

The common choice for the behavioural policy is the e-greedy policy, which exploits
the action with the highest Q-value with probability 1 — &, and with probability &, explores

other actions uniformly at random.

Q-learning improves the Q-values based on the Bellman equation and is known for its

strong convergence properties in discrete cases.

4.1.5. Policy Gradient Algorithms

This section is adapted from [64, Chapter 13].

Policy gradient algorithms, as the name suggests, are a policy-based class of RL
algorithms. Unlike value-based methods that approximate state-action values and derive a
policy from them, policy-based algorithms directly optimise the policy by moving in the
direction of the gradient of the discounted cumulative reward. The goal is to find the policy
that maximises the cumulative reward across all stages. In the episodic case, like our pricing
game with an episode length 7' and assuming the policy x is parametrised by a parameter 6,

the objective is to maximise Jg:

J(@) = Vﬂ'g (SO) = E‘r~7r9

T
Z’)’th >

t=0

where 7 is a trajectory of states and actions.

82

4. Foundations and Modelling

The policy gradient theorem [64, p. 325] states that:

T
VoJ(0) =Eron, | Y Vologra(als)G, |, (4.2)
t=0

where G, = Z{:t y* IRy

This theorem allows us to use different gradient-based optimisation methods, such as
stochastic gradient descent, to move in the direction of the gradient in order to maximise J(8).
This is the basis for the algorithm we implemented in our early experiments in Section 5.1,
which we call REINFORCE.

We explain more about our implementation of policy gradient methods in the next

chapter, along with the modifications we make to the algorithm.

4.2. Policy-Space Response Oracles

In this project, we adopt the Policy-Space Response Oracles (PSRO) framework for learning,
which is rooted in Empirical Game-Theoretic Analysis (EGTA).

Empirical Game-Theoretic Analysis (EGTA) [72] is a method for studying strategic
interactions in complex games by approximating the full game through simulations. This
approach is particularly useful when traditional game-theoretic analysis is infeasible due to
factors such as the size or complexity of the game. The PSRO framework, introduced by
Lanctot, Zambaldi, Gruslys, Lazaridou, Tuyls, Perolat, Silver and Graepel [40], combines

ideas from empirical game theory and the Double Oracle method with multi-agent learning.

The Double Oracle algorithm, introduced by McMahan, Gordon and Blum [45], is
a framework of EGTA that models planning in multi-agent Markov Decision Processes
(MDPs) as a two-player zero-sum matrix game. It assumes that players are equipped with
oracles capable of computing exact best responses to their opponents’ strategies. The
algorithm begins with an initial set of random strategies, which forms the first subgame used
to approximate the full game. We refer to this expanding subgame as the meta-game, which

is iteratively updated to better approximate the full game, referred to as the hyper-game.

Ateach iteration, the equilibrium of the current meta-game is computed, and both players
determine their best responses to the opponent’s equilibrium strategy using their oracles.
These best responses are then added to the meta-game, and the process repeats. In finite
games, this procedure eventually converges to the equilibrium of the hyper-game, although
in the worst case, all strategies in the hyper-game may need to be added. Nevertheless,
empirical results show that the Double Oracle algorithm often converges more quickly than
solving the full game’s linear programming formulation directly. In summary, the equilibria
of the meta-games iteratively approximate the equilibrium of the hyper-game by expanding

the strategy space through best responses.

PSRO [40] generalises the Double Oracle algorithm to multi-agent learning and non-

zero-sum games. Unlike Double Oracle, which relies solely on Nash equilibria, PSRO

83

4. Foundations and Modelling

supports a variety of meta-strategy solvers, such as replicator dynamics or correlated
equilibria [5]). In PSRO, the payoff from the meta-strategy solver’s solution is used as
a threshold: new best responses must exceed this value to be added to the game. This
mechanism filters out the best responses that perform worse than previously added strategies.
Moreover, in PSRO, learning algorithms act as oracles that compute (approximate) best
responses to the equilibrium strategies in the meta-game. Unlike the Double Oracle method,
where strategies are pure, PSRO allows for stochastic strategies to be trained and added to

the meta-game.

In our project, we use the Nash equilibrium as the meta-strategy solver, similar to the
original Double Oracle method. This means the Nash equilibrium of the current meta-game
guides the training of new best responses, and its expected payoft serves as the threshold for

incorporating them into the meta-game.

In finite games, PSRO typically converges to a Nash equilibrium, analogous to the

convergence of the Double Oracle method in zero-sum settings.

Algorithm 2 presents the pseudocode for the instantiation of the PSRO framework in
our pricing game setting. We refer to the two players as the low-cost and high-cost agents.
The aim of this framework is to approximate the hyper-game and its equilibria through
the expanding meta-game G. The hyper-game represents the game in which all possible
strategies for playing the pricing game, employed by the low-cost and high-cost players,

compete against each other.

Algorithm 2 Policy Response Oracles algorithm

1: G = (I1}, 1) « Initialise the subgame as explained in Section 6.3.4
2: for each roundi: do

3: NEs « select the equilibria of G, as explained in Section 6.3.3
4: for (S1,S>) € NEs with payoffs (x,y): do

5: L « train low-cost agents against S

6: H « train high-cost agents against S

7: for 7 € L with payoff p > x: do

8: I, « IT; U {n}

9: end for

10: for n € H with payoff p > y: do
11: I, « I, U {x}

12: end for

13: end for

14: end for

4.3. The Pricing Game

In this section, we explain the pricing game, which forms the core of the competitive
interaction in our research. This game belongs to the class of games studied by Selten
[62]. We adopt the same parameter settings used by Keser [37] in her experimental study,

allowing us to draw insights from and compare our results with hers.

84

4. Foundations and Modelling

The game models a duopoly between two firms that produce the same product but at
different production costs. The low-cost firm has a unit production cost of 57 (denoted
by c1), while the high-cost firm incurs a unit cost of 71 (denoted by ¢;,). The total market
demand potential is fixed at 400 units, and both players begin the game with an equal initial
demand potential of D(l) = Dg = 200.

The only deviation from Keser’s setup is the exclusion of a small discount factor, which

she used to increase the accumulated profit by one percent in each round. We omit this

component, as it does not appear to significantly affect the observed behaviour of the players.

In each round of the game, both players simultaneously set their product prices (p;) in

the market. The payoft (reward) to player i at each round is determined by
Ri(pi. D) = (D; = pi)(pi — ¢i) = =p; + (¢ci + Di)pi — ¢iD;. (4.3)

The prices set by the firms have a second effect aside from the immediate payoffs in that

round. This is a pricing game with demand inertia, meaning that the prices set by the firms

affect their demand potential D; with some delay, specifically, in the next stage of the game.

The total demand potential remains constant in all rounds. However, the demand potential
of each firm changes in favour of the cheaper firm. After each round, the demand potential

for the next round is changed proportionally to the price difference between the two firms.

Specifically, the player who sets a higher price loses half of the price difference in

terms of demand potential, which is then gained by the player who sets a lower price:
t+1 t 1 t t
D" =Dj +§(P2_P1)’
D3 =Dj+ %(pﬁ ~ P).
As is evident, the sum of the players’ demand potential remains constant in all rounds.

at t=0:

C1 (65) % # Dl :D2:200

Figure 4.1.: Low-cost (red) and high-cost (blue) player payoff plotted as a function of price
in the first stage of the pricing game.

In the payoff function of each round, the term (D; — p;) can be considered as the

quantity sold, and the second term (p; — c¢;) is the profit from each unit. Each player’s

85

P

4. Foundations and Modelling

objective is to maximise their cumulative payoff over the entire 25-round game, which is

the sum of the payoffs earned in each round.

If a player attempts to maximise their payoff in the current round by setting a high price,
they risk losing demand potential, which, in turn, could negatively impact their total payoft
in future rounds. Hence, each firm aims to achieve a higher immediate payoff while also
securing a larger proportion of the total demand potential to increase their payoff in the next
round. From the demand perspective, customers prefer the firm that offers a lower price, as
the products are of the same quality. However, unlike the setting in [1 1], for example, that

preference manifests itself only in the next round due to the assumed demand “inertia”.

For the one-stage game, the payoff function is quadratic and concave in terms of price,

as shown in Figure 4.1. By taking the derivative of the current reward R; with respect to the

firm’s price p;, the optimal price p; for that round is (Dizﬂ, as the solution to

l=—2p,'+C,'+D,'=O = p?=w.
ap; 2

4.4
We refer to this price p; as the myopic price of firm i since it maximises the payoff in the
current round without considering the effect on future demand potential. In the last round
of the game, since there is no future demand potential to be affected, the myopic price is
the optimal price to play. We refer to this principle, where playing myopically in the last
round is optimal, as the “end-effect” of the game. Later in our study, we will attempt to

train agents to learn and adapt to this end-effect.

Figure 4.1 shows that playing myopically in the first round leads to changes in demand
potential for the next round since the optimal prices for the players are different. This raises
the question of whether it is possible for both players to play myopically without worrying
about demand changes, meaning the myopic prices of both players should coincide. In that

case,

+D +D D +D,=200
C12 1:C22 2 oD -Dy=cr—c; =14 "5 D, =207,D, = 193.

The equation above shows that if the players’ demand potential is divided as (207, 193),
then the myopic prices for both players are the same, and they can achieve their maximum

possible payoff for the round without changing future demand.

Another important point to consider is that this pricing game is not a repeated game, as
the demand potential changes in each round, meaning the state of the game does not remain
the same. Rather, it is an extensive-form game where, at each time step, a simultaneous

game with continuous actions between two players is played.

In Figure 4.3, we present a 3D plot illustrating the payoff in a single-round pricing
game as a function of the demand potential of Player 1 and the price of each player. This
visualisation highlights the conflicting effect of the demand potential on the two players. At
the start of each stage, the demand potential for that stage is known, defining the payoff
parabola with respect to the price parameter as previously discussed. However, the demand

potential changes in subsequent stages.

86

4. Foundations and Modelling

57 71 by - b - 13 193 207

Figure 4.2.: The price at which low-cost and high-cost myopic prices match.

Payoff of single-round pricing game

= | OW-COST
High-cost

Figure 4.3.: 3D plot of the payoff in the single-round pricing game for low-cost and high-cost
players, in terms of the price chosen by the respective player, and the demand
potential of the low-cost player, which if given by D;, determines D, as
400 - D;.

If the portion of total demand for Player 1 increases, the next stage begins on a parabola
whose right endpoint is shifted right along the demand-potential axis. This shift alters the
height of the payoff parabola, increasing the reward for the low-cost player while decreasing
it for the high-cost player. The low-cost player has an advantage in this game, being able to
push prices lower than the high-cost player. However, while this strategy increases demand

potential for the next round, it sacrifices some profit in the current stage.

To analyse this trade-off, we assume D = 207 and p; = 132, representing the demand

that can be achieved through myopic play:

R1(132,207) = (207 — 132)(132 - 57) = 75%.

87

4. Foundations and Modelling

If the low-cost player decreases the price by x units to gain more demand potential, they

2

lose x“ units of payoft in the current round:

R (132 —x,207) = (207 = 132 +x)(132 = x = 57) = (75 +x)(75 - x) = 75% — x°.

In the next round, if the high-cost player plays the myopic price, the added demand potential
will yield an additional payoff of 7 (new price — 57). Assuming the price returns to 132,
the added reward is 37.5x, which is higher than the loss from the previous round when
x < 37.5, which is typically true. This shows that the strategy profile where both players
play myopically is not an equilibrium, as deviation is profitable for them.

In infinitely repeated games, such deviations are generally not attractive due to
punishment strategies employed by the other agent, which can result in several rounds of
reduced future rewards. However, in our setting, the game has a fixed length, which reduces

the effect of punishment strategies, especially in the final stages of the game.

4.3.1. Subgame Perfect Equilibrium

The concept of Subgame Perfect Equilibrium (SPE) was originally introduced as a solution
concept for extensive-form games, in the very paper by Selten [62] that we study. SPE,
an important concept in game theory, is a Nash equilibrium that is an equilibrium when
restricted to any subgame of the extensive-form game. The set of SPE is a subset of the set

of Nash equilibria.

Furthermore, in the same paper, Selten computed the SPE for a pricing game with
general parameters (costs, demand potential, number of rounds, and even more than two
players in the oligopoly version of the game). As the pricing game we consider in this
project is a special case of these games, following Selten’s formulation, we can compute
the Subgame Perfect Equilibrium of the 25-round duopoly pricing game. This concept has

several properties:

* The SPE is an equilibrium in each subgame of the game. Since this equilibrium is
computed using backward induction, it remains an equilibrium from any point in the

game until the end.

* In the backward induction process to compute the SPE, it is assumed at each step
that the opponent also plays the SPE strategy. Therefore, the SPE strategy is a best

response and is optimal against the opponent’s SPE strategy.

» SPE is highly competitive. The player anticipates the opponent’s future actions to
be highly competitive and reacts competitively in turn. The optimality of actions at
each step guarantees that there is no deviation at any point in time. However, this

equilibrium is not necessarily the one with the highest payoff for all players.

In the SPE, the prices to be played by each firm at each stage can be computed as
follows, with suitable parameters a’, b’ and k' (see [37], page 8):

pi=d" (DI —=D")+b" +k'(ci—c) forie{l,2},re{l,2,...,25}

88

4. Foundations and Modelling

In this formulation, D! represents the demand potential for player i at stage t and D’ is the
average demand potential of all players in stage ¢; here D' = 200 throughout. Similarly, c;
denotes the unit production cost of player 7, and the average production costis ¢ = ‘“T” = 64.
The remaining parameters can be calculated recursively as follows. In our study, we set the

discount factor y as y = 1.

a = Lo b' = 132-0.25yB"*!,
kK = %’ Al = 0.25+ZtAt+1(1—at),
B' = 68+7'B", K' = —05+7 (K" —24"1k"),

7 = y(0.75-0.54"), Y' = 025y+7'(1- a’)yl,
with initial values defined as below.

a® = 0.5, b = 132, k¥

|
e
N

A»® = 025, B® 68, K» = -0.5,

Y25

0.25y.

Following the earlier formulation, we have plotted the prices and demand potential of
both players in Figure 4.4. As depicted in the graph, prices tend to increase in the final
stages. In the last stage, players adopt a myopic strategy, which maximises their stage
reward since there is no next stage to consider for future demand. We can calculate the
myopic price, which represents the best response of the players in the last stage, as defined

in equation 4.4.

Subgame perfect equilibrium

220 s -
200 g

-
180 i T ‘_‘___*___f..f"*”"
L =k a i ik r &k i i i i
—8— low-cost price
160 —— high-cost price

—#— low-cost demand-potential

140 4 —a4— low-cost demand-potential

1204

100 A :

80-I

[]
[|
[|
@
q
@
L
4
4

stages

Figure 4.4.: Price and demand potential of players over 25 stages of the game in the subgame
perfect equilibrium.

&9

4. Foundations and Modelling

Playing the SPE strategy by both players over 25 rounds results in a total return of
120,810 for the low-cost player and 52,810 for the high-cost player. In the subsequent
experiments, we divide the returns by 1,000 for easier interpretation and use the rounded
return (121, 53) from the SPE as a benchmark to compare the effectiveness of collaborative

strategies.

4.3.2. Initial Deterministic Strategies

In this section, we introduce a set of pricing strategies that serve two main purposes: they
assist in the learning process and provide benchmarks for evaluating the performance of
other strategies in terms of cooperation and payoftf. We define several deterministic strategies
that vary in their degree of cooperation. These strategies offer insights into the structure of
the game and are also used to train our models, enabling agents to better understand the

game dynamics and environment.

Myopic

When playing the myopic strategy, the agent maximises the stage’s payoff by playing the
myopic price. This strategy focuses on short-term payoffs and does not aim to gain higher
demand potential for a larger overall payoff at the end. As defined in equation (4.4), player i

(1 for the low-cost agent, 2 for the high-cost agent) at stage ¢ plays:

t
Di+Cl'

myopic price : p; = >

‘e . .
where D; is player i’s demand potential at stage ¢.

Constant-x

Another simple strategy is to play a constant price x in all stages. This strategy does not

cooperate or compete, but it is straightforward for opponents to exploit.

Guess-x

The Guess strategy, suggested by Bernhard von Stengel in the experiment conducted by
Keser in 1992 ([37]), was successful during the first phase of the experiment but less so
in evolutionary settings. We hypothesised that its lower success in the evolutionary phase
resulted from the lower payoff opponents received when playing against this strategy. Guess
is a sophisticated strategy that anticipates the opponent’s price and allows some margin for

cooperation.

Algorithm 3 illustrates how Guess-x works. In the basic Guess strategy myopic_range

is set to 7 and max_price is set to 125 for the low-cost agent and 130 for the high-cost agent.

The strategy plays price x in the first round and the myopic price in the last round. In
other rounds, it considers a demand potential goal. If it has reached this goal, it cooperates
by playing the last price within a myopic_range distance from the myopic price. If the
price is further from the myopic price than the range, it moves the price toward the myopic

price. It also never plays higher than the myopic price because it is not rational. However,

90

4. Foundations and Modelling

Algorithm 3 Guess-x Strategy for Player j

1: Input: initial price x

2: Parameters: myopic_range < 7, max_price « [125, 130]

3: if first stage then

4: Play price x

5: else if last stage then

6: Play myopic_price

7: else

8: demand_goal; « totaldemand .. _ . . fori=1,2

0- price_goal — total_dem43nd+c1+cz

10: sale_goal; < demand_goal; — price_goal fori=1,2 > Cooperate
11: if current_demand; > demand_goal ; then

12: if last_price > myopic_price then

13: Play myopic_price

14: else if last_price > myopic_price —myopic_range then

15: Play last_price

16: else

17: Play 0.6 X last_price + 0.4 X myopic_price

18: end if

19: else > Compete
20: new_sale_guess « 0.5 X sale_goal; +0.5 X (current_demand_; — c_;)
21: opponent_price_guess «— current_demand_; — new_sale_guess
22: price” < opponent_price_guess—2X(demand_goal j—current_demand;)
23: Play min(price®,max_price;)
24: end if
25: end if

if the goal demand potential has not been reached, it fights for the demand potential by
estimating the opponent’s sales and price, then lowering its price below the opponent’s to

attract demand potential.

The Guess-132 strategy, when playing against itself, reaches the return (142, 79) for
the low-cost and high-cost player, which we used to compare to the next variations of this

strategy.

Guess2-x

Guess2 modifies the Guess strategy with myopic_range set to 15 and max_price increased

to 135 for the low-cost agent and 140 for the high-cost agent.

Compared to the basic Guess strategy, Guess2 allows getting further from the myopic
price when the goal demand potential is reached, which makes the strategy more competitive
compared to the basic Guess because the myopic strategy is the most cooperative. However,
it also sets a higher upper bound on the price (max_price) when the demand is not reached,
which makes the strategy more cooperative because the higher max_price allows the agent

to play a higher price if it is beneficial.

The Guess2-132 strategy, when playing against itself, reaches the returns (137, 75) for
the low-cost and high-cost players, which is a lower return for both players compared to the

strategy pair (Guess-132, Guess-132), showing more competitiveness.

91

4. Foundations and Modelling

Guess3-x

Guess3 is a more cooperative variant of Guess with myopic_range set to 3 and max_price

set to 120 for the low-cost agent and 125 for the high-cost agent.

This strategy is more cooperative since it does not allow getting far from the myopic
price when the goal demand potential is reached. However, when it has not reached the
target demand yet, it is more competitive than the basic Guess strategy by setting a lower

upper bound on the prices, trying to compete for the demand potential more aggressively.

The Guess3-132 strategy, when playing against itself, reaches the returns (143, 81) for
the low-cost and high-cost players, which is a higher return for both players compared to the

strategy pair (Guess-132, Guess-132), showing more cooperation.

SPE

This strategy plays according to the Subgame Perfect Equilibrium of the game from the
current stage to the end. It assumes the same behaviour for the opponent as well, maximising
the payoff at each stage. This strategy can be computed using backward induction from
the last stage back to the current stage. We apply the formulation by Selten to compute the

prices at each stage, as explained in Section 4.3.1.

This strategy is highly competitive since it maximises its own payoft by considering
the same strategy for the opponent. It does not consider any chance for cooperation and is

an optimal strategy against itself, as it is defined in this way.

Imitation-x

The Imitation strategy plays price x in the first stage and the myopic price in the last stage.
In the intermediate stages, it mimics the opponent’s previous price. This one-round penalty
strategy encourages opponents to avoid reducing prices, as any decrease will be mirrored in

the next stage.

We expected the opponents to understand the pattern when playing against this strategy
and to be able to exploit it. (Indeed, the constant and imitation strategies quickly became
suboptimal against trained strategies, which shows that they were exploited by them, in the

experiment 6.4.)

4.4. The Framework: Pricing Game, Reinforcement
Learning and PSRO

In this section, we explain how the concepts introduced in previous sections connect together

in our framework.

The main objective of our research is to study the equilibria and equilibrium strategies
in the space of strategies of playing the pricing game. The game that includes all possible
pricing strategies is referred to as the hyper-game. Since the number of pricing strategies is
infinite, our mathematical analysis can only provide the subgame perfect equilibrium (SPE).

This equilibrium tends to be highly competitive. Therefore, we aim to investigate whether

92

4. Foundations and Modelling

the hyper-game has other equilibria that offer potentially higher payoffs for both players.
To do this, we adopt the PSRO framework, which approximates the hyper-game and its
equilibria by iteratively expanding and analysing a meta-game.

As demonstrated in Algorithm 2, the meta-game is a bimatrix game where the pricing
strategies of low-cost agents represent the row-player strategies, and the strategies of
high-cost agents represent the column-player strategies. We initialise this game with one or
more strategies for each player. In the next step, we compute the Nash equilibrium of this

bimatrix game.

Following this, new best-response pricing strategies are trained against the Nash
equilibrium strategies of the meta-game. We use different reinforcement learning algorithms
to train these best-response strategies. Specifically, new low-cost agents are trained against

the fixed (not necessarily pure) high-cost equilibrium strategy, and vice versa.

After training, we evaluate whether these new agents are successful enough to be added
to the meta-game. A new strategy is considered successful if its payoff in the pricing game
exceeds the expected payoff of the current equilibrium. This iterative process continues:
new agents are trained against the updated equilibrium, and the meta-game is extended with

those that meet the success criterion.

To compute the (approximate) best-response strategies, we model our pricing game as
a multi-agent reinforcement learning game. Each firm (player) is represented by a neural
network and is referred to as an agent. The pricing game defines the environment where
these agents, low-cost and high-cost, interact and compete. At each stage (round) of the
game, both agents simultaneously select their actions, which specify the price they play
in the pricing game. These actions determine the state of the environment, which in turn

determines the rewards for each agent.

For effective learning through trial and error, the agents interact over hundreds of
thousands of episodes, each consisting of 25 stages. They are trained based on the feedback
(rewards) they receive. At each stage, the agents’ policies (strategies) are determined by the
parameters of their neural networks. After each episode, reinforcement learning algorithms
update these parameters to maximise cumulative rewards. The resulting trained agents serve

as the best responses in each PSRO iteration.

The strategies of trained agents can be stochastic and non-deterministic, depending on
the specific reinforcement learning algorithm used. Each agent is trained against a mixed
strategy of its opponent, derived from the current equilibrium of the meta-game. In each
episode, a single opponent strategy (potentially stochastic) is sampled from this mixed
strategy and held fixed for the duration of the episode. A different opponent may be sampled
in subsequent episodes. Algorithm 2 outlines the PSRO framework employed in our setting.

This training setup should not be confused with Independent Reinforcement Learning
(InRL) in multi-agent reinforcement learning (MARL), as used in many prior works such
as [9]. In InRL, all agents interact simultaneously, observe the state of the environment,
choose and execute actions, transition to a new state, and all of them update their parameters

based on the rewards at the end of each episode. In contrast, in our framework, we keep

93

4. Foundations and Modelling

the opponent fixed during training, and only the learning agent’s parameters are updated
while the opponent’s network remains unchanged. Therefore, even though we train multiple
agents across the PSRO iterations, we do not train them simultaneously. We adopt this
approach to stabilise the learning process of the training agent, as the multi-round pricing
game considered in our setting is significantly more complex than those studied in prior

works.

Another natural question is why we use the Nash equilibrium as the meta-strategy
solver in PSRO. The reason is that our goal is to study the Nash equilibria of the hyper-game,
as we are interested in identifying stable solutions for comparison with the subgame perfect
equilibrium (SPE). Non-equilibrium solutions are not stable under deviations and therefore
fail to serve as suitable and durable market outcomes. Consequently, the Nash equilibria of

the meta-game offer the best available approximation of stable solutions in the hyper-game.

An important challenge in using PSRO with the Nash equilibrium as the meta-strategy
solver is the computational difficulty of computing equilibria in two-player games. This
problem is known to be PPAD-hard [10, 12]. The IrsNash algorithm, developed by Avis,
Rosenberg, Savani and von Stengel [3], is a well-known method for computing all Nash
equilibria in bimatrix games. However, its exponential time complexity becomes prohibitive

when the meta-game exceeds roughly 20 X 20 strategies in our experiments.

To address this, we adopted the tracing procedure algorithm introduced by Harsanyi
[26] and implemented by my co-author, Bernhard von Stengel, as discussed in Section 6.3.3.
The tracing procedure serves as both an equilibrium selection method and an efficient way

to compute Nash equilibria of the meta-game.

For small to medium-sized meta-games (fewer than 200 strategies per player), the
computational cost of equilibrium computation is negligible compared to the time required
to train new agents. Additionally, the tracing procedure tends to yield equilibria that are
dynamically stable. In PSRO, we do not need to compute all equilibria of the meta-game;

therefore, this algorithm is well-suited to our purposes.

A known challenge with using PSRO and Nash equilibrium as the meta-strategy solver
is overfitting to the opponent and the environment. We encountered this in our early
experiments. To mitigate it, we introduced more stochasticity into the final agents and

adopted learning algorithms with parameter settings that promote greater exploration.

94

Initial Reinforcement Learning
Experiments

In the previous chapter, we explained that, as part of the PSRO framework (specifically
lines 5 and 6 of Algorithm 2), we use reinforcement learning to train low-cost and high-cost

agents as best responses to the meta-game Nash equilibrium strategies.

In this chapter, we focus solely on the modelling and reinforcement learning (RL)
aspects of the framework, without yet incorporating the full PSRO procedure. Our goal is to
identify the most suitable modelling specifications and the most effective RL algorithm for
computing high-performing strategies. That is, we aim to find the algorithm that provides

the best approximation of best responses in the eventual PSRO setup.

We describe our initial experiments in modelling the pricing game as a reinforcement
learning problem and implementing policy gradient algorithms to learn pricing strategies by
playing the game against a fixed opponent. The fixed opponents used for training are pure or
mixed strategies of the predefined deterministic pricing strategies explained in Section 4.3.2,

as this forms the starting point of the PSRO framework that we aim to prepare for.

We began with policy gradient methods because they are well-suited for episodic
games, such as the pricing game we study. Moreover, these methods are relatively simple to
implement and offer strong convergence properties. They can also be extended to continuous
action spaces, which we intend to explore later. In contrast, such extensions are more

challenging with alternative approaches like Q-learning.

In our models, the pricing game is implemented as the environment in which the firms,
modelled as learning agents, interact and compete. We described the components of our RL

model in Section 4.1.1.

We have implemented all the algorithms and the environment explained in this chapter
from scratch, without using any RL framework models. Therefore, we explain the details of
each model, the reason behind each modification, and, finally, the results that led us to the

next model.

To represent our pricing game in the reinforcement learning framework, we treat each
firm as an agent. These agents set prices by selecting their actions in the environment, which
updates the game parameters and transitions the game to the next stage. The pricing game

consists of 25 stages, which make one episode, from the initial state to the terminal state.

5. Initial Reinforcement Learning Experiments

Hence, in our experiments, the episodes have a fixed length of 25. The training process
involves these agents playing the underlying game for millions of episodes, with rewards

serving as feedback to update their policies.

As described in Section 4.1.5, in the policy gradient algorithm, we optimise the policies
by updating their parameters in the direction of the gradient of the cumulative reward
function. A common practice in policy gradient methods, as in our model, is to use
neural networks to parametrise the policy. This is due to their ease of use, their ability
to approximate complex policies, and the computational efficiency of automatic gradient

computation via backpropagation.

In this chapter, we discretised the action space for simplicity. Our implementation is
based on the conventional method for policy gradient algorithms, as explained in [75]. The
neural network receives the state as the observation, and the output of the neural network is
a probability distribution over the set of actions, known as the SoftMax distribution. The
agent follows the policy defined by the neural network by sampling an action from this
distribution. At each policy update, the parameters of the neural network are updated based
on the feedback received from playing an action and the probability that the action had in

the distribution.

We use the notation ¢ for the policy defined by the parameter set € from the neural
network. Here, g (a|s) denotes the probability that the policy assigns to playing action a

in state s based on the SoftMax probability distribution that is output by the neural network.

Additionally, throughout this chapter, while evaluating the impact of various learning
parameters, we occasionally experiment with a simplified version of the pricing game,
referred to as the 3-stage pricing game. This variant retains the same structure and
mechanics as the main pricing game but limits it only to three stages, with four discrete
actions available at each stage. This reduced setting allows for more efficient assessment of
learning performance and parameter sensitivity, as it significantly reduces training time and

facilitates easier tracking of the learning process.

This forms the basis for the models implemented in this chapter. In the following
sections, for each defined model, we elaborate on the specific design choices, modifications,

objectives, and results that motivated the progression to the next model.

5.1. REINFORCE Algorithm

The first model we implemented is known as the REINFORCE method [64, p. 326], which
is the simplest form of policy gradient algorithms (see Section 4.1.5). As we progress with

the experiments, we further develop this algorithm.

We broke down the training objective into multiple levels and gradually increased the
complexity as the algorithms mastered the earlier ones. The ultimate goal, in preparation
for the PSRO framework, is to train agents that can adapt their play against a mixed strategy
of opponents. These opponents may play stochastically and might themselves have been

trained by the reinforcement learning algorithms.

96

5. Initial Reinforcement Learning Experiments

In the early experiments, we focus on training agents against one fixed deterministic

opponent in order to monitor the learning.

Algorithm 4 REINFORCE Algorithm

1: Initialise neural network (NN) with random parameters

2: for each episode do

3: Reset environment, set initial state s

4 Initialise empty lists: rewards « [], log_prob « []

5 for each stage ¢ in range T = 25 do

6: Sample an action from the distribution defined by the network:
7

8

9

ar ~mo(:|s)
Play action a;, observe next state s” and reward r;
: Store reward r;: rewards « rewards U {r;}
10: Store log probability of action a;:

11: log_prob « log_prob U {log mg(as|s)}
12: Update current state: s «<— s’
13: end for
14: Compute the returns vector G where:
15: G; = Z{zt y*~trewardsy
16: Loss function: the negative sum of the product of returns and the log-probability

of the actions taken ,

Loss = — Z G; - log_prob,
1=0

17: Update parameters 6 using gradient optimisation.

18: end for

We implemented the REINFORCE algorithm as stated in Algorithm 4. In the following,
we explain how we defined the concepts of our RL model, explained in Section 4.1.1, which
are necessary for implementing the algorithm, based on their roles in our modelled game

and the rationale behind these definitions.

Action space

The agent’s action at each stage should determine the price. Here, we use some information
about the game to avoid prices that are inferior in all circumstances. Since we know that any
price higher than the myopic price is not rational (as it reduces both the demand potential at
the next stage and the profit at the current stage), we consider actions as how much below the
myopic price the chosen price is. A lower price will attract more demand and consequently

lead to higher rewards in later stages.

In the models presented in this chapter, we consider the action space to be discrete.
At each stage, the price determined by the action is defined as follows: we allow actions
a € {0,1,...,20} with a step size of 3. This means that the price can be up to 60 units
below the stage’s myopic price.

For example, for the low-cost player (c; = 57), if D; = 180 at the start of stage i and

the chosen action a = 5:

180 + 57
Myopic price: P* = T+ =118.5 and P = P"—(axstep) = 118.5-5%3 = 103.5.

97

5. Initial Reinforcement Learning Experiments

We introduced the step size to reduce the number of possible action sequences, as the

learning process was otherwise too slow.

The actions are determined by sampling from the SoftMax probability distribution over

the action space, which is the output of the neural network.

The discretisation of the action space was introduced for simplicity in early experiments.
However, a discrete action space may result in missed opportunities to find the optimal
price point. In the experiments in the next chapter, the action space is instead considered

continuous within the same range of prices below the myopic price.

State representation

The choice of state plays an important role in the agent’s learning, as it provides all the
information needed for making a decision at each stage, which is known as the Markov
Property. However, if the state size is too large, it increases the computational complexity

of the learning algorithm, as the agent requires more time to identify important features.

In this experiment, we define the state as follows:

. demand last R . .
encoding of stage } , opponent’s price history
potential price

with components for agent i and opponent —i:
* current stage ¢ of the game
* agent’s current demand potential D’
* agent’s price in the last stage P! -1

« memory of opponent’s prices P!, ..., P!

—i
As we discussed before, in the last stage, the optimal price is the myopic price, but this
does not necessarily hold for other stages. Therefore, the stage should be passed to the agent
in order to play optimally and to understand where it stands in the pricing game. In the early
implementations, we passed the stage of the game in the state as an integer representing the

current stage. Hence, stage r € {1,2,...,25}.

The current demand potential shows how well the agent has played so far and also gives
a hint about the payoff in the next stages. The current demand potential shows the agent
where she is standing in the game. In our model, the agents do not have a perfect memory
and can just remember some previous actions (prices) of the opponent. The reason we do
not include all previous prices is to keep the size of the state restricted. (In our later models,

we increase the number of previous prices in the state, both for the agent and the opponent.)

The agent’s price in the previous state, in addition to demand potential and the opponent’s

previous price, provides sufficient information about the agent’s place in the game.

At last, we pass the k last prices of the opponent to the agent. The main purpose of this
memory is to lead the agent to construct a model of the opponent and, consequently, play

accordingly against different opponents. In our early implementation, we set k = 3.

98

5. Initial Reinforcement Learning Experiments

As evident from this representation, the agent perceives the opponent’s effect as part
of the changes in the environment and the next state. Moreover, during the training of the

learning agent, the opponent’s model remains fixed.

In later experiments, where the opponent is also a learning agent, the strategies
become stochastic, increasing the complexity for the agent. Allowing both agents to train
simultaneously would lead to a non-stationary environment, and we suspected that the

agents would struggle to learn their opponent’s strategy because it would constantly change.

Structure of the Neural Network

We employ neural networks as function approximators for the policy, where the parameters
define the probability distribution to be played at each state. To avoid the complexities
associated with intricate neural network architectures, we selected a simple model that

captures non-linear behaviour while remaining straightforward and flexible.

Moreover, in the meta-game, we need to save, load, and manage numerous neural
networks. Therefore, it is essential that these models are memory-efficient, as many of them

will be stored and loaded simultaneously during each experiment.

In these initial experiments, we implemented the following structure:

XBINJOS
sqoxd uonoy

eI
IoAe[TRoUI]

N1
IoAe[TRoUI]

output

input

512 Xinput 512 output x 512 output

The input to the neural network corresponds to the size of the state, and the output
matches the size of the action space. The network processes the state through a linear layer
followed by a rectified linear unit (ReLU) activation function. This is then passed through a
second layer with a SoftMax activation function, which outputs a probability distribution
over the possible actions. The agent samples from this distribution to select the action to

play in the pricing game.
We explain these layers in detail below.

We denote the input of the neural network (which represents the state) by x and its
output (which will be the SoftMax probability distribution) by y. There are two internal

layers with intermediate vectors z; and z, of the relatively high dimension 512, and z3 of

99

5. Initial Reinforcement Learning Experiments

the same dimension as y, which is the number of actions. The process is as follows:

X — [Zl =Wix+by — 2zp=RelLU(z;)= max(zl,O)]

N [23:W222+b2 — y:SoftMaX(Z3)=%] - Y.

In detail:
(i) The state representation vector x is fed into the network.

(ii) In the first linear layer, we have the linear transformation of the input vector with
weight matrix W, and the bias vector ;. We defined the number of rows in the

weight matrix to be 512, which is a relatively wide layer.

71 = W1x+b1

(iii) z; will then be passed through the ReLU activation function. This activation function
introduces non-linearity into the model, making the model more flexible and enabling
it to understand more complex patterns. This function acts elementwise and maps

negative values to zero, without changing the positive values.

7 = ReLU(z1) = max(zy,0)

(iv) The next layer is another linear transformation with weight matrix W, and the bias
vector by. The output of this layer is a vector with the same size as the number of

actions. Since it receives z, as input, the dimensions of W, are output x 512.

23 =Wazo+ b2

(v) Finally, z3 will pass through a SoftMax activation function. This function applies an
exponential function to each element of z3, and then divides by the sum of elements.
Hence, the output forms a probability distribution over the set of actions, where all
elements are positive and sum up to 1. Applying the exponential function puts more
weight on the higher values, making the differences more noticeable. This helps

direct our model to recognise the best action by assigning higher weights to it.

23

y = SoftMax(z3) = -

ies

We emphasise that the reason we chose to use fewer but wider layers in our neural
network is due to both simplicity and the fact that papers such as the following demonstrate
that wide layers are sufficient to capture the complexity. Brightwell, Kenyon and Paugam-
Moisy [0] proved that a function f defined on a compact set with not too many overlapping
input regions can be learned with just one wide layer in the neural network. In a more

recent paper, Jacot, Gabriel and Hongler [33] explain why wide networks often achieve

100

5. Initial Reinforcement Learning Experiments

good generalisation and reliable training behaviour by describing the evolution of artificial
neural networks using a kernel.
Loss function and policy update

After we collect the rewards for the whole episode, we define the returns at each stage based

on the (in the general model discounted) rewards from that stage onwards: Assume that

ri,r2,...,rss are the rewards from this episode. The return vector G is defined as follows:
Gy = 125 =
G = ru+yrs = 14 +yGos
Gy = rp+yra+yirs = rp3t+yGu (5.1
G] = ri+yrp+... +)/24I’25 = I +’)/G2

The returns are computed backwards from the last stage. This definition of returns is
compatible with the policy gradient theorem (4.2), as stated in Section 4.1.5. The returns
demonstrate the effect of future state rewards on the current state. If we were to consider
only the reward from the current stage, then the best price for the agent would always be the
myopic price, as it maximises the one-stage reward. In general, the discount factor y allows
the agent to prioritise current payoffs while also considering future rewards. We initially
experimented with different values for vy in the range of [0.9, 1], but concluded that y = 1
yielded the best learning results. In addition, setting y = 1 matches the assumption about
the pricing game where the game length is fixed and all stage rewards have equal weight for

the total reward.

Finally, we define the feedback signal of each stage’s action to update the policy
parameters. The goal in RL is to maximise the cumulative rewards. Since optimisation
algorithms are typically minimisers, we minimise the negative of our return signal. The

loss function is defined as follows:
25
L==> Glog(rg(a: | 5:))
t=1

This loss function computes the negative sum of returns weighted by the log-probability
of the actions taken at each stage. By differentiating this loss with respect to the policy
parameters 6, we obtain gradients that guide the update of the policy in the direction that
increases the likelihood of actions yielding higher returns. The returns G, effectively act as

weights, reinforcing actions that led to better outcomes.

The optimisation algorithm we used to optimise the loss function is the Adam optimiser
[39]. The Adaptive Moment Estimation (Adam) optimiser is a first-order gradient-based
optimisation algorithm for stochastic functions, often more suitable for noisy settings than

Stochastic Gradient Descent (SGD). Adam estimates the first and second moments of the

101

5. Initial Reinforcement Learning Experiments

gradients, adapts learning rates for each parameter, and bounds the magnitude of parameter
updates. It has shown particularly good results in training deep learning models due to its

efficiency and robustness in handling large, complex datasets [39].

In our experiments, we employed the implementation of PyTorch Contributors.

Results

Although we tweaked our assumptions to improve the learning process, this model could
not capture the complexity of the game. We trained this model against fixed opponent
strategies for many iterations and plotted the total return over 25 rounds against the iterations.
Figure 5.1 shows the return plot of low-cost agents against a fixed Myopic-strategy opponent
on the left and a Fight-strategy (a simpler version of the Guess strategy) opponent on the
right. As demonstrated by the plot, the agents did not learn effectively from the experiences.
In the left plot, we observe that the agent converges to a strategy with low payoff, while in

the right plot, the agent does not show any improvement after 1 million iterations.

180000 Jow.cost agent's total.retarm against myopic suateqy low-cost agent's total return against fight-132 strategy

60000

175000 4

170000 A 59000

165000 58000

return

5 160000 -
- 57000
155000 4

150000 4 56000

145000 - 55000

. w w y w w 0.0 02 04 06 08 10
(] 50000 100000 17500(}0 200000 250000 iterations 1e6
terations

140000

Figure 5.1.: Plot of total returns for a low-cost agent trained using the REINFORCE
algorithm against the myopic-strategy on the left and the fight-strategy on the
right.

This was not the behaviour we expected since we simplified many characteristics of the
model. We repeated these experiments with different learning rates, discount factors, and
opponent strategies. In some experiments, we observed better progress, but this seemed
more due to chance, as repeating the experiment with the same parameters did not yield the

same results.

Following these results, we chose to experiment with a reduced version of the pricing
game, limited to just 3 stages, as it is simpler to learn and more tractable for performance
assessment. In Figure 5.2, we observe experiments with different values of the discount
factor y in the 3-stage pricing game with 4 actions at each stage. Each experiment was
repeated 3 times (3 trials), and the average return of these trials is plotted in Figure 5.2. All

agents were trained against a myopic-strategy player, with the learning rate fixed at 0.0001.

Although the plots of the average return in the smaller pricing game suggest better
learning compared to those in the main pricing game (Figure 5.1), we must remember that
there are only 43 = 64 different strategy profiles in the smaller game, making it excessive

to train the agents for 500, 000 iterations just to explore these. In the main pricing game,

102

5. Initial Reinforcement Learning Experiments

Trained low-cost agent in 3-stage game, against Trained low-cost agent in 3-stage game, against
myopic opponent, y=0.2 myopic opponent, y=0.9
16130 [
t 16160 4
16120 16150 1
|

16140 4

15110 1‘

%n 16130 {
16100
16320 4
16090
16110 {

o 100000 200000 00000 00000 00000 0 100000 200000 00000 200000 500000

average refum

16180

16160

Trained low-cost agent in 3-stage game,

against myopic opponent, y=1 16140
6120

L] 100000 203000 300000 00000 500000
Iterations

Figure 5.2.: Plot of total returns in the 3-stage pricing game with 4 actions at each stage,
for 3 low-cost agents trained using the REINFORCE algorithm against myopic
strategy with different y values.

with discretisation and allowing 21 actions at each stage, there are 212> possible strategies,
which means that the current learning model is not effective. Therefore, we tried different

techniques to enhance the model, as explained in the next sections.

Another point we observe in these plots is that a high value for vy helps the agents better

account for the future effects of their actions.

5.2. REINFORCE with Baseline

Our first approach to improving the learning algorithm was to make the policy’s feedback
more informative to the agent. To this end, we introduced a baseline for the returns, allowing
the agent to distinguish between below-average and above-average outcomes. By centering
the feedback around this baseline, the signal becomes more nuanced, with smaller positive or
negative values that help the agent more effectively identify and reinforce better-performing

policies.

The first baseline we considered was the mean return for each stage. So, at iteration

iter, the baseline is defined as follows:
1 iter

Base"") = — Y G
iter Z

i=1

103

5. Initial Reinforcement Learning Experiments

Then, the feedback for the returns is computed by subtracting the baseline from the returns,
At(iler) = (G;iler) - Baset(”er)), which is known as the advantage function. Thus, the loss

function is as follows:
. 25 A .
LUrer) == %" (A7) log(ry" " (als) (52)
=1

As defined, the advantage would initially be zero since Base' = G!. However, as Base
updates with the returns from the following iterations, the loss function takes positive values

for returns above average and negative values for returns below average.

To test these changes to the learning algorithm, we first applied them to the 3-stage
pricing game defined in the last section.

Trained low-cost agent in 3-stage game, against Trained low-cost agent in 3-stage game, against
myopic opponent, y=0.2 myopic opponent, y=0.9
s ———— =
A/,NJ 16220 -
16220 r
f} 16200 oy 16210
“6 16180 16200 4 ‘
T 16160 16190
kA
] 5
; 16140 16180
®
16120 |
16170
tr\ 10500 :\X‘JOU KJD'OIU -UJ"SOO '-01;03] L0000 20000 0000 40000 20000
16220 r_
Trained low-cost agent in 3-stage game, f
" " 16210
against myopic opponent, y=1 |
16200
161%0 ‘
16180 ‘
16170
o 10000 20000 30000 -:CJU'IJ '.GL:E;O

iterations

Figure 5.3.: Plot of the average returns over 3 trials of trained low-cost agents playing in the
3-stage pricing game with 4 actions at each stage. The agents are trained using
the REINFORCE algorithm with a mean return baseline, competing against a
myopic strategy with different y values

Figure 5.3 shows the plots of the average return from 3 trials after adding the baseline.
Comparing these plots to Figure 5.2, we observe how effective this change is for the agent
in finding better policies. Notably, the number of iterations in the new case with a baseline
is 50,000, which is one-tenth of those from the previous experiments. The learning rate
remains fixed at 0.0001, and we can see the evolution of returns for different discount factors

v. As expected, higher values of y are more effective, and since our pricing game has a

104

5. Initial Reinforcement Learning Experiments

fixed number of stages, it makes sense to consider y = 1, giving future rewards the same

importance as current rewards, as suggested by the experimental results.

As shown in the plot for y = 1, the agent is directed toward the optimal policy in fewer
than 5000 iterations, making it over 100 times more efficient than the previous algorithm.
This improvement significantly increased the efficiency of our learning algorithm. However,
further adjustments are required to achieve a more efficient learning algorithm for handling

the large state space of the main pricing game.

One-hot encoding

One measure we considered for evaluating the success of the trained strategies was learning
the end-effect of the game, i.e., playing myopically in the last stage. The results from
the first REINFORCE algorithm did not show this behaviour, which was understandable.
However, even after adding the baseline in the short 3-stage game, learning the end-effect
was inconsistent and occurred slowly, even in such a small game. Since the end-effect is
specific to the last stage, we suspected that the agent cannot recognise the importance of the
stage parameter in the state. Therefore, we decided to encode the stage in a way that was

easier to learn.

In the basic model, the stage was initially represented as a floating-point number in the
range [0, 1]. To make the end-effect more apparent, we decided to use one-hot encoding to

represent the stage in the state.

Given that the game consists of 25 stages, we employ an array of size 25. In this
representation, during each stage, the corresponding index in the array is set to 1, while the

rest of the indices are set to O:

stage 1 1 0 e 0 0
stage 2 0 1 . 0 0
stage 24 0 0 e 1 0
stage 25 0 0 . 0 1

105

5. Initial Reinforcement Learning Experiments

Learning backwards

Another technique we applied to emphasise the end-effect for the learning agent is the
concept of learning backwards. The game follows the same rules as before, playing a full
25-stage episode, but with a key difference: during the first n learning episodes, only the
network parameters corresponding to the action taken in the final stage, 6,5, are considered
in the loss function to be optimised and updated. Then, over the next 2n learning episodes,
the parameters corresponding to the last two actions, 624 and 6,5, are optimised, and so on.

In the final 257 episodes, the network parameters for all 25 actions are optimised.

: [1
nepisodes 0; 0O, e 024 055
. :

2nepisodes 01 0, e O>4 O55

| ~ =

3nepisodes 0O; 0O, - 054 O55
24 n episodes 0, 0, Cee 054 925
25 nepisodes 1 0> § 4 054 O55

This approach allows the agent to focus initially on optimising its behaviour in the
final stages, helping it to better understand and respond to the end-effect. The focus is
then gradually expanded to earlier stages. As the number of parameters considered in the
objective increases, we proportionally increase the number of learning episodes to allow

sufficient time for optimising a larger set of parameters.

Bounded rewards

Finally, we divided all rewards by 1000 to reduce the range of possible reward values
because receiving large positive values for the return can make it more challenging for the
agent to differentiate between better results. Dividing the rewards bounded the returns
approximately within the interval [0, 200], depending on the player’s and the opponent’s
strategies.

106

5. Initial Reinforcement Learning Experiments

Myopic baseline

In the short 3-stage pricing game discussed earlier, we subtracted a mean return baseline
from each stage’s return, enabling our agent to recognise better policies. However, extending
this approach to the main pricing game requires a baseline that reflects the expected return

based on the demand potential (influenced by the previous action) at the start of each stage.

To clarify, a positive return after subtracting the mean return baseline does not
necessarily indicate that the player followed a good policy; it simply means that, on average,
across all possible returns after any play leading up to that stage, this policy yielded a higher
return. Defining a baseline that considers the game parameters at the start of each stage will

help the agent to distinguish more accurately between effective and less effective policies.

This is why we defined the myopic baseline for the more complex setting. This baseline
calculates the expected return if, starting from the same game parameters, the agent were to
play myopically for all future states, and then subtracts that return from the stage’s actual
return. In this way, the agent is incentivised to find policies that perform better than the

myopic strategy, which sets a higher standard compared to the mean-return baseline.

Results of added baseline

Applying all the techniques mentioned above, we trained low-cost agents against various
fixed, high-cost opponent strategies. Figure 5.4 shows the returns during the learning
iterations, as well as the prices and demand potential of the final agent playing the pricing
game against a fixed high-cost, myopic strategy. To observe the effect of adding the baseline
and the other adjustments, we can compare the returns plot with the left plot in Figure 5.1.
Here, we see that the average learning path shows increasing returns, which shows that the
agent is effectively updating its parameters toward better policies. Moreover, there is no

reduction in returns, which shows that the agent is learning effectively from experience.

The fluctuations displayed in Figure 5.4 are acceptable since exploration is necessary
to prevent the agent from getting trapped in local minima. We also included the prices and
demand potential plots to study the end-effect. In these plots, the blue line represents our
trained low-cost agent, while the yellow line represents the myopic opponent. At the final
stage of the pricing game, the demand potential for our agent is 257. With the production
cost of 57, the myopic price for the low-cost agent is computed as 157. As seen in the plot
of prices, the agent sets prices within the range [100, 111] during the middle stages (stages
3 to 24), but in the final stage, it raised the price to 151. Although this price is still below
the myopic value, it demonstrates an improvement in the agent’s strategy by indicating an
understanding of the end-effect of the game, where playing a higher price in the final stage

becomes advantageous. This is an important progress compared to our previous agents.

This algorithm achieved its initial goal: training an agent to play effectively against a
fixed opponent. However, in the meta-game, the agent will face a mixture of opponents,
with one fixed for each learning episode but potentially changing in the next iteration. This
change of opponent adds further non-stationarity, which can be confusing for our learning

agent since the same actions in the same states can yield different returns depending on

107

5. Initial Reinforcement Learning Experiments

Trained low-cost agent's total return against myopic-strategy

180000
175000
170000
£
o
[T}
= 165000
&)
2]
160000 A
155000 -
150000 A
0 200000 400000 600000 800000
iterations
Agents’ prices played in the pricing Agents’ demand potential in the pricing game
150 4 — low-cost trained agent 260 -
high-cost myopic strategy
140 240 4
130
220
Y
E_ 200

demand potential
5
z

8
=

%
o

25 20
stages stages

Figure 5.4.: Plot of returns over learning iterations, prices, and demand potential of a trained
low-cost agent against a high-cost myopic strategy, with y = 1. The agent is
trained using the REINFORCE algorithm with a myopic baseline.

the opponent. Moreover, the opponents’ strategies later in the meta-game are stochastic
since they are trained strategies themselves, meaning that even the same opponent may act

differently in similar scenarios.

Our agent receives no direct indication of which opponent it faces, so it must rely on
the memory of previous prices played within each episode to understand the opponent’s
play. In previous experiments, we included memory in the state representation but did not
focus on this point, as the opponent was fixed. At this stage, however, we want the agent to
recognise different opponents and adjust its strategy accordingly. We need to point out that
our goal for the agent is not to adopt a midpoint strategy that performs adequately against
all opponents; rather, we want it to learn distinct strategies that perform well against each

specific opponent.

Achieving this performance will be challenging, if even possible, because until the agent
sees some of the play, it cannot know which opponent it is facing, even after supposedly

being trained. The stochasticity of the opponent will add to the complexity on top of this.

108

5. Initial Reinforcement Learning Experiments

To test the performance of the myopic-baseline policy gradient algorithm against mixed
opponents, we set up the mixed opponent strategy as (%Myopic, %Constant—95, %Guess— 1 32) .
The strategies are explained in detail in Section 4.3.2. Each of these three strategies has an
equal probability of being selected as the opponent in each iteration and will be fixed during
the entire learning episode. We chose this setup because these strategies follow distinct
price paths, making it easier for our agent to learn the price patterns. Given that our learning
agent observes a portion of previous prices played by the opponent, the different price

sequences should help the agent differentiate among the opponents and play accordingly.

We set the memory of the opponent’s price equal to 4, with a learning rate of 107>,
Since the opponent is different in each new episode, in Figure 5.5 we plotted the scatter plot
of returns instead of the previous line plot. The three lines that the returns have converged

to represent the returns against each of the opponents.

150000 A

100000

50000

—50000

—100000 -

T T T T T T
[¢] 100000 200000 300000 400000 500000 600000

Figure 5.5.: Plot of returns of trained agent using myopic-baseline policy gradient method
against the “myopic-constant-guess” mixed opponent, with a memory of size 4
and a learning rate of 1077,

To see if the agent can differentiate between the opponents, we tested our agent against
each opponent 200 times and plotted the sequence of actions played by our agent in Figure
5.6. On the bottom, we can also see the sequence of prices played by the opponent to view
the game from the agent’s point of view. There are 600 sequences plotted, but as can be
seen, they are all the same (except for a green deviation in one stage); hence, we can see
only one line. This means that the agent does not differentiate between the opponents at all
and plays exactly the same against all of them. However, a positive point is that in the final
stage, the agent has learned to play nearer to the myopic price (choosing the action zero is

equivalent to playing the myopic price), which is a positive result.

This result led us to look for more complex learning algorithms to help our agent
learn better to play against mixed opponents. In the next section, we test and compare the

actor-critic method, which is a more advanced algorithm.

109

5. Initial Reinforcement Learning Experiments

Plot of actions against different opponents

131

12

11

10

action
w0

@

6 myopic
const
54 — guess

0 5 10 15 20 25
stages
Plot of different opponent's price paths

130

=
)
=)

myopic
i const
— guess

opponent's price
=
o
=)

,_.

=1

=1
|

AN ANAN_N_N_N
Lt

0 5 10 15 20 25
stages

90

Figure 5.6.: Action sequence and opponent’s price sequence plots for trained agent using
the myopic-baseline policy gradient method, with a memory of size 4 and a
learning rate of 1077,

Table 5.1.: Average return of the agent from 200 trials against each opponent. The agent
is trained using the myopic-baseline policy gradient method against myopic-
constant-guess mixed opponents, each with probability %

‘ Myopic ‘ Constant-95 | Guess-132

trained against mixed | 178,500 | 108,200 121,900
trained independently | 179,100 | 116,600 130,400

5.3. Actor-Critic

The baseline that we introduced in the previous Section 5.2 was the simple version of the
actor-critic method. As the name suggests, this method consists of two main parts, the actor
and the critic. The actor represents the agent’s policy: it observes the state and decides the
action to play in the game. This part is what we had so far, implemented using a neural
network. The new part is the critic, which replaces the baseline in the previous algorithm.
The critic determines how much return is expected to be received for the given state. In
the baseline algorithm, we used the average return, and later the myopic-strategy return
as a baseline to compare the return received at each stage and determine if the policy is
performing well. As we extend the model to a more stochastic setting, we need a baseline
that can capture the effect of different opponents. Based on the opponent, the expected
return should be different. Continuing with the myopic-strategy return would not necessarily

be an optimal choice to compare with because, depending on the opponent, this strategy

110

5. Initial Reinforcement Learning Experiments

may have an acceptable or unacceptable return. Considering the newly added complexities,

this strategy might not be the best baseline to lead our agents.

Of course, this expectation of return should be learned itself from experiences as the
game progresses, similar to the average return baseline; however, it should consider the state

and identify the opponent from the price memory part of the state.

The actor and critic together help the agent learn better policies by guiding it towards
policies with higher evaluations, as described in Algorithm 5. At each stage of an episode,
the actor and critic both observe the state. The critic determines the expected return from
this state and stores it. The actor independently selects an action, plays it, receives the
reward, and stores it. When the episode is finished, the return is computed based on the
rewards and compared with the evaluation from the critic. As before, the actor network will
be updated according to the loss function based on the advantage (expected return minus
evaluation). The critic network will be updated to minimise the error between the returns

and the evaluations vector.

Algorithm 5 Actor-Critic Algorithm

1: Initialise Actor and Critic networks with parameters 6 (actor) and 6 (critic)

2: for each episode do

3: for each stage i in the episode do

4 Receive state s; from environment

5 Critic observes s;, estimates expected return V(s;; 6”) and stores it as V;

6: Actor observes state s; and selects an action a;

7 Execute action a;, receive reward r;, and store it

8 end for

9 Compute discounted returns vector G = {G;} based on stored rewards, as defined
in (5.1)

10: Define the Advantage function: A(s;,a;) = G; — V(s;;6’)

11: Update Actor network parameters to minimise loss:
Lo =-E[A(si,a;) - log(n(ailsi; 0))]

12: Update Critic network parameters to minimise error:
Le =E[(Gi = V(5116))]

13: end for

111

5. Initial Reinforcement Learning Experiments

Neural network architecture

For the structure of the neural network in the actor-critic algorithm, we took inspiration
from [75, p. 127]. Initially, there are two linear layers, similar to the structure used in the
REINFORCE algorithm implementation, which are shared between the actor and critic.
These layers process the input state, and by sharing them, we reduce the computational
cost of having each network extract features separately. However, when updating the critic
network, we do not want to impact the actor’s parameters, because this can destabilise
the actor’s network since they have different optimisation objectives. To address this, the
output of these shared layers is defached before being passed to the critic layers. This way,
backpropagation for the critic only affects its own layers. Since the critic does not update
the shared layers, we defined two additional linear layers specific to the critic. As shown
in Figure 5.7 on the left side, these layers use the ELU (exponential linear unit) activation

function instead of the more common RelLU (rectified linear unit).

State
\y input
Linear layer
RO 100 X input
e
y 100
Linear layer
RelLU 100 x 100
;' T T00 |
. Y v
Linear layer Linear layer
100 x 100 actions x 100
ELU 100 8 Softmax .
v acltions
Linear layer . \1’ s
1% 100 Action probabilities .
ELU actions
V 1
State valuation Actor

Critic
Figure 5.7.: The actor-critic model.

Typically, ReLU is a straightforward way to introduce non-linearity to the network.
However, when using ReLLU, we observed inefficient learning, as the network frequently
faced zero gradients. ELU has smoother gradients, which improved learning stability, so
we used this activation function instead. The output of the critic network is a single scalar

representing the expected return from the given state.

On the other hand, on the right side in Figure 5.7, the actor receives the output of the
shared layers, passes it through an additional linear layer specific to the actor, and then
applies a Softmax activation function to output a probability distribution over the set of
possible actions. As mentioned, only the actor updates the shared layers, so backpropagation

from the actor’s loss function adjusts the shared layers’ parameters. At first, we tested the

112

5. Initial Reinforcement Learning Experiments

new model against a fixed opponent, the myopic high cost strategy, to compare the results

with the previous myopic baseline model.

Trained low-cost agent's total return against myopic-strategy

180000 -
175000
£ 170000 -
=
2
5 165000 -
8
160000 -
155000 -
0 100000 200000 300000 400000 500000
)) .) iterations
Action sequences of 200 rounds of playing against myopic opponent
45 = myop
450
425
=
O 0.0
=
T
5.0
5
300

o 5 10 15 20 25
stages

Figure 5.8.: Returns during learning and action sequence of 200 rounds of trained low-cost
agent using the actor-critic method, against myopic opponent with a memory
of size 0 and a learning rate of 107>,

We trained the agent using the actor-critic method against a myopic strategy.

The results were not as expected. In terms of learning, learning occurs, and the agent
converges to policies with higher returns. The final returns were very close to the final
returns of the myopic baseline model; however, they were slightly lower. This can be seen
by comparing Tables 5.2 and 5.1 under the returns of independent models. Also, returns

during learning are depicted in the top plot of Figure 5.8.

However, the bigger shock was the bottom plot of Figure 5.8, which depicts the action
sequences of 200 rounds of playing against the myopic opponent and does not show any
signs of learning the end-effect of the game. At the final stage, none of the action sequences
show any signs of actions close to the myopic price (action=0). This was disappointing as we
had hoped to improve upon the myopic baseline, which has reached this level. Nonetheless,
we decided to proceed with evaluating the agent’s performance against mixed opponents

before completely dismissing this model.

To test whether our model can effectively adapt to different opponents, we defined the

test similarly to the previous model.

113

5. Initial Reinforcement Learning Experiments

We set up the mixed strategy as (%Myopic, %Constant—95, %Guess—132). As mentioned
earlier, in each iteration, an opponent is sampled from the distribution of opponents, and this
sampled opponent remains fixed during the entire learning episode. In the next iteration, a

new opponent is sampled.

We trained multiple agents with various learning rates, different memory lengths for
opponent prices, and different numbers of episodes. We explain the results we obtained by

comparing these experiments.

Similar to the previous section, in all the following cases, after training, the trained
agent is played for 200 iterations against each opponent, and the actions’ plot shows the
action paths for each iteration. We have also plotted the opponent’s price path to observe if

the paths are distinguishable.

Number of episodes

It is common practice to set a convergence criterion for the number of episodes and continue
learning until that criterion is met. We defined our convergence criterion such that learning
would stop when the probability of all chosen actions in their distribution exceeds 99.9%.

The plot in Figure 5.9 shows the results of this experiment with the following parameters:

Number of episodes: 1,923,538, learning rate: 1075, memory length: 4

Plot of actions against different opponents

16 myaopic
constant_95
14 —— guess_132

0 3 10 15 20 25
stages
Plot of different opponent's price paths

myopic
constant_95
—— guess 132

140 1

=
&
=]

"
1}
=}

opponent's price

=
|t
5]

100 +

e

stages

Figure 5.9.: Action sequence and opponent’s price sequence plots for trained agent using
the actor-critic method, trained for 1,923,538 episodes with a memory of size 4
and a learning rate of 107,

As can be seen, although this is a plot of 200 trials against each opponent—meaning

600 paths in each plot—the plots appear quite empty because they coincide. This is an

114

5. Initial Reinforcement Learning Experiments

indication of convergence, as the action distributions have become pure strategies with

minimal oscillation. However, this is not the model we aimed for.

First of all, the action plot shows that the agent plays exactly the same against all
opponents, whether they are Myopic, Constant-95, or Guess-132 strategies. This reveals
that the agent cannot differentiate between opponents. Additionally, the action in the last
stage is 27, meaning the agent plays 27 price units lower than the myopic price. Therefore,
the action plot indicates that the agent does not learn the end-effect of the game, which we

achieved with the less complicated baseline model.

As the opponent’s price paths indicate, the price paths of opponents do not intersect
and should be distinguishable for the agent, so we suspected that the problem might lie with
the stopping criteria. We decided not to stop the learning based on the convergence criteria

and instead set a fixed 5,000,000 episodes for learning, which is a relatively large number.

Plot of actions against different opponents

50 1

10

constant_95
o] — guess 132

stages
Plot of different opponent's price paths

7 %

,_
&
=}

I
=)

-

o)

s}
L

=

N}

=
.

opponent's price
=
o
=)

=

o

=3
L

I}
S

myopic
constant_95
—— guess 132

@
51

T T T T T T
0 5 10 15 20 25
stages

Figure 5.10.: Action sequence and opponent’s price sequence plots for trained agent using
the actor-critic method, trained for 5,000,000 episodes with a memory of size
4 and a learning rate of 107>,

The plots in Figure 5.10 show the action sequences and opponent’s price paths for the
agent trained with the same parameters, differing only in the number of episodes trained.
The actions plot shows that the actions against different opponents vary in many cases,

which is a positive outcome.

Observing the blue action sequences (against the Guess strategy), we see that the agent
has not fully converged to a pure strategy against each opponent and follows multiple
sequences. However, an encouraging observation is that the final action in many of these
sequences has decreased to near zero. While we cannot fully count this as learning the

end-effect, it is still an improvement over the previous experiment.

115

5. Initial Reinforcement Learning Experiments

Learning rate

We experimented with different values of the learning rate, hoping that a higher learning
rate might speed up the learning process. However, as is often the case, this led to quick
convergence to playing the same action sequence against all opponents, without learning
the end-effect. Increasing the number of episodes or changing the memory length did not

improve this result.

Plot of actions against different opponents

10 myopic
constant_95
—— guess_132

0 5 10 5 20 25
stages
Plot of different opponent's price paths

myopic
constant_95
—— guess_132

- \\

e
|
80 4

Figure 5.11.: Action sequence and opponent’s price sequence plots for trained agent using
the actor-critic method, trained for 5,000,000 episodes with a memory of size
2 and a learning rate of 1074,

opponent's price

=

o

=3
L

stages

Figure 5.11 shows the plot for an agent that we trained for 5,000,000 episodes with
a higher learning rate of 10~*. As shown in the action plot, this agent did not learn the

end-effect and plays the same action sequence against all opponents.

116

5. Initial Reinforcement Learning Experiments

Plot of actions against different opponents

50 1 z
myopic

constant_95 J.”\.
—— guess_132 ‘\\ / ‘\

30 | ~4~

action

10 4 /

stages
Plot of different opponent's price paths

myopic
constant_95
1601 — guess_132

opponent's price

80 1

stages

Figure 5.12.: Action sequence and opponent’s price sequence plots for trained agent using
the actor-critic method, trained for 5,000,000 episodes with a memory of size
2 and a learning rate of 1077,

Memory length for opponent prices

To examine the effect of memory size, we repeated the experiment plotted in Figure 5.10,
this time with a shorter memory of size 2, as shown in Figure 5.12. The action variance
in both experiments is high, and neither converged to a single pure strategy against each

opponent.

Table 5.2 shows the average return of the agent from 200 trials against each opponent
for these two experiments. In the last row, we included the returns of agents trained
independently against each opponent (i.e., without mixed opponents) using the actor-critic
method. Notably, these are not the highest possible returns; with a myopic baseline, the

agent received a return exceeding 180,000 against the myopic opponent.

In Table 5.2, we observe that the experiment with a memory size of 2 performed better
against all opponents, especially against the Guess strategy. A larger memory size increases
the state representation length, potentially slowing down learning, which we suspect is
happening here. Larger memory sizes add complexity, similar to adding more features
in a model; this can improve performance but requires more training. For reference, we
included the last row to show that, while the memory size of 2 has better performance, it
still underperforms compared to agents trained independently, using the same algorithm

and parameters.

After multiple experiments, adjusting each parameter, we observed a pattern: after 1-2
million episodes, the agent tends to select an action sequence with very high probability and

low variance at each stage, which might be mistaken for convergence but actually results in

117

5. Initial Reinforcement Learning Experiments

Table 5.2.: Average return of the agent from 200 trials against each opponent for different
memory sizes

myopic | constant-95 | guess-132

memory = 2 174,500 | 96,600 111,300
memory = 4 174,100 | 95,700 107,900
trained independently | 177,300 | 104,300 127,000

identical actions against all opponents. Extending the training to millions more episodes

led to differentiated behaviour against opponents and signs of learning the end-effect.

From these comparisons, we concluded that the number of episodes needed to train the
agent against mixed opponents using the actor-critic method is much larger than anticipated,
making it highly time-consuming. This model is therefore too costly to be used for the
meta-game. Increasing the learning rate did not help either, so to increase efficiency, we

need to employ additional techniques to speed up learning.

If we compare the experimental results from the actor-critic method and the previous
myopic-baseline REINFORCE algorithm, we observe that although the myopic-baseline
algorithm is more simplistic by considering myopic as the baseline for all opponents, it still
resulted in better learning of the end-effect of the game. Additionally, the returns in Tables
5.1 and 5.2 show that the myopic-baseline method achieved higher returns against each
opponent, whether trained against mixed opponents or against each opponent independently.
The only possible advantage of the actor-critic method in our experiments was a slight
differentiation in behaviour against different opponents, though not to an acceptable level.
Given the significantly higher returns of the myopic-baseline method and its success with the
end-effect, the myopic-baseline method is clearly the better choice at this level of complexity

of opponent strategies.

These observations led us to adopt the Stable-Baselines3 reinforcement learning
framework, which provides efficient implementations of many advanced RL algorithms.
Using this platform yielded more successful results, as discussed in the next chapter, which

constitutes the main portion of our project.

118

PSRO Framework and Advanced RL
Algorithms

In the previous chapter, we described relatively simple reinforcement learning algorithms,
which we implemented ourselves in Python using the PyTorch library, along with several
improvements. Although the results of the REINFORCE algorithm with a myopic baseline
against fixed opponents were promising, we did not achieve our goal of learning differentiated
behaviour against mixed opponents. Implementing these algorithms manually was time-
consuming and increased the risk of potential errors. The results indicated that more
advanced learning algorithms are needed to compute effective best-response strategies in
the PSRO setting. In our implementation of basic RL algorithms, the mixed strategy of
opponents seemed to “distract” the learning agent, leading to a slower learning process and

ultimately preventing the agent from adapting to different opponents.

Therefore, at this point in the project, we decided to adopt advanced reinforcement
learning algorithms to ensure a more stable training process, allowing us to move beyond
the strategy training step and focus on analysing the meta-game in the PSRO setting. The
efficiency of implementation and adaptability were the main requirements for the new RL
framework, so that we could define our own setting and apply the learning algorithms to our

training environment.

Before completely switching to the new RL framework, we decided to experiment with
running the PSRO setting using our more successful self-implemented algorithm from the

last chapter in order to compare the results later.

6.1. PSRO Framework Using REINFORCE with Myopic
Baseline

We include this experiment as the final step in our self-implemented learning algorithms,
which also serves as the foundation for the PSRO framework that we later refined and

extended.

In the previous chapter, we obtained better results when training independent agents
using the REINFORCE algorithm with a myopic baseline. Therefore, we adopt this
algorithm as the learning method for training agents within the PSRO setting.

6. PSRO Framework and Advanced RL Algorithms

Following Algorithm 2, for initialising the meta-game, we decided to include the three
strategies we previously tested in our experiments: Myopic, Constant-132, and Guess-132.
These strategies expose the learning agent to varying levels of complexity. We modified the
constant strategy to play at 132 instead of 95 (as used in earlier experiments) because we
observed that the price path of Constant-95 can resemble that of the Guess-132 strategy (as
seen in the price plot in Figure 5.12). In contrast, the price path of Constant-132 is more
distinct, making it easier for the agent to differentiate between opponents. Additionally,
Constant-132 facilitates higher payoffs for the learning agents, as it allows them to reduce

the price more and increase their share of demand.

These three strategies are considered for both the low-cost and high-cost agents of
the initial meta-game, forming a 3 X 3 game. Then, the equilibria of the meta-game are
computed, and new low-cost and high-cost agents are trained against the chosen equilibrium.
We used the tracing procedure, implemented by my co-author, Bernhard von Stengel, to
compute the equilibria. We explain this algorithm in detail in Section 6.3.3. We used
the tracing procedure to compute the equilibria, running 100 traces and selecting the
equilibrium that appeared most frequently. This choice was based on the intuition that the
most frequently occurring equilibrium is likely to be more dynamically stable than others.
While we later explored alternative equilibrium selection methods, this was the setting used

for the initial experiment.

We ran this meta-game over several days, as training each agent was time-consuming.
The first equilibrium of the initial 3 X 3 game was (Guess-132, Myopic), where the low-cost
(row) player played the Guess-132 strategy and the high-cost (column) player played the
Myopic strategy. New agents are trained against the current equilibrium strategies, but
only those achieving a higher expected payoff than the equilibrium payoft are added to the

meta-game.

To compute the return of a trained agent against each strategy in the meta-game, the
agents play against each other for 100 rounds. The payoff recorded in the meta-game is the
average payoff across these rounds. This evaluation is crucial, as the trained agents follow
stochastic strategies, and their returns may vary depending on whether they have converged

to a pure strategy and the level of variance in their behaviour.

The game in Figure 6.1 was reached after six rounds, with five low-cost and two
high-cost trained strategies added to the game. However, after this point, no additional
strategies were added. We continued training agents for this game over 14 more training

rounds for 14 low-cost and 14 high-cost agents, yet none of them entered the meta-game.

For future comparisons, we have plotted in Figure 6.2 the payoff pairs of the equilibria
used to train new agents as the meta-game progresses. Additionally, the payoff of the

subgame perfect equilibrium is included as a baseline reference.

As we gained more experience, we made several adjustments to the PSRO setting in
later experiments. For instance, we considered multiple equilibria for training, introduced
alternative equilibrium selection criteria, and employed multi-processing techniques to train

agents more efficiently.

120

6. PSRO Framework and Advanced RL Algorithms

high-cost
myopic constant-132 guess-132 H1 H2
low-cost
93,895 94,732 94,732 117,874 118,409 }
myopic
139,591 138,555 138,555 98,440 97,159
94,760 103,712 103,712 159,265 160,786}
constant-132
138,527 127,512 127,512 56,140 54,261
79,666 68,729 79,091 70,510 69,823
guess-132
154,998 168,709 [141,639 124,168 121,632
35,257 -40,901 32,920 44,166 43,625
L1
178,433 [294,260 91,786 122,729 120,188
40,500 -21,026 44,007 51,182 52,000
L2
179,169 272,487 104,497 125,383 123,073
40,916 -20,436 46,605 52,011 52,516
L3
179,003 271,526 107,660 124,716 122,747
41,349 -19,699 47,435 52,067 53,243
L4
179,200 271,077 108,604 125,874 123,156
44,815 -11,059 53,380 56,485 56,184
L5
179,353 261,888 116,425 ‘ 126,715 \ \ 124,336 \

Figure 6.1.: 8 X 5 meta-game that became stationary after training agents with REINFORCE
and myopic baseline as the learning algorithm.

6.2. Advanced Learning Algorithms: New RL Framework

From this point in the project, we adopted the learning algorithms implemented in the Stable

Baselines3 (SB3) framework to use within our PSRO setting.

121

6. PSRO Framework and Advanced RL Algorithms

Equilibria of meta-game using myopic-baseline policy gradient

80000 + % ® @ subgame equilibria
SPE
® *

70000
£
g
:‘:’ 60000 -
8 %
= * ®
2 50000

40000

o

T T T T T T T
120000 130000 140000 150000 160000 170000 180000
low-cost retum

Figure 6.2.: Plot of equilibrium payoffs of subgames of the meta-game as the learning
proceeds, using the REINFORCE algorithm with myopic baseline as the
learning algorithm

The Stable Baselines3 (SB3) package, developed by Raffin, Hill, Gleave, Kanervisto,
Ernestus and Dormann [54], provides reliable implementations of many reinforcement
learning algorithms. These implementations are well-tested, efficient, and adaptable to
different environments. Additionally, the extensive online documentation was very helpful

in guiding us to make our code compatible with their structure.

We tested multiple learning algorithms from this framework on a shortened version
of our pricing game, consisting of only 3 stages. In the end, two algorithms, PPO and
SAC, proved to be the most successful in terms of achieving the highest returns against a
fixed opponent. Based on these results, we decided to focus on these two algorithms for
the remainder of the project. Each algorithm possesses important features, yet they differ

substantially from one another.

6.2.1. Proximal Policy Optimisation

Proximal Policy Optimisation (PPO) [60] is a policy gradient actor-critic method that
improves upon the Trust Region Policy Optimisation (TRPO) algorithm [59]. TRPO is
effective in optimising large nonlinear policies, such as neural networks, by maximising
the advantage function subject to a Kullback—Leibler (KL) divergence constraint. As we
mentioned earlier in Algorithm 5, the advantage function is the observed returns minus
the estimated state value given by the critic network. The theoretical foundation of TRPO
ensures monotonic improvement when the KL divergence penalty is incorporated into the

objective function, as it limits the change between the old and new policies.

This penalty term is weighted by a fixed coefficient, denoted by {. However, in practice,
the recommended value for this coefficient often leads to excessively small step sizes, and
the optimal choice of £ tends to vary across different problem settings. To address this issue,

in practice, a bound on a heuristic approximation of the average KL divergence between the

122

6. PSRO Framework and Advanced RL Algorithms

old and new policies is considered as a constraint, called the trust region constraint:

maximise B, [%A, — (K L[mgy,(.Is), ma(.s¢)] 61

}
7o (ar|sy) At]

maximise E
0 ! [”Hold(“t|st)

(6.2)
subjectto E, [KL[?Tgold(.|St),ﬂe(-lst)]] <o

This transformation, although necessary for TRPO to achieve the best empirical results,
leads to higher optimisation complexity. Proximal Policy Optimisation (PPO) addresses this
by removing the constraint. However, without the KL constraint, optimisation can result
in excessively large policy updates. To mitigate this, PPO limits the magnitude of policy

updates by modifying the objective function.

maxignise L (9) = B, [min (r,(0) A, clip(r:(0), 1 — g, 1 + £)A;)]
(6.3)
mg (arlse)

where rt(g) = Moo (arlsy)

In (6.3), r, is referred to as the probability ratio, defined as the ratio of the probability of
an action under the new policy to that under the old policy. If an action has a positive
advantage, the probability ratio should be greater than one because we aim to increase the
probability of selecting that action. Conversely, if the advantage is negative, the probability

ratio should be less than one, indicating a decrease in the probability of selecting the action.

The second term in the objective function is the clip function, which controls the
magnitude of the update by constraining the probability ratio within the interval [1—¢, 1 +&].
In our project, we utilise the Stable-Baselines3 framework, and we explain the implementation
of the clip function as provided in this framework [51], as stated below. It is noteworthy

that alternative implementations of the clip function are also feasible.

maxignise LeliP(9) min (r;(0)A;, g(&, Ar))
(1+8)A (A>0) 6.4)

(1-8)A (A <0).

where g(g, A)

With this modification, PPO interpolates between the new and old policy by ensuring
that the probability ratio r,(6) remains close to 1. In (6.4), the function g restricts (or clips)
the magnitude of increase in the objective function, regardless of whether the advantage is

positive or negative. This prevents excessive changes in the new policy.

Another approach tested in the same paper [60] involves using an adaptive coefficient
for the KL penalty term in the objective function (6.1). However, this approach resulted in

weaker performance compared to the clipping approach.

123

6. PSRO Framework and Advanced RL Algorithms

When using actor-critic methods where parameters between policy and value function
are shared, the objective should include the critic’s error term as well. Moreover, adding
an entropy term can improve the exploration. Considering all these terms, the objective

function for PPO becomes the following:

maxignise E, [Lc“p(a) —c1LYF(0) + C2H(7Tg(.lst)]
where

(6.5)
LYF0) = (Vo(s) - V"),

H(r(.|s:) = = 2gean(als;) log(n(als)).

in which LY'F is the squared-error loss and H is the entropy of the policy.

In the game studied in this project, the trajectory length is fixed at 25 stages. However,

the advantage estimator used in PPO (Proximal Policy Optimisation) typically focuses on

fixed-size trajectory segments to estimate the advantage, which is unnecessary in our case.

6.2.2. Soft Actor-Critic

Soft Actor-Critic (SAC) is an off-policy, Q-learning-based actor-critic algorithm that
combines elements of both value-based and policy-based reinforcement learning methods.
The definitions and algorithm explanations in this section are adapted from the paper by
Haarnoja, Zhou, Abbeel and Levine [23].

As an actor-critic method, SAC employs separate networks for the policy and value
functions, which do not share parameters. SAC is an extension of the Deep Deterministic
Policy Gradient (DDPG) [43] algorithm to the stochastic setting. This algorithm considers
stochastic policies, hence the term soft, meaning that at each step, it provides a probability
distribution over all actions instead of one deterministic action. The main objective of SAC
is to maximise the overall expected return as well as the entropy of the stochastic policy,

which enhances exploration.

T
maxignise ZE(SZ,QI)NPR [yt(rt(st,at) +a/H(7r9(.|st)))] . (6.6)
t=0

In (6.6), H(my) is the entropy of the policy (similar to (6.5)) and « is the entropy
coefficient. While this coefficient can be omitted in theoretical proofs by scaling, it
significantly affects the exploration of the policy in practice and should be carefully tuned.
The entropy term in the objective also helps the algorithm avoid local optima and allows it
to assign equal probabilities to multiple attractive actions. Adding the entropy term has
been shown to significantly improve results in various algorithms [23, 58]. Another strong
point of SAC is that it reuses previously collected data in a replay buffer for future updates.

The replay buffer increases the sample efficiency of the algorithm since experiences can be

124

6. PSRO Framework and Advanced RL Algorithms

used in multiple updates. Moreover, sampling randomly from the replay buffer stabilises

the algorithm by not overfitting to recent experiences.

The soft Bellman equations for the soft state values and soft Q-value functions, according

to the objective function (6.6), are:

Q(ss,ar) =r(se,ar) + VB, ~p[V(s141)] (6.7
V(st) =Ea~z[0Q(ss,a;) —lognm(a;ls;)] (6.8)

In theory, it has been proved that repeated application of soft policy evaluation and soft policy
improvement will converge to the optimal policy. However, for the continuous domain, the
soft policy iteration must be approximated using function approximation techniques. In this

project, we use the implementation in Stable-Baseline3 [52] and describe it below.

SAC learns a policy (the actor) and two Q-functions (the critics) with separate
parameters 6, ¢1, ¢». The two Q-functions are trained independently to estimate the action-
value function. During training, a minimum of two Q-values is used to compute the value
function target and the policy gradient update (we explained the Q-function learning in
Section 4.1.4).

The primary reason for using two Q-functions is to reduce overestimation bias in the
Q-value estimates, which has been shown to improve the stability and speed of training [18],
[27].

Soft Actor Critic (SAC) minimises the mean squared Bellman error (MSBE) loss for
each Q-function. Initially, for both Q networks, the target Q-function parameters are set
equal to the Q-function parameters, ¢, = ¢;, i = 1,2. At each update step, a batch of
experiences B is randomly selected from the replay buffer. Each experience is of the form
(s,a,r,s’,d), where d is the done flag and d = 1 if s’ is a terminal state, otherwise d = 0.
For each Q-network i, the network parameters ¢; are updated to minimise the following

loss function:
’ 2
Lo,(#.B) = Eg | (04, (s.0) — g(r.5".)|
g(r,s’,d)=r+y(l-4d) (m%n2 O pre; (87, 0") — alog ng(d’ls')) , a ~mge(-s)
=1,

where g is the target value used for training the Q-functions, which combines the current
reward, expected future Q-values (from the target Q-functions), and the entropy term to

increase exploration. The

For the policy update, a reparametrisation trick is used to reduce the variance of the

estimator. The policy parameters are then updated to minimise the following loss function:

Lr(0,B) =Ep |alogmg(dg(s)|s) — inl}% Qy,(s,da(s))

where dg(s) is a differentiable sample from 74 (-|s) with respect to 6.

125

6. PSRO Framework and Advanced RL Algorithms

Both Q-functions and policy parameters are updated by one-step gradient descent

according to the corresponding loss functions.

Finally, Q-value networks are updated using Polyak averaging, which is an affine

combination of the parameters of the target Q-function and the current Q-function:
¢targ,i — (1 - T)¢targ,i +7¢i, I= L,2. (69)

This updating rule limits the changes to the parameters and stabilises the training. The value
of 7 should be close to zero to ensure the new value does not deviate significantly from the
old one. This parameter should be evaluated when tuning the hyperparameters, as we did in
Table 6.4.

6.2.3. Comparison of the Learning Algorithms

The two algorithms we study in this chapter, PPO and SAC, differ in many fundamental
characteristics, which is why we chose them. Our aim was to determine which model works
best for the game at hand. Both of these models are model-free reinforcement learning

algorithms, which means the learning is only experience-based.

PPO (Proximal Policy Optimisation) is a policy gradient method where the policy is
directly optimised to maximise the advantage function. The main feature of this algorithm
is bounding the large updates and not allowing large changes at each iteration, which makes
the learning more stable. On the other hand, SAC (Soft Actor Critic) is an advanced
Q-learning-based algorithm that approximates the Q-values and derives a stochastic policy
from them. The main feature of SAC is the entropy regularisation term in the objective

function, which encourages more exploration.

Additionally, PPO is an on-policy learning algorithm, meaning the agent learns from
actions chosen based on the current policy (target policy). In contrast, SAC is an off-policy
algorithm, where the agent learns from experiences generated by the old policy (behaviour

policy) while updating Q-values based on samples from the current policy (target policy).

PPO is less sample efficient than SAC because each experience is used only once (or a
limited number of times in batch learning) during the learning process. Meanwhile, SAC
can reuse experiences multiple times through the replay buffer, resulting in more efficient
learning. Howeyver, in terms of time efficiency, SAC is more computationally expensive and

considerably more time-consuming than PPO, as SAC trains multiple networks.

6.3. Incorporating Advanced RL Algorithms into the PSRO
Setting

In this section, we describe our initial experiments with new learning algorithms, the
execution of the PSRO framework, the improvements made to the setting, and the resulting

meta-games.

126

6. PSRO Framework and Advanced RL Algorithms

To run the PSRO experiments using the selected learning algorithms, we used the same
configuration for the action and state spaces in both. The implementations of both PPO and
SAC algorithms in Stable-Baselines3 are compatible with continuous action spaces, which
was our primary goal from the outset. Continuous action spaces allow for the representation
of all possible strategies in the pricing game. Therefore, within this RL framework, we
switched to a continuous setting and adopted an action space over the range [0, 60], which

aligns with the range used in our previous experiments.

The state space (observation space) is consequently also defined as continuous, as it

includes the demand potential and prices, which are continuous variables.

In the first experiments with SAC and PPO, we continued with the same state repres-
entation as in the previous chapter, which includes the one-hot encoding of the stage, the
current demand potential of the player, and the opponent’s price history of fixed length,

which we call memory.

Another modification to our training process, which was facilitated using Stable-
Baselines3 (SB3), is multi-processing. In SB3, for training a single agent, it is possible to
define multiple parallel environments, and the agent takes steps in all these environments
simultaneously. The experiences from all these environments are recorded, and the model
is then updated using the combined experiences. Each of these environments runs on
a different CPU process, which significantly speeds up the training process (not exactly
time divided by the number of processes, but close to it) and allows us to utilise multiple
processor cores. This considerably decreases training time and allows us to focus more on

the meta-games.

The way experiences from these environments update the policy depends on the

algorithm, primarily because SAC is an off-policy algorithm, whereas PPO is on-policy.

In on-policy algorithms, a fixed number of experiences (n_steps = 2048 by default)
are collected from all environments. These experiences are then divided into mini-batches,
and the neural networks are updated using multiple epochs of gradient descent on these
batches.

Conversely, in off-policy algorithms, all experiences from all environments are added
to a shared replay buffer. At each step, a mini-batch of experiences is sampled from the

replay buffer, and the neural networks are updated using gradient descent on the mini-batch.

In the first experiments, we started two separate meta-games using SAC and PPO,
both starting from the 3 X 3 starting games of the Myopic, Constant-132, and Guess-132
strategies for both low-cost and high-cost players. We defined the following parameter
values, while the rest of the parameters were set to their default values as defined by the

model:

* Learning rate (Ir) = 3 x 1075: We experimented with lower values initially and
reached this value through experience. This value was later fine-tuned again along

with other parameters during hyperparameter tuning, described in Section 6.3.2.

127

6. PSRO Framework and Advanced RL Algorithms

* Discount factor (y) = 1: This value was chosen based on the results tested in the

previous chapter.

* Memory = 3: We continued with the same value as in previous experiments; however,

this parameter was also tuned later.

 Number of episodes = 3 x 10 x |support(opponent’s strategy)|: A large number of
episodes was initially considered to observe the agent’s behaviour. The number of
episodes increases as the number of strategies in the opponent’s mixed equilibrium
strategy increases because the learning task becomes more complex as the agent

needs to distinguish between different opponents.

* Target entropy for SAC = 0: We set this target value to zero to encourage the
strategies to become less stochastic as learning progresses; in our pricing game,
randomly chosen prices are empirically less likely to lead to cooperation between the

firms (see also Section 6.4.2).

In Figure 6.3, we have plotted the mean return throughout learning for all strategies
trained using the two algorithms in separate meta-games. It is important to point out that
these strategies are not trained against the same opponents. Although both meta-games
started from the same initial game, from the second iteration of the meta-game, the opponents
differ because the new equilibria are based on the newly trained agents. Therefore, while we
have plotted the mean return, this is not the primary aspect we aim to compare. Additionally,
the number of episodes the strategies are trained differs depending on the opponent’s support

or the early termination of training.

What we intended to highlight with the plot was the behaviour of these strategies during
learning. As shown, the learning path of the SAC algorithm is very noisy, and the returns
do not stabilise completely, even after millions of episodes. This is due to the entropy term
in the SAC algorithm, which is one of its strengths as it encourages exploration. While
setting the target entropy to zero reduces the variance in the final model, the resulting policy

is still not a deterministic strategy.

The PPO-trained strategies are significantly less random compared to those trained
by SAC, and the learning plot appears smoother because PPO employs bounded updates,
which avoid sudden policy changes. The changes throughout the learning process for PPO

are more gradual, resulting in smoother learning paths.

The policy trained using SAC updates more frequently, with the entropy term enhancing
exploration and no external bound on the updates. We believe that the combination of these
factors is the reason behind the sudden improvements observed in strategies trained using
SAC.

There are 32 strategies plotted for PPO, 16 for each player, as we trained the PPO
meta-game for 16 rounds, and 24 strategies, 12 for each player, trained using SAC as we
trained SAC for 12 rounds. Among the PPO strategies, 3 low-cost and 11 high-cost strategies
were successful against corresponding equilibria to be added to the meta-game. For SAC, 7

low-cost and 6 high-cost strategies were added to the meta-game.

128

6. PSRO Framework and Advanced RL Algorithms

SAC vs PPO: episode return mean

160 +

P, (T PR R L e AT |
PR R BT S

140 +

120 4

100 4

mean return

80 4

60 4

20+

iterations 1e6

Figure 6.3.: Plot of mean returns of strategies in the two separate meta-games trained using
SAC and PPO algorithms

SAC vs PPO: episode return mean

160 +

140

120 4

100 +

mean return

80 4

60

204

T T T T T T T
[t} 1 2 3 4 5 6
iterations. 1le6

Figure 6.4.: Plot of mean returns of successful strategies in the two separate meta-games
trained using SAC and PPO algorithms

In Figure 6.4, we have plotted only the successful strategies. We cannot compare the
strategies directly because of the different opponents they have. However, what we could
observe in these plots, which also appeared in other similar experiments we ran, was that
the high-cost strategies trained using PPO in the PPO meta-game have higher returns than
high-cost strategies trained in the SAC meta-game. In contrast, the higher return low-cost
strategies were trained in the SAC meta-game. We still cannot conclude anything at this
stage. There, in the next experiments, we put the two algorithms in the same meta-game

and train strategies using both algorithms against the same opponent.

However, since the initial game for both experiments is the same 3 X 3 game, we can
compare the strategies trained in the first iteration of the experiments. The only equilibrium
of the initial game, as can be seen in the bimatrix game (6.10) in Section 6.3.4 below, is

Guess-132 for the low-cost player and the Myopic strategy for the high-cost player. This

129

6. PSRO Framework and Advanced RL Algorithms

means in both experiments in the first iteration of the meta-game, a low-cost agent is trained
against the high-cost Myopic strategy, and a high-cost agent is trained against the Guess-132

low-cost strategy.

We have plotted the prices, demand potential, and actions of these trained agents (one
low-cost and one high-cost agent for each learning algorithm) over 200 trials of the pricing
game in Figure 6.5. In the first plot, we have shown the returns of these agents against
their respective opponents. For example, for the low-cost SAC agent, the opponent is the
high-cost myopic strategy, and the agent’s return is shown on the x-axis, with the myopic
strategy’s return on the y-axis. Similarly, for the high-cost SAC agent, the opponent is the
low-cost Guess-132 strategy. The agent’s return is plotted on the y-axis because the agent is
the high-cost player in the game, and the x-axis shows the Guess-132 strategy’s return. In
each of the plots, we have highlighted the path following a greedy strategy (i.e., taking the
action with the highest probability at each stage) with a bolder line.

Among the 4 trained agents plotted, the PPO low-cost strategy was not successful
against the equilibrium strategy (myopic strategy) and was not added to the PPO meta-game.
The remaining strategies were successful. As is very clear from the plots, the variance of
the final probability distribution over actions learned by SAC is significantly higher than
PPO, resulting in much noisier paths.

When we compare the low-cost strategies, we observe that while SAC is noisier, it
consistently led to higher returns than PPO across all trials. It is important to point out
that although the price paths of SAC fluctuate a lot, the greedy path does not show those
fluctuations. The strong point of the SAC low-cost strategy can be seen in the demand
potential plot. SAC-trained strategies reach considerably higher demand potential than
PPO. This means SAC can better explore the advantage that low-cost strategies have, being
able to price lower, compared to PPO. The PPO-trained strategy, in contrast, leads to lower

returns than the Guess-132 low-cost strategy and is therefore not added to the game.

In contrast, the two algorithms show very similar behaviour for high-cost strategies.
Although the PPO high-cost strategy has slightly higher returns, the price path, actions, and

demand potential sequence of the two models are quite similar.

In terms of the end-effect, there is no visible sign of end-effect in PPO-trained strategies.
However, SAC-trained strategies, in some trials, play closer to the myopic price in the last

stage, though this behaviour is inconsistent.

130

6. PSRO Framework and Advanced RL Algorithms

high_cost player's retum
o
a

160

140

120 4

price

100 4

B8O 1

260 4

demand potential
™ N
[3
o o

N
=]
5]

180

Returns of low-cost vs high cost players

- SAC, low-cost
ads

* SAC, high-cost
PPO, low-cost
@ PPO, high-cost
+ equilibrium

T T T T T T
150 155 160 165 170 175
. low _cost player's return .
Agent's prices through stages of pricing game

SAC, low-cost
SAC, high-cost
PPO, low-cost
PPO, high-cost

T T T T T T

0 25
SAC, low-cost
SAC, high-cost
PPO, low-cost
PPO, high-cost i
JFES
7
£ <
Vs
(4‘.
T T T T T
0 10 15 20
. stages .
Agent's action in stages of pricing game
'y , . i £ . SAC, low-cost
1 \ ‘\ f SAC, high-cost
PPO, low-cost
l\ g ENY N (4 - PPO, high-cost

stages

Figure 6.5.: Plot of mean returns of strategies in the two separate meta-games trained using

SAC and PPO algorithms

6.3.1. Integrating PPO and SAC into a Unified Meta-Game

In the previous section, we suspected that SAC is more successful in training agents

(particularly low-cost agents), and PPO shows better performance with high-cost agents.

However, the first iteration of meta-games and the final games are insufficient to draw

definitive conclusions. Therefore, we initiated an experiment to test the learning rate,

memory length, and learning algorithms that we believed required further investigation. As

131

6. PSRO Framework and Advanced RL Algorithms

the meta-game progressed, we adjusted the parameters based on the results obtained and

improved the model iteratively.

Since multiple parameters were tested and, for each combination, an agent was trained
at every iteration of the meta-game, this process was time-consuming. To facilitate and
accelerate our experiments, we used the Fabian high-performance computing facility at
the London School of Economics [17]. Fabian provides access to multiple high-speed
processors and a robust platform for running large-scale computational tasks, which was

essential for managing the computational demands of our experiments.

MCG-FREQ

We refer to the first experiment as MCG-FREQ because it started from the 3 x 3 MCG
game shown in (6.10), and the equilibrium selection method used was the most frequent

equilibrium found via the tracing procedure.
We made the following modifications to this experiment compared to the previous one:

* State representation: In the previous representation of the state, we included the
memory of opponent’s prices. As we discussed, this memory is essential for the agent
to distinguish between different opponents. However, in the earlier models, the agent
could only recall its own most recent price and not any prior prices. At this stage
of the project, we decided to include the same memory length for the agent’s own
prices as was used for the opponent’s prices. This information was added to the state
because it provides a clearer context to the agent regarding its position in the pricing
game and the prices it has previously played, which could influence the opponent’s

actions.

. d d agent’s opponent’s
one-hot encoding of stage eman g PP

potential price memory price memory

* Base agent: Training an agent from scratch with randomly initialised parameters
takes a long time, and repeating this process for each agent separately is very
time-consuming. However, the previously trained agent can be used to initialise
the model parameters, and learning starts from there while adapting based on new
experiences. This approach is known as warm starting. Intuitively, since the agent
has already learned the approximate magnitude of returns and has an understanding
of the observation space, it can focus more effectively on dealing with the specific
opponent in that iteration. This reduces training time and improves learning efficiency.
Hence, when training new agents in the meta-game, we search among previously
trained agents that used the same learning algorithm, the same memory length in the
observation space, and the same production cost. Among these agents, we prioritise
those that have faced the same opponents during their training, which provides a head

start for our new training process.

* The test parameters: We wanted to test which learning algorithm trains more
successful agents in the meta-game to use in future experiments. Moreover, we

considered different values for the learning rate and the length of memory in the

132

6. PSRO Framework and Advanced RL Algorithms

state representation. We hypothesised that longer memory could help agents learn
better, so we tested the trade-off between the added complexity of a larger state

representation and the efficiency of learning.

* Database: The changes mentioned to the models required a structured and efficient
database. This database allowed agents to utilise previous training results to identify
the best base agent for warm starting and enabled us to analyse the most effective
tested parameters on learning performance, as all data related to agents, trials, and

equilibria are recorded in detail.

We ran the MCG-FREQ experiment for 21 iterations. In each iteration of the meta-game,
16 agents were trained: 8 low-cost and 8 high-cost agents, against the equilibrium found
most frequently using the tracing procedure. These agents were trained with different
combinations of learning algorithms (PPO or SAC), memory lengths (3 or 12), and learning
rates (0.0003 or 0.00016), resulting in 8 combinations.

In Table 6.1, the proportion of successful strategies is calculated for each combination.
Low-cost strategies are specified in the rows with ‘L’ and high-cost strategies with ‘H’. The

columns represent the tuple of (memory, learning rate).

(3, 0.0003) | (12, 0.0003) | (3, 0.00016) | (12, 0.00016)
4 10 3 9
SAC. L Sp=19% | S=d8% | = 14% | = 43%
4 11 4 9
SAC, H Sp=19% | 5=52% | o =19% | o =43%
2 0 2 0
PPO, L 57 = 9% 57 = 0% 57 = 9% 57 = 0%
PPO. H 2 _yq 1 59 Z —9q 1 59
: 20" 20 0" 20" 20 0"

Table 6.1.: Proportion of successful strategies in the MCG-FREQ experiment. The rows
represent the algorithm followed by ‘L’ (low-cost) or ‘H’ (high-cost). The
columns represent the tuple of (memory, learning rate).

As can be seen, SAC trains significantly more successful strategies compared to PPO,
both for low-cost and high-cost strategies. As the meta-game progresses, it becomes
increasingly harder for PPO to train successful agents against the equilibria. Although PPO
appears to perform slightly better for training high-cost strategies, the difference is minimal.
Among high-cost strategies, only 2% = 21% of successful high-cost strategies are trained
using PPO. Similarly, the proportion of successful low-cost strategies trained using PPO is
only 7 = 15%.

Another important observation from these results is that strategies trained with longer
memory are considerably more successful than those with shorter memory. Regarding the
learning rate, the differences in performance are not significant enough to draw conclusions,

although a learning rate of 0.0003 seems to be slightly more effective.

133

6. PSRO Framework and Advanced RL Algorithms

After reviewing these results, we decided to continue the experiment without PPO to
save computational costs, as most of the agents trained using PPO in later iterations were

not added to the game.

Furthermore, observing the advantage of longer memory motivated us to test an even
longer memory length of 18 (replacing the shorter length of 3). It is important to note that
increasing the memory length increases the state representation length by twice the increase,
as it involves additional price memory for both the agent and the opponent. This not only
increases computational costs but could also slow down learning, as the agent must analyse

more features. Hence, we prefer shorter memory lengths when the results are comparable.

We continued the meta-game from the last stopping point for additional iterations,
incorporating the new parameters. Table 6.2 shows the proportions of successful strategies
using the updated parameters during these new iterations. It is worth noting that the number
of trained strategies is not consistent across sets of test parameters because the game was
paused multiple times, and some iterations were restarted. As a result, some trained agents
were added to the meta-game while others did not have the opportunity to be evaluated

within the same iteration.

(18, 0.0003) | (12, 0.0003) | (18, 0.00016) | (12, 0.00016)
9 14 10 9

SAC, L 77 = 33% 3 44% 77 = 37% 77 = 33%
12 10 14 7

SAC, H % = 46% ﬁ =37% 1_8 = 78% E =37%

Table 6.2.: Proportion of successful strategies in the MCG-FREQ experiment with adjust-
ments in parameters. The rows represent the algorithm followed by ‘L’ (low-cost)
or ‘H’ (high-cost). The columns represent the pairs (memory, learning rate).

These results appeared to be inconclusive as they did not provide a clear indication of
the optimal parameter set. While a memory length of 12 led to more successful strategies
for the low-cost agent, the opposite was observed for the high-cost agent, where a memory
length of 18 produced better outcomes. Given these conflicting findings, we could not draw
conclusions from this experiment. Consequently, we decided to conduct a comprehensive
hyperparameter tuning experiment, examining all relevant parameters for each algorithm,

as detailed in the next section.

Before moving to hyperparameter tuning, we plotted the strategies trained in the first
iteration of the meta-game with a learning rate of 0.0003 and memory length of 3 in
Figure 6.6. This figure can be compared to the previous plot in Figure 6.5, where the
memory length was also 3. The fact that agents were trained in separate meta-games during
the previous experiment does not affect the results since we are only analysing the first

iteration where agents face deterministic strategies.

134

6. PSRO Framework and Advanced RL Algorithms

Returns of low-cost vs high cost players

- SAC, low-cost
- SAC, high-cost
80 1 . g * PPO, low-cost
£ % ;‘Sﬂr . PPO, high-cost
El P % equilibrium
2 704
»
T
@
=
&
2 601
]
Q
Y
)
£ 504
o R
T T T T T T
130 140 150 160 170 180
. low _cost player's return .
Agent's prices through stages of pricing game
150 4
140 4
130 1
= “‘ﬁv-—'m-n—— A
120 4 X i - A AT TSN ¥
£ 110
&
100
80 / a v SAC, low-cost
SAC, high-cost
80 1 PPO, low-cost
- PPO, high-cost
T T T T T T
0 5 10 15 20 25
_ stages .
Agent's demand potential through stages of pricing game
360 4 SAC, low-cost
SAC, high-cost
PPO, low-cost
2404 PPO, high-cost
8
5
3
‘5 220
a
o
£
T
£ 200
=
180 4
T T T T T
0 5 10 15 20
5 " stages o
Agent's action in stages of pricing game
LLs SAC, low-cost
SAC, high-cost
50 1 PPO, low-cost
PPO, high-cost
w0l 3
=
23
&
20
10
oA

stages

Figure 6.6.: Plot of mean returns, prices, demand potential, and actions of strategies trained
in the first iteration of experiment MCG-FREQ, with 1r=0.0003 and memory=3.

The plotted agents were trained for 2 x 10° episodes if they started learning from
random network parameters, and for 8 x 10° episodes if initialised from previously trained
agents.

By comparing the two plots, we observe that changes in the structure of the state,
particularly the inclusion of memory of the agent’s own previous prices, had the most
significant effect on the low-cost SAC agent. This agent learned the end-effect of the
game, as is evident from the action trending toward zero in the final stage. Furthermore,

in the current experiment, the agents were trained for more episodes than in the previous

135

6. PSRO Framework and Advanced RL Algorithms

experiment, which helped stabilise the strategies. These changes were applied and improved

as described in the next section.

Equilibria of MCG-FREQ experiment

90

80 ®
% 70 1
>
m
(=5
b
W
Q
¥
I~
2 60 - o

* @ [} o0
e o . o
e e
50 1
40 : . T . :
110 120 130 140 150 160

low-cost payoff

Figure 6.7.: Plot of payoff pairs of equilibria in the MCG-FREQ experiments. The yellow
star is the payoft pair of the SPE.

Finally, we have plotted the equilibria of the meta-game in the early iterations of the
MCG-FREQ experiment in Figure 6.7. This plot will later be compared with the results

from our final experiments, which empirically identify a new mixed equilibrium.

6.3.2. Hyperparameter Tuning of the Learning Algorithms

Different choices for hyperparameter values can significantly impact the convergence rate,
as well as the exploration and exploitation strategies of a learning algorithm, and can lead to
either improvements or deteriorations in performance. In previous experiments, we tuned
basic parameters such as the learning rate and discount factor. However, with the adoption
of more advanced RL algorithms, we recognised the need to tune all the hyperparameters
of these algorithms together to achieve the best performance for our specific environment

setting.

To assess the impact of different parameters more carefully, we conducted multiple
tests considering various factors, such as the average total reward for each strategy, the

variance of prices over different iterations, and the running time.

In the first test, we investigated the structure of the state representation, specifically
varying the length of memory provided in the state to include past prices of both the
agent and the opponent. Memory provides important information in the learning process,
especially since our agents compete against different opponents. For agents to effectively
distinguish between different opponents and adapt their strategies accordingly, they need to
retain information about previous interactions. The results presented in Table 6.1 highlighted
the significant effect of this parameter on performance and motivated us to study it more

carefully.

136

6. PSRO Framework and Advanced RL Algorithms

The optimal length of memory should strike a balance between providing sufficient
information for the agent to learn the opponent’s patterns and not excessively increasing
the algorithm’s complexity. To evaluate this, we trained three low-cost agents against the
mixed strategy (% Myopic, % Guess-132) for each value of memory between 0 and 24. When
memory = 0, agents lack any information about their own previous prices as well as those of
their opponents. Conversely, when memory = 24, the agent is aware of all prices played by

both itself and the opponent in all previous stages.

We compared the performance in terms of running time, standard deviation of returns,
and return mean. Although memory values in the range 0 to 5 made a significant difference
in the mean and standard deviation of returns, beyond that point, running time became
the primary difference between the results. The values in the range 9 to 15 produced
similar results across all criteria. Taking into account that the opponent’s our agent face in
future might be more complicated than the test opponent (higher support for opponent’s
strategy), we chose memory = 12 as the acceptable value for the length of memory in the

state representation.

In the next test, we aimed to restrict the candidates for the learning rate to be considered
in combination with other hyperparameters. We trained low-cost agents with different
values of the learning rate (/r) against the mixed strategy of (% Myopic, % Guess-132). To
assess the impact of the learning rate, we trained three agents for each of the 20 equally

spaced values in the range Ir € [0.00001, 0.00058], each over 4 million episodes.

learning rate test, SAC, low-cost

10

N

0.8

06
— payoff mean
— -1xpayoffstd
—— -1 x running time

0.4

0.2

0.0

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
I

Figure 6.8.: Payoff, —1x standard deviation and —1X running time for different learning
rates are plotted for low-cost agents trained by SAC.

We aim to find the values that maximise payoff while minimising variance and running
time. In Figure 6.8, normalised values of the mean payoff, —1x payoff standard deviation,
and —1X running time are plotted. All agents were trained using the SAC algorithm. By
analysing this plot and examining the variance in the agents’ prices and demand potentials
over the episodes, we selected Ir = 0.000298 ~ 0.0003 as the optimal learning rate
parameter. The demand potential and price for this value of Ir are plotted in Figure 6.9.

137

6. PSRO Framework and Advanced RL Algorithms

The next best candidate value to consider, in combination with other hyperparameters, was
0.00016.

agent_prices

. var:193.5096230148673

agent_demands

I var:100.76017186650527

Figure 6.9.: Prices and demands of the trained agent through the 25-round game are plotted
for different iterations. In this plot, /r = 0.000298.

The most important test, which had a crucial effect on our results in terms of convergence
and optimality, was a comprehensive grid search across all hyperparameters of the two
learning algorithms. Before conducting this test, adjusting basic hyperparameters that we
assumed to be the most effective did not yield an acceptable variance in the final model
trained using the SAC algorithm. Additionally, the PPO algorithm produced weaker results

in terms of optimality compared to the SAC algorithm.

To address this, we performed the grid search on the respective parameters of both the
PPO and SAC algorithms. Given the large number of parameters and the multiple values to
test for each, using the main game for this evaluation was impractical due to time constraints.
Instead, we decided to run the grid search on a smaller version of the game with 4 stages,
while keeping the rest of the game details the same. Since the length of memory in the
25-stage main game was set to 12, we adjusted the memory length to 2 for the 4-stage game
(half the length of the episode).

For each algorithm, we examined the parameters and values explained in Tables 6.3
and 6.4, testing each combination for three iterations. In all these tests, the discount factor

is considered to be one.

To understand the parameters mentioned in Tables 6.3 and 6.4, we need to explain how

they are used.

* PPO: Each step taken in the environment, in our case every stage of the pricing game,
is called an experience. An episode is a sequence of experiences from the initial state
to the final state; in our case, 25 stages form one episode. A large number of these
experiences, from multiple episodes, are collected in each batch, which will be used
to update the policy network. In each epoch, the batch is shuffled randomly, and
then it will be divided into mini batches since the batch size is large. The division

138

6. PSRO Framework and Advanced RL Algorithms

parameter values description

Ir {0.0003, 0.00016} learning rate

n_epochs {10,20} number of epochs (passes through
batch)

clip_range {0.2,0.1,0.3} range used in clip loss in objective, € in
6.4

clip_range_vf {None, 0.2} clip range for value function. If None,

the value function will not be clipped.

ent_coef {0.0,0.01,0.001} the coefficient of entropy loss in the
objective, ¢, in (6.5)
vf_coef {0.5,0.4,0.6} the coeflicient of value function loss in
the objective, c; in (6.5)
Table 6.3.: Hyperparameters examined for PPO
parameter values description
Ir {0.0003, 0.00016} the learning rate for Adam optimiser,

target_entropy

ent_coef

tau

train_freq

gradient_steps

{’auto’, 0}

{ ’auto’, ’auto_0.1",
’auto_0.001"}

{0.005,0.001,0.01}
{1, 10,20}

{1’_1}

used for all networks

target entropy when learning entropy
coeflicient

Entropy regularisation coefficient, @ in
(6.6), ’auto’ for the value to be learned
automatically, ’auto_0.1" means use 0.1
as initial value

Polyak update coefficient, 7 in (6.9)

after how many steps should the model
be updated

how many gradient steps to do after
each experience. ’-1° means as many
steps as taken in the environment

Table 6.4.: Hyperparameters examined for SAC

helps use computational resources more efficiently and leads to stable learning. Each

mini-batch is used once to update the policy network within each epoch.

* SAC: At the start, the agent interacts with the environment for train_freq steps using

the current policy. These experiences are collected and added to the replay buffer.

Then, a batch of experiences is sampled from the replay buffer. The Q-networks and

policy network are updated gradient_steps times using the Adam optimiser with the

[r learning rate. The coeflicient of the entropy term in (6.6) is learned according to

the ent_coef and target_entropy settings. At the end of each update cycle, the target

values are updated using Polyak averaging with the parameter tau. This process gets

repeated.

139

6. PSRO Framework and Advanced RL Algorithms

After training three agents with each combination of hyperparameters, we evaluated their

performance using the following metrics over 100 trials:
¢ Mean of cumulative rewards, return_mean,
* Mean of the three agents’ standard deviations, return_std_mean,

 Standard deviation of the three agents’ standard deviations (to measure how different

the behaviour of the three agents was), return_std_std,
* Running time, time_mean.

The top combinations with acceptable mean return and mean standard deviation of final

models, for low-cost agents and high-cost agents, are plotted in Tables 6.5 and 6.6.

PPO, low-cost

Ir n_epochs dip_range cdlip_range vf ent coef vf coef return_mean return_std_mean return_std std time_mean

0.00016 10 0.3 None 0.010 0.5 22.950655 0.026702 0.012418 111.125
0.00016 10 03 None 0.010 0.5 23.019558 0.035856 0.014384 71125
0.00016 20 03 None 0.010 0.5 22.863185 0.020626 0.007057 112250
0.00016 20 03 None 0.001 0.5 22.809958 0.013811 0.005614 112.750
0.00016 20 03 None 0.001 04 22821347 0.016700 0.007731 112625

(a) Parameters with best performance for training low-cost agents using the PPO algorithm
PPO, high-cost

Ir n_epochs clip range clip range vf ent coef vf coef return mean return std mean return std std time mean

0.00030 10 0.3 None 0.010 0.5 14.424052 0.007342 0.002926 71.750
0.00016 10 0.3 None 0.010 04 14.510688 0.005696 0.003224 71.500
0.00016 10 0.3 None 0.010 06 14.508981 0.005758 0.002920 71.250
0.00016 10 0.3 None 0.001 0.5 14.493045 0.007316 0.003973 71,625
0.00016 10 0.3 None 0.001 0.6 14.510556 0.004996 0.002593 71.250

(b) Parameters with best performance for training high-cost agents using the PPO algorithm

Table 6.5.: Results of hyperparameter tests for both low-cost and high-cost agents using
PPO

Based on these results, for each of the algorithms, we chose a combination of parameters
that performs well for training both low-cost and high-cost agents. The final selected
hyperparameters for each algorithm are listed in Table 6.7. For the subsequent experiments,

we used these parameters, which led to more stable and optimal results in the trained models.

After finalising the best choice of all hyperparameters, we turned our attention to two
additional assumptions from the previous models: the equilibrium selection method in the

meta-game and the initial meta-game configuration.

6.3.3. Equilibrium Selection in PSRO

One of the challenging steps in implementing the PSRO framework is selecting the
equilibrium that new agents are trained against. At each step of the meta-game, one or more
equilibria of the current game are computed, and then the new agents are trained against

these equilibrium strategies. The new agents are added to the game if they achieve a higher

140

6. PSRO Framework and Advanced RL Algorithms

SAC, low-cost

Ir target entropy ent coef tau train freq gradient steps return mean return std mean return std std time mean
0.0003 auto auto 0.010 1 1 23.517860 0.108013 0.012151 497.625
0.0003 auto auto 0.010 1 = 23517860 0.108013 0.012151 496.000
0.0003 auto auto_ 0.1 0.005 20 -1 23476461 0.105596 0.028992 471.500
0.0003 auto auto 0.1 0.010 1 1 23452549 0.104834 0.021052 491.125
0.0003 auto auto_0.1 0.010 1 1 23452549 0.104834 0.021052 491.250

(a) Parameters with best performance for training low-cost agents using the SAC algorithm

SAC, high-cost

Ir target entropy ent coef

tau train_freq gradient steps return_ mean return std mean return std std time mean

0.00030 auto auto 0.001 10 -1 14.442437 0.068717 0.022465 497.750
0.00030 auto auto 0.010 1 1 14.444639 0.064042 0.017620 498.000
0.00030 auto auto 0.010 1 -1 14.444639 0.064042 0.017620 499375
0.00030 auto auto 0.1 0.005 20 =] 14.439821 0.063326 0.009176 474.875
0.00030 auto auto 0.1 0.010 20 =] 14.446415 0.059221 0.014173 476.250
0.00016 auto auto 0.1 0.010 10 =1 14.379490 0.108330 0.057499 495.125

(b) Parameters with best performance for training high-cost agents using the SAC algorithm

Table 6.6.: Results of hyperparameter tests for both low-cost and high-cost agents using

SAC
PPO: parameter value SAC: parameter value
Ir 0.00016 Ir 0.0003
n_epochs 10 target_entropy “auto’
clip_range 0.3 ent_coef "auto’
clip_range_vf None tau 0.01
ent_coef 0.01 train_freq 1
vf_coef 0.5 gradient_steps 1

buffer_size 200,000

Table 6.7.: Selected hyperparameters for SAC and PPO

return than the expected payoff of the corresponding equilibrium. In our experiments, we

observed that the choice of equilibrium can significantly influence our results.

The first step is to compute the equilibria of the game. The meta-game is a bimatrix
game, and all equilibrium vertices of bimatrix games can be computed using the lrsNash
algorithm by Avis, Rosenberg, Savani and von Stengel [3]. However, the time complexity
of this algorithm is exponential, making it impractical for games larger than approximately
20 % 20. As we expected our meta-games to scale to higher dimensions—indeed, the size of
the meta-games in our experiments exceeds 80 X 80—the use of [rsNash was not an option.
In addition, a full (possibly exponentially long) list of all Nash equilibria would give no

information on which equilibrium is more likely to be played by the agents.

Instead, we employed the tracing procedure first proposed by Harsanyi [26], usually

called the “Harsanyi-Selten” tracing procedure, as it is the basis of the equilibrium selection

141

6. PSRO Framework and Advanced RL Algorithms

method in their book [25]. An algorithm to implement it was proposed by van den Elzen
and Talman [65], and shown by von Stengel, van den Elzen and Talman [68] to be a special
case of the algorithm by Lemke [41]. This version of the algorithm was implemented in

Python by my co-author Bernhard von Stengel and used in our experiments.

The tracing procedure is a Bayesian approach that begins with a mixed strategy pair,
called the prior, that represents a commonly known initial belief of the players of what
both players may possibly play. For example, the prior may be the uniform probability
over each player’s pure strategies (as assumed in [25]), or a pair of random points in each
mixed strategy simplex, as is used in our case. The tracing procedure then follows a path of
equilibria in a parametrised game where the players best respond against a mixture of the
prior and the actually played mixed strategy pair. The parameter is the weight of the prior,
which changes from initially 1 to 0, with possibly intermittent increases. When the prior

weight has reached zero, an equilibrium of the game is found.

The tracing procedure thus generates a piecewise linear path of mixed-strategy pairs.
The corresponding payoffs interpolate between the prior-based payoffs and the actual game
payofts, starting with the prior payoffs and ending with those in the actual payoff matrices.
Along this path, each player best responds to their belief about the other players’ strategies.
Their beliefs keep getting updated based on their prior and the current equilibrium strategy.
This continues iteratively until the end of the path, where they reach an equilibrium of the

game.

The tracing procedure finds only equilibria that, in generic games, have a positive
index. This is a necessary condition for an equilibrium to be locally dynamically stable
[30], meaning that dynamics that are compatible with best responses (such as the replicator
dynamics) bring slight deviations from the equilibrium back to the equilibrium. Generic
games have one more equilibrium of index +1 than of index —1. The latter are never
dynamically stable [30], and it is therefore good that the equilibria found by the tracing
procedure and considered for training our agents have always index +1.

In each iteration of the meta-game, we run the tracing procedure with 100 traces
(random priors) to find the equilibria of the current game and consider the set of equilibrium
points found by these traces as our candidates for training the new agents. Finding these 100
equilibria did not take longer than a few minutes of computation time, so the PPAD-hardness
of finding one equilibrium in a bimatrix game was no issue at all. In comparison, the
training of agents was the main time requirement. An additional storage requirement arises
when the bimatrix meta-game is to be generated by playing the trained agents against each
other, because loading all their parameters and neural networks requires high RAM (as

future work, there are ways to optimise memory management here).

The first selection method we considered for choosing the equilibria of the meta-game
was based on their higher empirical frequency in the tracing procedure, as they are found
starting from random priors. This approach prioritises equilibria with more traces leading
to them, making them more plausible as an equilibrium choice. We used this method in all

previous models, which we specified as the FREQ equilibrium selection.

142

6. PSRO Framework and Advanced RL Algorithms

In later experiments, an interesting question arose: Could agents learn to cooperate and
converge to equilibria with higher returns? To explore this, we introduced an (in general
different) selection method that chooses the equilibrium with maximum social welfare,
defined as the equilibrium (as found by the tracing procedure) with the highest sum of
payoffs for both players. This approach encourages cooperation, which benefits both players.
We specified these experiments as WELF. The experiments in the next section adopt this

selection method.

6.3.4. Initial Meta-Game

In the next experiments, we investigate the effect of different initial games on the progression
of the meta-game. The strategies in the initial game, by appearing in various equilibria and
subsequently training agents against them, can introduce different levels of complexity to
the agents we train. In our experiments, we considered four different initial games, each
considering distinct sets of deterministic strategies to start. These strategies are different in

their level of complexity and cooperation.

Myopic-Constant-Guess (MCG)

Our first idea for the initial game, as previously used in earlier experiments, was a 3 X 3
game with the Myopic, Constant-132, and Guess-132 strategies (as defined in Section 4.3.2)

for both low-cost and high-cost agents.

The Myopic strategy is a shortsighted, highly cooperative strategy that only considers
the current stage’s payoff. The Constant strategy, with its clear price sequence, should be
relatively easy for the agents to exploit and achieve a high payoff against. Finally, the Guess

strategy allows for cooperation but may not be easy to play optimally against.

This selection represents a variety of behaviours that we hope will enable our agents to

better understand and adapt to the game settings.

143

6. PSRO Framework and Advanced RL Algorithms

high-cost
myopic constant-132 guess-132
low-cost
93.895 94.732 94.732
myopic
139.591 138.555 138.555
94.760 103.712 103.712
constant-132 (6.10)
138.527 127.512 127.512
79.666 68.729 79.091
guess-132
[154.998 168.709 141.639

Using this starting mode, the game in 6.10 serves as the initial meta-game. The equilibrium
identified by the tracing procedure is (Guess-132, Myopic), so next, low-cost agents will
be trained against the Myopic strategy, and high-cost agents will be trained against the

Guess-132 strategy.

It is worth mentioning that Constant-132 is a dominated strategy for the low-cost player,
but it is only weakly dominated for the high-cost player. We intentionally kept this strategy

in the game to study its impact on future performance in the PSRO process.

Random (RND)

In the implementation of the PSRO method, a common approach is to start the game
with a strategy that plays randomly. Starting from a random strategy allows our model to
begin learning without any prior knowledge, exposing opponents to various behaviours
and training them against a diverse set of strategies. However, while a random strategy
may initially increase exploration of the game, it is inherently unstable. As a result, agents
struggle to learn effectively from these experiences, as they are constantly being pulled in
different directions, leading to limited meaningful progress. We implemented this starting

method by initialising the learning model with random parameters for the neural networks.

144

6. PSRO Framework and Advanced RL Algorithms

Multiple Guess (GUESS)

Another initial game we considered in our latest experiments started from variations of the

Guess strategy. As mentioned earlier, Guess is a smart strategy that is not easy to exploit.

Therefore, we decided to study the game that begins with the 3 x 3 bimatrix game, using

the strategies Guess, Guess2, and Guess3 as both low-cost and high-cost strategies. These

strategies are defined in Section 4.3.2.

This initial bimatrix game is shown in (6.11). The equilibrium (Guess3, Guess3) is

the only one found by the tracing procedure for this game, so the low-cost and high-cost

strategies will be trained against Guess3 in the next step.

low-cost

guess

guess2

guess3

high-cost

guess

guess2

guess3

141.639

79.091

77.183

138.955

142.781

79.652

140.063

76.650

74.996

136.919

140.939

76.891

142.293

80.489

78.360

139.466 [143.336

145

6.11)

6. PSRO Framework and Advanced RL Algorithms

All and SPE (ASPE)

The last initial game mode we considered involved adding all our predefined strategies to

the initial game, as well as the subgame perfect strategy, to study how the game proceeds.

We defined the initial game with the strategies SPE, Myopic, Constant-132, Imitation-
132, Guess, Guess2, and Guess3 for both high-cost and low-cost agents.

high-cost
low-cost spe myopic const-132 imit-132 guess guess?2 guess3
39 10 52 50 50 50
spe
121 181 233 115 112 111 112
121 94 95 101 95 95 95
myopic
87 140 139 130 139 139 139
184 95 104 104 104 104 101
constant-132
23 139 128 128 128 128 131
97 102 104 104 104 104 103
imitation-132
104 130 128 128 128 128 128
66 80 69 72 79 77 80
guess
116 155 169 130 142 139 143
65 74 55 71 77 75 77
guess2
117 161 186 130 140 137 141
66 80 73 72 80 78
guess3
116 154 163 130 142 139
(6.12)

The bimatrix game (6.12) represents the initial game (with rounded payoffs for presentation
purposes). The tracing procedure finds two equilibria for this game. Clearly (SPE, SPE) is
one of these equilibria (where SPE stands for each player’s strategy in the subgame-perfect
equilibrium). The other equilibrium, which is essential for the extension of the meta-game,
is (Guess3, Guess3). We explain next that no strategies could be added to the game when
trained against (SPE, SPE), so in the first round, (Guess3, Guess3) is chosen to expand the

meta-game.

146

6. PSRO Framework and Advanced RL Algorithms

Why not start from only SPE?

The idea of starting the game from the subgame perfect equilibrium (SPE) strategies is
interesting to study. However, this is not feasible because SPE is the optimal strategy
against itself. By definition, using backward induction, at each stage players maximise their
payoffs, considering that the opponent does the same. Therefore, when both players use
this strategy, neither can improve their payoff in any subgame. If we start the game with
low-cost and high-cost strategies playing SPE, new high-cost and low-cost strategies will
be trained against SPE, but none of them will be added to the game because they cannot
achieve a higher payoff than the equilibrium, preventing the game from growing. The same
argument applies to any initial game where the tracing procedure only finds the SPE as the
equilibrium. While it is clear that SPE is an equilibrium of the game, for our meta-game to

expand, the PSRO method requires at least one additional equilibrium at each round.

6.4. Final Experiments: Exploring Initial Meta-Games with
Updated Equilibrium Selection

With all hyperparameters set and the WELF equilibrium selection method implemented, we

proceeded to experiment with different initial meta-games.

First, to ensure that our implementation was correctly directed towards finding resource-
bounded Nash equilibria, we tested an initial meta-game containing only the myopic strategy,
assigned to both the low-cost and high-cost players. The payoff of the strategy profile
(myopic, myopic), shown in Figure 6.12, lies on the Pareto frontier of the players’ returns.
This is because the myopic strategy is highly cooperative. However, (myopic, myopic) is
not a Nash equilibrium of the pricing game: playing lower prices than myopic in the early

rounds leads to higher potential demand for the players and, consequently, higher returns.

Our goal in this test was to determine whether, if the PSRO process started from a
high-return profile that is not an equilibrium, it could move beyond it. This was quickly
confirmed in the first iteration of PSRO, where newly trained strategies were added to the

meta-game and the (myopic, myopic) profile no longer appeared as an equilibrium.

Having confirmed this point, we proceeded with experiments using different sets of
strategies in the initial meta-games. Before describing these experiments, we outline the

adjustments made to the framework at this stage.

These experiments employed a modified approach to multi-processing. In earlier
experiments, separate processes were used to train a single agent while running multiple
environments within each process. In this approach, each process independently trains
an agent. Previously, only one low-cost and one high-cost agent were trained using each
learning algorithm against the equilibrium. Now, we train seven new agents (equal to the
number of processes) against the equilibrium, incorporating a mix of low-cost and high-cost

agents using the PPO and SAC learning algorithms.

Additionally, in earlier setups, learning was based solely on the top equilibrium, either

the one most frequently identified or the one that maximised social welfare. At this point,

147

6. PSRO Framework and Advanced RL Algorithms

we extended the approach to consider the top two equilibria (when available) identified by
the tracing procedure that yield the highest social welfare. Within the PSRO framework,
after computing the equilibria of the current meta-game, we select the top two and train
best response pricing strategies separately against each of them. Any strategy that exceeds
the expected payoff of its corresponding equilibrium is retained. We then add the union of
all such successful strategies from both equilibria to the meta-game. This adjustment was
motivated by the inclusion of the SPE strategy in some initial games, which encouraged
exploration beyond SPE. As a result, at each meta-game iteration, seven agents are trained

for each of the two selected equilibria.

We ran seven experiments, testing four different initial meta-games as the starting point,

with WELF equilibrium selection applied to all of them.

* MCG-WELF-1 and MCG-WELF-2: These two experiments both start from the
MCG initial game. They were run for 33 and 50 iterations, respectively, resulting in

final meta-game dimensions of 79 x 78 and 92 x 95.

« RND-WELF-1 and RND-WELF-2: These experiments start from strategies ini-
tialised with random network parameters. They were run for 26 and 45 iterations,

respectively, and the final meta-game dimensions are 74 X 71 and 121 x 169.

¢ GUESS-WELF-1 and GUESS-WELF-2: These experiments begin from the GUESS
initial game. They were run for 48 and 50 iterations, respectively, resulting in final

meta-game dimensions of 94 x 117 and 125 x 120.

¢ ASPE-WELF: The meta-game in this experiment starts from ASPE, which includes
all deterministic strategies as well as the SPE for both agents. This meta-game was

run for 41 iterations, resulting in final meta-game dimensions of 104 x 74.

One question that might arise is why the number of iterations in these experiments
was different. This is due to issues encountered while using an external server to run these
experiments. It is possible to continue these games for additional iterations; however, since
experiments with the same initial games led to similar results in terms of the equilibrium

they converged to, we did not extend the iterations further.

In these experiments, agents using the PPO learning algorithm are trained for 400,000
episodes if they start learning from scratch with random network parameters. If they
initialise their network parameters using a previously trained agent, they are trained for
200,000 episodes. For agents using the SAC algorithm, these numbers are multiplied by
a factor of 3. This adjustment is based on observations that PPO quickly converges to a
policy, whereas SAC requires more time to converge effectively. Our experiments showed

that a factor of 3 provides SAC with sufficient time for training.

However, this decision has a downside. PPO is significantly faster than SAC when
trained for an equal number of episodes, taking approximately one-third of the time required
by SAC. Extending SAC training to more episodes intensifies the time difference. Since

agents are trained in parallel processes, the entire iteration must wait for all SAC agents to

148

6. PSRO Framework and Advanced RL Algorithms

finish training, even though the PPO agents finish much earlier. This increases the overall

runtime of the experiments.

As the first step in analysing the results, we plotted the details of the seven agents trained
in the first iteration of the MCG-WELF-1 experiment to compare them with the previous
MCG-FREQ experiment, which was conducted before the extensive hyperparameter tuning.
The plots are shown in Figure 6.6. The initial games and equilibria are the same since the
MCG initial game has only one equilibrium. Figure 6.10 shows the results of all seven

agents in the first iteration to observe the end effect.

Returns of low-cost vs high cost players

e * ° SAC, low-cost
80 4 ° SAC, high-cost
SAC, high-cost
€ PPO, low-cost
2 704 PPO, low-cost
g PPO, high-cost
;i‘ PPO, high-cost
uilibrium
2 601 ° &
i
8
5
o
o
£ 50
®
40 ®
T T T T T
140 150 160 170 180
. low costplayer's return
Agent's prices through stages of pricing game
150 4 SAC, low-cost
SAC, high-cost
140 SAC, high-cost
PPO, low-cost
PPO, low-cost
50 PPO, high-cost
PPO, high-cost
2 120
=
B
110 4
100
90
T T T T T T
0 5 10 15 20 25
. stages -
Agent's demand potential through stages of pricing game
260 +
— 240 SAC, low-cost
]
=1 SAC, high-cost
;E SAC, high-cost
= 2201 PPO, low-cost
5 PPO, low-cost
5 PPO, high-cost
= PPO, high-cost
200 1
180 4
0 5 10 15 20
5 . stages . i
Agent's action in stages of pricing game
601 SAC, low-cost
SAC, high-cost
50 - SAC, high-cost
PPO, low-cost
PPO, low-cost
40
PPO, high-cost
- PPO, high-cost
2 30
&
204
10 4
oA

stages

Figure 6.10.: Plot of mean returns, prices, demand potential, and actions of strategies trained
in the first iteration of experiment MCG-WELF-1.

149

6. PSRO Framework and Advanced RL Algorithms

The first notable result of the extensive hyperparameter tuning is the stability of the
learned policies. Although these agents were trained for half the number of episodes
compared to the MCG-FREQ experiment, the standard deviation of the final policies
is considerably lower, which indicates convergence to pure strategies for both learning

algorithms and both low-cost and high-cost agents.

The SAC low-cost agent maintained its good performance, effectively learning the
end-effect and achieving high returns. The SAC high-cost agent’s final return improved
and is now successful against the equilibrium; however, it has not consistently learned the
end-effect.

For PPO, the low-cost agents showed substantial improvement. In the MCG-FREQ
experiment, PPO low-cost agents had significantly lower payoff returns compared to SAC
low-cost agents. Now, their payoffs have improved by 15% and 19%, respectively, and both
agents are added to the meta-game since their payoffs exceed the equilibrium. However,

none of them show any sign of learning the end-effect.

MCG-1 | MCG-2 | RND-1 RND-2 | GUESS-1 | GUESS-2 | ASPE
63 72 73 115 84 96 75
SAG.L 1 o7 0 | ® 6 | 126 a1 122
59 75 68 140 91 92 51
SAC.H | =% | e W | 130 14 149
13 17 0 5 7 26 22
PPO.L | 77 00 |8 50 | 130 e 148
16 17 2 31 23 25 16
PPO.H | 55 R wm | I; 146 31
Learning algorithms' success rate

100 o 3 —8— SAC L
4 L @ SAC.H

80

60

percentage (%)

40 1

20 1

T T
~ 3% ~ v g
& & o

& & G,«?

experiments

o

o

S &
&

&

Table 6.8.: Proportion of successful strategies in the final experiments. The rows represent
the learning algorithm followed by ‘L’ (low-cost) or ‘H’ (high-cost). The columns
show the experiments, where the equilibrium selection method for all of them is
WELF.

150

6. PSRO Framework and Advanced RL Algorithms

Similar to the previous section, we demonstrate in Table 6.8 the number of successful
strategies trained by each learning algorithm, for low-cost and high-cost agents, to evaluate
the effect of hyperparameter adjustments on their success rate (in the sense of how often
they are being added to the meta-game). To compare this with Table 6.1, recall that the
initial game in the MCG-FREQ experiment was MCG, so we compare the success rates
only to MCG-WELF-1 and MCG-WELF-2.

The success rate of the trained strategies using both learning algorithms has improved
compared to any column of Table 6.1, where the best success rates for SAC-L and SAC-H
were 52% and 48% in the third column, whereas now they are higher at 65% for both.
Similarly, PPO-L and PPO-H previously had their highest rates in the first column at 9%,

whereas now the success rate for both is around 18%.

However, the consistent observation remains that PPO trains considerably fewer
successful strategies. To understand the impact of PPO-trained strategies on the meta-game,
we need to analyse how often PPO-trained strategies are included in the equilibria of

subsequent iterations, as we will investigate in Section 6.4.3.

6.4.1. Equilibria of the Meta-Game

The central question of this research was whether there exist equilibria in the pricing game
that yield higher returns for both players than the subgame perfect equilibrium (SPE).
Furthermore, if such equilibria exist, we asked whether the strategies trained within our
PSRO framework converge to them. Here, the notion of equilibrium is understood in the
sense of empirical game theory [72], that is, no better strategy can be found by a trained

agent.

In the first step, we investigate whether such an equilibrium can exist by analysing the
Pareto frontier of the returns for the low-cost and high-cost players. For that purpose, we
have to find the maximally achievable payoffs for the players. Similar to Keser [37, pp.
11-14] (with a discount factor of 1), with a parameter A between 0 and 1 that determines how
much profit should be allocated to the low-cost player, this can be found by maximising the
weighted sum of the players’ returns, working backwards from the last stage, and accepting
weights that lead to positive returns for both firms, as assumed in our experiments. The

Pareto frontier is plotted in Figure 6.12.

The most cooperative strategy we have defined for the pricing game is the myopic
strategy, where the player maximises the payoff at the current stage without considering the
demand in the subsequent stages. It is cooperative because if both agents play myopically,
they do not compete over the demand potential. Instead, they quickly reach a demand
potential split of (207, 193), and the price that maximises the payofts equals 132, as plotted
in Figure 6.11.

However, this strategy is not an equilibrium strategy because agents can gain by

deviating at the penultimate stage.

151

6. PSRO Framework and Advanced RL Algorithms

{myopic, myopic)

210 A
200 A B
Tk ik ik —h—k —k k& k& : |
190 4
180 A
—8— low-cost price
170 1 —— high-cost price
—#— low-cost demand-potential
160 1 —&— low-cost demand-potential
150 A
140 4
130 4 “; :
T T T T T T
0 5 10 15 20 25

stages

Figure 6.11.: Demand potential and prices of (myopic, myopic) strategies.

—— Pareto frontier
200 SPE

@ (myopic, myopic)
175 4 A mixed equilibrium
150 ~

125

100 4

high-cost return

75 A

50

255

T T T T
0 50 100 150 200 250 300
low-cost return

Figure 6.12.: Pareto frontier of returns in the pricing game.

In Figure 6.12, we observe that the return of (Myopic, Myopic) is located on the Pareto
frontier, meaning there are no other strategies that allow higher returns for both players.
Additionally, the SPE payoff pair lies some distance from the Pareto frontier. We use the
returns from SPE and (Myopic, Myopic) as benchmarks for competitive and cooperative

strategies.

The third point plotted is an apparent limit of the mixed equilibrium payoffs in the

growing meta-game. We discuss this next.

In Figures 6.13, 6.14, and 6.15, we have plotted the returns of all the equilibria of the
meta-game found by the tracing procedure as the game proceeds. The equilibria of the

early meta-games are shown in a more transparent colour, and the latest ones are bolder.

152

6. PSRO Framework and Advanced RL Algorithms

MCG-1
90
80 ¥ *' o
L]
b= &
g 70 4
m
o
] ®]
g
& L J
2 60
g
®
50 4
40 T T T T T
110 120 130 140 150 160
low-cost payoff
MCG-2

90

70 4

high-cost payoff

50

40 T T T
110 120 130 140 150 160
low-cost payoff

Figure 6.13.: Payoff of equilibria of the meta-game for the MCG experiments.

The dashed lines from each equilibrium point toward the equilibria of the next iteration,
where the length of the line is proportional to the frequency of the equilibrium in the tracing

procedure.

For the RND-1 and RND-2 experiments, we have not plotted the equilibria from the
first iteration because it is an outlier due to the random initialisation of the starting strategies’

network parameters. As done throughout, the SPE payoft is marked with a yellow star.

We start with RND-1 and RND-2. In these experiments, the agents are not exposed
to any predefined strategies. Training starts from an initial game with a random strategy,
similar to a non-rational player, and low-cost and high-cost agents are trained against this
strategy. Learning against the random opponent in the first iteration is too noisy, as expected,
and since the agents would get different signals from similar actions, they would be dragged
in different directions. One advantage, however, is that the initial random strategy playing
against itself has such a low return, (69, 21) for RND-1 and (66, 20) for RND-2, that it
is very simple for the agents to get above that payoff threshold to be added to the game.
Thereafter, the initial random strategy never comes up again in any of the equilibria of the

meta-game in subsequent iterations.

153

6. PSRO Framework and Advanced RL Algorithms

GUESS-1
90
& ®
. A7
4 - NA {2
80 = -]
- A i g
y @
i ’
% 70 e
2 ®
Jlﬁl -
(=]
L
5 60 :
E]
50 4
40 T T T T T
110 120 130 140 150 160
low-cost payoff
GUESS-2
90
a R
[¥ !
N q‘*
- ®
& 5
& 3 o
% 70 & ¢
L >
o
w0
g
& <]
.2 60
= ®
50 A
40 T T T T T
110 120 130 140 150 160
low-cost payoff
ASPE
90 A
80 ®a *
¥ S
=
S 70 }
m
-
]
o
(¥}
=
g‘ 60 4
-
-
g
SQ 4
40 T T T T T
110 120 130 140 150 160

low-cost payoff

Figure 6.14.: Payoff of equilibria of the meta-game for the GUESS and ASPE experiments.

Our plots for both RND experiments show a wide cluster of equilibria (more dense for

the experiment with more trained strategies). This cluster includes the payoff from the SPE

strategy. Although the equilibria have not converged to the SPE, the behaviour of some

strategies against opponents is similar to the SPE. For example, for the high-cost trained agent

154

6. PSRO Framework and Advanced RL Algorithms

RND-1

90

80
=
2 70 1
1]
{=8
o
"3
(=}
1%
_g‘ 60
= b °
H

® i]
o f’_". 8,
L]
®
50 4
h
]
40 T T T T T
110 120 130 140 150 160
low-cost payoff
RND-2

90

80
=
2 701 ®
[
o
o
8
S o
=
& 60+
=]

-
50 4
40 T T T T T
110 120 130 140 150 160

low-cost payoff

Figure 6.15.: Payoff of equilibria of the meta-game for the RND experiments.

RND-2_H_SAC_167 (see Figure 7.16) and low-cost trained agent RND-2_L._SAC_119 (see
Figure 7.7), their path and level of demand potential and prices against the red opponent are
similar to the SPE (4.4). These two strategies are among the last agents trained using SAC
that are added to the RND-2 meta-game.

These observations suggest that, if the meta-game were continued, the equilibria
might converge closer to the subgame perfect equilibrium (SPE). We did not continue this
process due to computational cost and RAM capacity limitations. However, it is possible to
remove the strategies that do not appear in the equilibria, reduce the size of the meta-game,
and continue from there. One approach to identifying these strategies is by studying
the average probabilities of the strategies in the equilibria, as explained in Section 6.4.3
below. Nonetheless, we did not proceed with continuing this experiment, as there were no

indications of an emergence of other equilibria with higher potential returns.

An intriguing result was observed in other experiments. In experiments where
some smart strategies were introduced into the initial meta-game, the equilibrium payoffs
consistently approached a neighbourhood around (147, 78). This neighbourhood includes

most equilibria of the meta-game as the game progresses, regardless of whether the

155

6. PSRO Framework and Advanced RL Algorithms

experiments started from the MCG, GUESS, or ASPE initial games. However, starting

from the RND game, none of the equilibria were near this point.

This suggests the existence of an equilibrium with the mentioned returns, which is
closer to the Pareto frontier than the SPE and results in higher returns for both players. In
all the experiments that approached this equilibrium, the equilibria were mixed. Therefore,
we refer to this empirical equilibrium as the mixed equilibrium, with the payoff pair marked

in Figure 6.12 with a green triangle.

Another interesting observation, from Figures 6.13 and 6.14, was that in the MCG
and GUESS experiments, the equilibria did not approach the SPE at all, in contrast to the
RND experiments. This observation inspired the idea behind the ASPE initial game, as we

became curious about what would happen if we introduced the SPE to the game ourselves.

As can be seen in the plots, although the SPE is one of the equilibria found in all
iterations of the ASPE experiment, there is still a similar cluster of equilibria to one in the
GUESS and MCG experiments, at the top right. In the ASPE experiment, other than for a
small number of outliers, in all iterations of the meta-game, one equilibrium is the SPE, and

the other equilibria are in the discussed neighbourhood.

An important point in the ASPE experiment is that the SPE is not the only equilibrium
of the initial game; otherwise, the meta-game would not grow at all. This is because the
SPE strategy of the low-cost player is the unique best response to the SPE strategy of the
high-cost player and vice versa. By definition of an SPE, there is no other strategy that
can achieve a higher payoff than the payoff of that equilibrium when trained against these
strategies. In the ASPE experiment, the equilibrium that helps the meta-game to progress is
the (Guess3, Guess3) equilibrium. None of the strategies trained against the SPE is added
to the game because they cannot reach the payoff threshold. However, they are used in early

iterations as base agents to set the initial parameters of the next training agents.

6.4.2. Price Instability

As we studied the price path of trained agents, we noticed significant fluctuations in prices.
These fluctuations can make it harder for opponents to anticipate future prices and, therefore,

can decrease the chance of cooperation.

In this section, we study the fluctuations in prices for learning algorithms and experi-
ments. We need a measure to study the fluctuations in the prices set by the agents throughout
the pricing game. We define the price instability of the price vector P (prices played over

the stages of the pricing game by the agent) as follows:

2;222 |Pt _Pz—1|

ice instability (P) =
price instability (P) 7

6.13)

Keser in [37, p. 32] divides cooperative strategies based on the price instability of the
strategies, where those with lower price instability are considered strongly cooperative,
whereas higher instability leads to weakly cooperative strategies. It is important to note that

Keser defined the price instability as the sum of the squared price differences (L, norm).

156

6. PSRO Framework and Advanced RL Algorithms

However, here we define in (6.13) the price instability using the L norm to account directly

for the average fluctuation in price per stage.

For reference, the price instability for the prices of the SPE strategies is (2.01, 1.76);
for the (Myopic, Myopic) strategy pair, it is (0.14,0.14); and for the (Guess2, Guess2)
strategies, it is (7.84, 4.23) for the low-cost and high-cost agents, respectively.

Price instability for learning algorithms and experiments

17.5 1

= = =

=~ =] N 7]

wn o w o
L

price instability

o
=]

]
2]
L

! b7
Qs\o Qshq Gfr G@""" qu

experiments

Figure 6.16.: Plot of price instability for each experiment, averaged over the last 20 trained
strategies. Each strategy was run for 10 iterations against the opponent with
the highest probability. The plot shows price instability for low-cost and
high-cost agents trained by each learning algorithm.

In Figure 6.16, we can see the price instability of the last 20 trained agents using each
learning algorithm, separated for high-cost and low-cost agents. PPO clearly exhibits lower
price instability in training both types of agents, which is consistent with our previous
observations. As we saw in Figure 6.10, the PPO-trained agents did not capture the
end-effect of the game very well. We suspect that, despite the one-hot encoding of the stage
of the pricing game in the state, PPO does not differentiate much between different stages of
the pricing game. This can lead to playing a consistent price over the stages. While this is
advantageous in terms of cooperation, not understanding the end-effect is suboptimal. This
is apparent in Figures 7.18 and 7.17, which show two of the final PPO-trained strategies
in our experiments. The fluctuations in prices are very low compared to the SAC-trained
agents, and interestingly, in the latter figure, we can see that the agent plays very similarly to

the Myopic strategy, as the action values are very low.

Between PPO-trained strategies, the difference in the instability of prices between
low-cost and high-cost agents is not significant. However, for SAC, low-cost strategies show
considerably more unstable prices compared to high-cost ones. Additionally, this slightly
explains why PPO is more successful in training high-cost strategies, as SAC and PPO

exhibit more similar behaviours in training high-cost agents.

Excluding RND experiments (because of their high price instability), we observe that
low-cost trained strategies have considerably lower price instability for the SAC algorithm.

As SAC is successful in training both types of agents, we interpret the low-cost strategies

157

6. PSRO Framework and Advanced RL Algorithms

as weakly cooperative compared to the high-cost ones trained by SAC, which are more

cooperative.

As for the experiments, considering the sum of instability for low-cost and high-cost
agents, RND experiments exhibit the highest instability in prices for both SAC and PPO. It
is evident that the random starting point is highly unstable. However, it is interesting to
note that even after many iterations of the meta-game and each strategy being trained for

millions of episodes, the price instability remains higher than in other experiments.

6.4.3. Average Strategy Probabilities in Equilibria

In each iteration of the meta-game, only newly trained strategies that have higher returns
than the equilibrium payoff are added to the game. However, this does not mean they will
necessarily be effective in the subsequent iterations of the meta-game. If these strategies
have positive probabilities in the equilibria we choose, they will be used to train the next
agents. However, if they do not appear in the top two equilibria as found by the tracing
procedure, their only effect will be in setting the initial neural network parameters for the
next agents. These are the strategies that we propose to be omitted if we need to reduce the
size of the meta-game to continue the process due to the large storage requirements for a
large game. We did not implement this reduction because the experiments that were most
important to us already answered our questions regarding convergence to an equilibrium

with higher social welfare.

In this section, we aim to study the strategies that were most effective in the progression
of the meta-game. We analyse the effect of learning algorithms on training each type of
agent. Additionally, we examine the impact of the deterministic strategies introduced to the

initial game, as this is an interesting aspect to address.

In each experiment, we consider the set of all equilibria that were used to train agents at
different iterations of the meta-game and compute the average probability of each strategy
in these equilibria. Clearly, the earlier strategies have a higher chance of appearing in the
equilibria, whereas the last added strategies did not have the opportunity to be included in
the equilibria since they were not part of the meta-game before. Therefore, for future work,
we suggest introducing a threshold on the minimum number of iterations a strategy must be
present in the game before omitting it due to low average probability as part of reducing the

size of the meta-game.

In the following Figures 6.17, 6.18, 6.19 and 6.20 for each experiment, the left plot
indicates the average probabilities for each strategy with positive average probabilities. The
names on the x-axis are displayed for any strategy with an average probability higher than
0.03. The deterministic strategies are identified by their names. To avoid overcrowding,
trained strategies are represented with the starting letter ‘S’ for those trained with SAC and

‘P’ for those trained with PPO, followed by their index in the meta-game.

In the right plot, we show the sum of probabilities for trained agents using each training
algorithm and deterministic strategies (specified as statics in the plots) to illustrate their

overall effect.

158

6. PSRO Framework and Advanced RL Algorithms

Average probabilities of Low-cost agents in equilibria in experiment RND-1

1.0 1.0
in
W
% 0.8 2 o8
5 =
B 06 B 0.6 -
=] £z
= 2
o 044 2 pa
£
s 0.2 2 0.2
IR e e : : G S
P HFRP S S a0 & & & PPO SAC statics
strategies
Average probabilities of High-cost agents in equilibria in experiment RND-1
1.0 A 1.0
L w1
g 0.8 £ o84
5 =
® 06 ﬁ 0.6 1
g 2
o
% 0.4 « 04
5 E
; - /\/\/\-/_—._/‘_——‘-—-—/\ ™
0.0+ T T T L L T T _"I“‘—-_‘ 0.0 4 T T T
SGPS SO S o o e PPO SAC statics
strategies
Average probabilities of Low-cost agents in equilibria in experiment RND-2
1.0 A 1.0 A
Wi
W
é 0.8 £ o8
5 =
T 0.6 " 06
2
g g
o 0.4 204+
g’ Q
g g2 E o
i ‘—JA‘—‘.—M——/‘—AN e = e e ’
ou = TT T T 00 Ta T T T
P o & PPO SAC statics
strategies
Average probabilities of High-cost agents in equilibria in experiment RND-2
1.0 1.0 1
4 r
é 0.8 - £ 084
3 =
® 0.6 06 -
=t
g g
v 0.4 2 04
% Q
8 02 E 4o
[W
0.0 (L R T T T T 0.0 4 T T T
=;i'v"‘212i9 5’53‘9 b}e Q{e ‘g\“'\ @i’n’ PPO SAC statics
strategies

Figure 6.17.: Plot of average probabilities of strategies in the top 2 equilibria for experiments
RND-1 and RND-2.

The RND experiments start with strategies initialised with random parameter networks,
so no deterministic strategies were introduced. In Figure 6.17, we can see the average
probabilities of strategies for experiments RND-1 and RND-2. In both experiments, among
low-cost and high-cost agents, there is no specific agent that appears to act considerably
more effectively than others in equilibria, as observed in other experiments. The maximum

average probabilities among these strategies are about 0.2.

For low-cost agents, almost all added strategies were trained using the SAC algorithm.
However, for high-cost agents, the PPO algorithm had a better rate, though still less
successful than SAC. This trend is observed in other experiments as well: PPO performs

better in training high-cost agents but is not as effective for low-cost ones.

159

6. PSRO Framework and Advanced RL Algorithms

Average probabilities of Low-cost agents in equilibria in experiment MCG-1

1.0 1.0
il n
g 0.8 4 E 0.8 4
3 =
5 06+ E 06 -
: :
v 0.4 - 0.4 4
[=]
g E
9 024 3 02
m
0.0 ; .] 0.0 1= . -
& &P PPO SAC statics
&
strategies
Average probabilities of High-cost agents in equilibria in experiment MCG-1
1.0 A 1.0 A
o n
% 0.8 4 2 08
o =
3 06+ T 06
2 °
g B
@ 0.4 2 pa
g o
o
E
2 024 5 021
o
0.0 W’W—’W——A—M 0.0 172 - -
Qé;? Sep & & PPO SAC statics
strategies
Average probabilities of Low-cost agents in equilibria in experiment MCG-2
1.0 A 1.0 A
L Wl
2 081 8§ o8
3 =
2 06 E 0.6 1
: :
0.4 0.4
:
5 E
() ! 4
o2 502
0.0 T 0.0 4 T T T
& PPO SAC statics
&
strategies
Average probabilities of High-cost agents in equilibria in experiment MCG-2
1.0 1 1.0 1
il 0
% 0.8 - £ 081
o =
' 0.6 § 0.6
[2]
5 2
o 0.4+ B pa
g o
o
£
@ o =
202 302
0.0 T T T T T T T T T 0.0 4 T T T
&a‘,e- B ot & & ?.;\ & &° 5 PPO SAC statics
strategies

Figure 6.18.: Plot of average probabilities of strategies in the top 2 equilibria for experiments
MCG-1 and MCG-2.

In Figure 6.18, we observe the plots for experiments MCG-1 and MCG-2. The
Guess-132 deterministic strategy is undoubtedly the most effective strategy among low-cost
agents, with an average probability nearing 0.9, appearing very frequently in the low-cost
strategies of equilibria with a high probability. This strategy is competitive but allows a
level of cooperation, which is advantageous for low-cost agents as they can compete more

aggressively if cooperation breaks down.

For high-cost agents, however, we see the emergence of SAC and PPO-trained strategies
that appear more frequently in the high-cost strategies of equilibria than the Guess-132
strategy. These trained strategies yield higher returns against the low-cost Guess-132
strategy (which they most frequently face, as indicated by the high average probability
of Guess-132 in low-cost strategies) than the high-cost Guess-132 strategy does. This

160

6. PSRO Framework and Advanced RL Algorithms

outcome suggests greater cooperation by these trained strategies—they achieve the desired
demand split by the Guess-132 strategy but play slightly higher prices at that demand level,
increasing the returns for both players.

Average probabilities of Low-cost agents in equilibria in experiment GUESS-1

1.0 A 1.0 1
w1
@ W
E 0384 L 084
=1 =
2 0.6 ® 0.6 -
rel =
L 2
o 0.4 Z 0.4
=]
£ £
g 0.2+ 5 02
0.0 i 2 0.0 — - =
S)a?‘;]- o PPO SAC statics
strategies
Average probabilities of High-cost agents in equilibria in experiment GUESS-1
1.0 1 1.0 1
w1
L o8 2 08
= =
= =
2 06 ‘8 06
=] =l
5 g
0.4 0.4
= 5
o
£
% 0.2 A 5 0.2+
00 t T T T T T T T T 00 2, T T T
a?{'?"z ‘;\”!, :.‘,\? ‘Z”’\ 'f‘b th q@ Q-Sh PPO SAC statics
strategies
Average probabilities of Low-cost agents in equilibria in experiment GUESS-2
1.0 1.0
b v
5 0.8 3 o8
a =
0.6 E 0.6
[=]
5 2
v 0.4 2 0.4
(=}
s E
2 0,2 3 0.2
0.0 3 0.0 - - - -
o PPO SAC statics
&
&
strategies
Average probabilities of High-cost agents in equilibria in experiment GUESS-2
1.0 4 1.0 A
v
2L 08+ 2 08
3 £
= =
® 06 ‘® 06
s} =}
: :
0.4+ 0.4
= 5
5 £
o - o
g 0.2 5 02
0'0 = T T T T T T T T T T T 0'0 2, T T T
&i’?‘;" 4 Qb_w; ;g:“ é,;b Gj;: Q,\'\. Q’\"’ @» @a F \5’« PPO SAC statics
strategies

Figure 6.19.: Plot of average probabilities of strategies in the top 2 equilibria for experiments
GUESS-1 and GUESS-2.

The results from the MCG experiments encouraged us to set up the GUESS experiments
to observe the agents’ behaviour when introduced to more variations of Guess-132. To
recap, we consider Guess2-132 as more competitive and Guess3-132 as more cooperative

compared to Guess-132, based on the returns they achieve when playing against themselves.

The plots in Figure 6.19 show the average probabilities of strategies in equilibria for
experiments GUESS-1 and GUESS-2.

161

6. PSRO Framework and Advanced RL Algorithms

Similar to the MCG experiments, among the low-cost agents, the deterministic strategies
are the most effective. However, in the GUESS experiments, the Guess2 strategy has
replaced Guess as the most effective strategy observed in the MCG experiments. The Guess2
low-cost strategy has an average probability of 0.8, whereas the other Guess strategies have
probabilities near zero. This indicates a more competitive behaviour from the low-cost

agents compared to the MCG experiments.

For high-cost agents, similar to the MCG experiments, some trained agents using
SAC and PPO achieve higher average probabilities in equilibria than the Guess strategies.
However, an interesting observation is that among the Guess variations, Guess3, which is

more cooperative, has higher effectiveness in the meta-game.

Compared to the MCG experiments, the GUESS experiments suggest that more
competitive agents are more effective among low-cost strategies, whereas cooperative agents
are more effective among high-cost strategies. This indicates the direction of behaviour that

the equilibria of the meta-game encourage.

Average probabilities of Low-cost agents in equilibria in experiment ASPE

1.0 1.0
w
w
5 0.8+ £ o84
3 =
& 06 " 06 -
=]

2)
=4 2
o 0.4 2 04
(=2 Q
m
5 E
g o2y 3 024

00 E T T 00 E T T T

< & PPO SAC statics
c§’z
strategies
Average probabilities of High-cost agents in equilibria in experiment ASPE

10 1.0 q
o n
% 0.8 2 08+
= =
] | - 1
- 0.6 é 0.6
5 e
o 0.4 2 o4
g [=]
T 024 E 521
g o2 302

0.0 £ S g 0.0 4

T T T T T T T
o Pod g:"z;?é«f’ & Qg—) :;1‘?’ ‘iﬂb PPO SAC statics

strategies

Figure 6.20.: Plot of average probabilities of strategies for the ASPE experiment.

Finally, Figure 6.20 shows the average probabilities in the ASPE experiment, where
we included the SPE strategy as well as all other deterministic strategies we defined in
Section 4.3.2.

The first point to note about this plot is that, since SPE is the equilibrium found in all
iterations, the average probability of SPE in both low-cost and high-cost strategies is high.
However, the average probabilities of SPE in equilibria involving trained agents that are
added to the game are very close to zero, slightly higher for low-cost agents, but still near

zero. Hence, we do not draw conclusions based on the SPE average probabilities.

Among low-cost agents, Guess2 appears more frequently in equilibria, similar to the

GUESS experiments. However, with the existence of the SPE strategy in the game, which is

162

6. PSRO Framework and Advanced RL Algorithms

highly competitive, we believe the reason that Guess2 has a higher average probability is

that it allows cooperation to some level.

For low-cost agents, none of the deterministic strategies seem to gain a high average
probability among the equilibria that include trained agents added to the game (other than
SPE). Instead, among the high-cost strategies, the ones with the highest average probability
are those trained with SAC and PPO.

The most effective high-cost strategy is P36, and in Figure 6.21, we have plotted the
prices and demand potential of this strategy playing against the low-cost Guess?2 strategy,

comparing it with the Guess2 strategy playing against itself.

220 4

200 4

180

—8— (guess2, guess2) prices

—#— (guess2,guess2) demand-potential
160 A —8— (guess2 P36) prices

—&— (guess2,P36) demand-potential

140 4

120 A

100 4

stages

Figure 6.21.: Plot of prices and demand potential of players, comparing (Guess2, Guess2) to
(Guess2, PPO-36) as low-cost and high-cost players for the ASPE experiment.

Similar to high-cost strategies in the GUESS experiments, we can see that P36
cooperates with Guess2 to reach the desired demand potential level observed in (Guess2,
Guess2). This cooperation leads to higher prices for both the low-cost Guess2 and high-cost
P36 strategies compared to prices in (Guess2, Guess2). This results in a return of 146 for
Guess2 and 82 for P36, compared to 137 and 75, respectively, when Guess2 played against
itself.

To conclude, through these experiments, we observe that the most frequent strategies
in equilibria among low-cost agents are the most competitive ones that allow cooperation
to some level. The Guess?2 strategy has been the most effective low-cost agent in these
experiments, and none of the trained strategies using PPO and SAC could reach its average
probability in equilibria. However, for high-cost agents, the learning algorithms were able
to develop cooperative strategies that appeared more frequently in equilibria than all our
defined high-cost deterministic strategies. Both SAC and PPO train many effective strategies
in the equilibria, with SAC achieving a slightly higher rate.

163

6. PSRO Framework and Advanced RL Algorithms

6.4.4. Behaviour of Final Pricing Strategies

In this section, we summarise our findings from the previous sections and analyse the
behaviour of the final trained strategies to better understand our empirical mixed equilibrium.
In Section 6.4.1, we observed that, in the payoff plots of equilibria across all non-RND ex-
periments, there is a payoff region around (146, 80) to which all our equilibria converge. We
consider this point to be an empirical mixed equilibrium of the pricing game corresponding
to these payoffs. However, the strategies that converge to this point differ, and even within
each experiment, different equilibria of the meta-game involve a mix of various agents. In
this section, we examine the behaviour of the final agents trained in each experiment to

better understand the strategies’ behaviour at this empirical mixed equilibrium.

We now concentrate on the MCG, GUESS, and ASPE experiments (non-RND ex-
periments), as the RND experiments do not relate to the mixed equilibrium discussed
here. Starting with the low-cost trained strategies, we observed in Section 6.4.3 that, in all
non-RND experiments, the strategy with the highest probability in equilibria is a variation
of the Guess strategy. When Guess2 is included in the initial game, it is the most effective;

otherwise, the Guess strategy dominates.

Figures 7.4, 7.5, and 7.2 show the strategies added to the meta-games in the final
iteration of the GUESS-2, ASPE, and MCG-2 experiments, respectively, all trained with
SAC. Comparing the demand potential and price paths of these agents to those of the
low-cost Guess?2 strategy against the PPO-trained high-cost strategy P36 (see Figure 6.21)
provides a strong indication of why Guess2 is more successful among low-cost strategies in

the meta-games.

First, in these trained strategies, a similar trend of seeking up to 260 units of demand
potential can be observed. This level of demand potential often results from setting very low
prices at certain stages. Additionally, there are significant fluctuations in price, consistent
with the observed price instability in SAC-trained strategies. These competitive behaviours,
coupled with price instability, make these strategies less cooperative compared to the Guess2

strategy.

When Guess2 played against the cooperative high-cost P36 strategy, it achieved a
demand potential of approximately 215 (top orange line), but at a high price of around 120
(top red line). This resulted in higher returns for both Guess2 and its opponent compared
to SAC-trained strategies, whose excessive competitiveness reduced their profitability.

Furthermore, the low price instability of Guess2 made it more cooperative with its opponent.

As for the high-cost strategies, Figures 7.11, 7.14, and 7.9 show the strategies added
to the meta-games in the final iteration of the GUESS-2, ASPE, and MCG-2 experiments,
respectively, all trained with SAC. The main opponent of these strategies during training (the
red opponent in the plots) is the Guess?2 strategy in the GUESS-2 and ASPE experiments
and the Guess strategy in the MCG experiment.

Comparing their demand potential (bottom green line) and price path (bottom blue line)

to those of Guess2 against Guess2 as shown in Figure 6.21, we observe that the demand

164

6. PSRO Framework and Advanced RL Algorithms

potential they seek is similar to that of high-cost Guess2, around 180. However, these
strategies achieve this demand potential at a higher price of approximately 120, compared to
about 110 for Guess2. Additionally, their price instability is lower than that of the low-cost

trained strategies discussed previously.

This indicates a more cooperative behaviour, which is closer to that of the Myopic
strategy (can be seen from actions that are generally lower than 4, meaning they do not
deviate more than 4 units from the myopic price). Overall, these observations suggest highly

cooperative behaviour in these trained high-cost strategies.

Comparing the above agents with their equivalents in RND strategies, as shown in
Figures 7.7 and 7.8 for low-cost agents, and Figures 7.15 and 7.16 for high-cost agents,
reveals notable differences. The high-cost RND strategies reach a similar demand potential
level in the range of 180 to 200, but at a lower price of 90 to 100. For low-cost RND
strategies, they compete at most to achieve a demand potential of 240 (compared to 260
for non-RND strategies); however, their price paths are similar to those of the non-RND

strategies.

To summarise these comparisons, our results show that, at the empirical equilibrium, low-
cost strategies are weakly cooperative, while high-cost strategies are strongly cooperative.
The SAC-trained low-cost agents become too competitive; therefore, our introduced
deterministic strategy, Guess2, which is a weakly cooperative strategy, proves more
successful. However, for high-cost players, both SAC and PPO successfully train strongly
cooperative strategies that are applied at the empirical mixed equilibrium.

6.4.5. Replicator Dynamics

In the last part of the experiment by Keser [37, p. 97], all the strategies entered an evolutionary

game, and she studied the evolution of strategies using the replicator dynamics.

A variation of replicator dynamics known as projected replicator dynamics was also
suggested [40] as another meta-strategy solver, instead of computing the Nash equilibrium in

the meta-game, in order to prevent overfitting to the Nash equilibrium in PSRO meta-games.

Replicator dynamics, inspired by natural selection, considers a portion of a population
playing each strategy (known as the weight of that strategy). Then, the fitness of each
strategy is defined as its expected payoff against the opponents’ strategies with respect
to their weights. After assessing the fitness of each strategy, the successful strategies
are identified by comparing their fitness to the average payoff of the population. Then,
replicas of successful strategies are added to the population, while the defeated strategies are
removed at some rate. This means that the weight of successful strategies increases and the
weight of the less successful strategies decreases. In this iterative process, the distribution

of the population keeps changing until convergence or a stopping criterion is met.

As we mentioned in Section 6.3.3, we used the tracing procedure to compute the

equilibrium in our PSRO settings. This was part of our new approach, and as we saw, the

165

6. PSRO Framework and Advanced RL Algorithms

choice of the selected equilibrium turned out to be highly important in the final equilibrium

reached in the iterative process of training agents to be added to the meta-game.

The similarity between the concepts of updating beliefs based on players’ strategies
and best responding to them in the tracing procedure, and increasing the population of
more successful strategies based on their return against other players in replicator dynamics,
incentivised us to conduct the final analysis in this chapter and run the replicator dynamics

on our strategies in the final meta-games, using the same parameters as Keser’s experiment.

To run the replicator dynamics, we start with a uniform distribution over all strategies,
meaning that all strategies have equal weight at the start. Additionally, since we want the
strategies not to die off quickly and continue to be involved in the evolutionary process, we
add a probability of 107° to all strategies at the start of each iteration and then normalise the
distribution. Moreover, we set the learning rate (Ir) to 107, meaning that the population is

updated using this learning rate as the step size toward the new population distribution.

In Figure 6.22, we have plotted the returns of strategies for RND experiments in
replicator dynamics, with each payoff point indicating the direction of the payoff point for

the next iteration’s strategies.

166

6. PSRO Framework and Advanced RL Algorithms

Returns of evolving strategies using replicator dynamics, for experiment RND-1

90
SPE
A (116.22,54.76)
80
5
2 70
1]
(=8
et
[
[=]
i
=
=
=
40 . . : . .
110 120 130 140 150 160
low-cost payoff
Returns of evolving strategies using replicator dynamics, for experiment RND-2
30
SPE
A (109.90,59.50)
80
b5
2 70
m
(=8
et
'
[=]
¥
S 60
=
50
40 T T T

110 120 130 140 150 160
low-cost payoff

Figure 6.22.: Plot of returns for evolving strategies using replicator dynamics, for RND
experiments.

We ran the replicator dynamics for 2 x 10° iterations, and as can be seen in the plot,
they did not become stable. The returns oscillate, approaching many equilibria found in the

meta-game, but do not stabilise by converging to the SPE or any specific equilibrium of the
meta-game.

167

6. PSRO Framework and Advanced RL Algorithms

Returns of evolving strategies using replicator dynamics, for experiment MCG-1

90
SPE
A (146.63,80.00)
80 ‘
L
=
2 70 ®
&
o @
[
[=]
i
S 60
=
50
40 . . : . :
110 120 130 140 150 160
low-cost payoff
Returns of evolving strategies using replicator dynamics, for experiment MCG-2
30
SPE
A (147.03,80.38)
b5
S 701
B L]
et
'
[=]
¥
S 60
=
50
40 . : . . .
110 120 130 140 150 160

low-cost payoff

Figure 6.23.: Plot of returns for evolving strategies using replicator dynamics, for the MCG
experiments.

In Figure 6.23, we observe the returns of strategies in the MCG experiments. In these
experiments, we observed convergence to the equilibrium of the final meta-game, which has
the highest social welfare, in fewer than 400,000 iterations. In these equilibria, Guess2 has
the highest probability among low-cost strategies, whereas for high-cost strategies, many
trained strategies with higher average probabilities, as shown in Figure 6.18, have significant

probabilities.

We observed similar behaviour in the replicator dynamics for the GUESS and ASPE
experiments (Figures 6.24 and 6.25), albeit with more oscillations. The final strategies
are within a very small neighbourhood of the final meta-game’s equilibria. In GUESS
experiments, the final strategy is close to the equilibrium with high, though not the highest,
social welfare. Since all the equilibria of the final meta-game are very close in terms of

both returns and strategies, we consider this a positive result.

168

6. PSRO Framework and Advanced RL Algorithms

Returns of evolving strategies using replicator dynamics, for experiment GUESS-1

SPE
A (145.84,80.27)

80

70 A

ol

60

high-cost payoff

50 A

40

T T T T T
110 120 130 140 150 160
low-cost payoff

Returns of evolving strategies using replicator dynamics, for experiment GUESS-2

SPE
A (145.11,79.47)

80

70 4

60

high-cost payoff

50 4

40 T T T T T
110 120 130 140 150 160
low-cost payoff

Figure 6.24.: Plot of returns for evolving strategies using replicator dynamics, for the
GUESS experiments.

The replicator dynamics results for all experiments were consistent with the equilibria
found using the tracing procedure for the meta-games, as explained in Section 6.4.1. The
cluster of equilibrium payoff points observed in the non-RND experiments was also reached
using replicator dynamics. Additionally, the oscillations and lack of convergence to a

specific equilibrium were observed in the RND experiments.

169

6. PSRO Framework and Advanced RL Algorithms

Returns of evolving strategies using replicator dynamics, for experiment ASPE

SPE
A (145.9879.37)

0

70

high-cost payoff

601

50 4

40 T T T T T
110 120 130 140 150 160
low-cost payoff

Figure 6.25.: Plot of returns for evolving strategies using replicator dynamics, for the ASPE
experiment.

170

Conclusions to Part Il

In this research, we studied the space of pricing strategies in a 25-round, asymmetric
duopoly pricing game. The subgame perfect equilibrium (SPE) of this game was computed
by Selten [62]; however, this equilibrium is too complex for general players to learn and
represents highly competitive behaviour. The multi-round structure and infinite strategy
space of this game make it intractable to analyse further using traditional game-theoretic
methods. Observing the highly competitive strategies in the SPE led us to investigate the
possible existence of other Nash equilibria that might be preferred by the players.

Our main objective was to use machine learning methods to approximate the equilibria
of the pricing game that might be preferred by both players over the SPE, as they could
yield higher payoffs for both. Seeing the potential for players to increase their payoffs
through more cooperative behaviour in this pricing game, we examined whether our learning
methods would lead newly trained strategies toward collusion in order to approach these

preferred equilibria, and what behaviours these equilibria would encourage.

Therefore, we presented an empirical game-theoretic model to approximate the strategy
space of the pricing game. We used the Policy-Space Response Oracles (PSRO) framework
to iteratively improve this approximation, referred to as the “meta-game”, by learning
new best responses to the Nash equilibria. We used single-agent reinforcement learning

algorithms to train new pricing strategies as best responses to the equilibrium strategies.

We began by focusing on the training process of best responses to prepare for the
later implementation of the PSRO framework. Starting with simple policy-gradient RL
algorithms, we examined different modelling specifications, algorithms, and techniques
to improve performance. Among the basic RL algorithms examined, the REINFORCE
algorithm with the myopic strategy as the baseline proved most effective in computing best
responses against a pure deterministic opponent’s strategy. However, we showed that these
models did not capture the complexity of playing against mixed strategies of deterministic

opponents.

As the learning agents face mixed strategies of opponents within the PSRO framework,
we adopted more advanced RL algorithms: Soft Actor-Critic (SAC) and Proximal Policy
Optimisation (PPO). After adjusting the modelling specification for these learning methods,
we reached the goal we could not achieve with the previous, simpler learning algorithms.
These trained pricing strategies captured patterns in opponents’ behaviours and responded
accordingly when facing a mixed strategy of deterministic pricing strategies. Thus, the

settings for computing best responses were ready for the PSRO implementation.

Conclusions to Part I1

We incorporated both these RL algorithms into the same meta-game in our implement-
ation of the PSRO framework. This meant iteratively expanding the meta-game by adding

the best responses trained separately by each learning algorithm in parallel.

Our first observation was the differences between strategies trained by these RL
algorithms when they faced mixed strategies of stochastic opponents (strategies trained
in previous iterations) within PSRO. Pricing strategies trained with SAC adapted their
play to different opponents, but this was not observed in PPO-trained strategies, which
played similar action paths against all opponents. Moreover, although SAC required longer
training and exhibited a highly oscillatory learning path, it achieved strategies with higher
returns due to its high exploration. SAC also produced noisier pricing behaviour, which is
not conducive to collusion. PPO, in contrast, demonstrated a smoother learning path and
faster training. The pricing behaviour was also smoother, which created more cooperative
behaviour and helped collusion. This was expected due to the bound on the updates in the
PPO objective function; however, it trained strategies with lower returns, as it either could

not explore as much or the stochasticity of the opponents distracted the learning agent.

The more important observation concerned the equilibria of the evolving meta-game:
the equilibrium payoffs did not get much higher than the SPE payoffs, and the payoffs did
not converge to any point but kept oscillating within a cluster close to the SPE payoff. We
did not observe signs of approaching an equilibrium with higher social welfare than the
SPE, nor the emergence of cooperative behaviour between trained pricing strategies in the

equilibria.

Since the learning agents did not naturally learn to collude, we experimented with the

factors that might lead the agents toward more cooperative strategies in the meta-game.

Two factors proved effective for the emergence of cooperative behaviour between
trained strategies: (1) introducing cooperative behaviour by including predefined strategies
with varying levels of cooperation in the initial meta-game, and (2) guiding the PSRO

process by selecting the Nash equilibrium of the meta-game with the highest social welfare.

Initially, we tested each of these factors separately: introducing cooperative strategies
in the initial meta-game but using the Nash equilibrium most frequently found during the
tracing procedure (not necessarily the one with the highest social welfare), and starting
from random networks but guiding the PSRO process with the equilibrium that had the
highest social welfare. In neither case did the equilibria converge to a better payoff point
than the SPE payoff.

In our final set of experiments, we included both factors simultaneously. We set the
equilibrium selection to be the one found by the tracing procedure with the highest social
welfare. We then experimented with different sets of predefined strategies as the initial
meta-game. These strategies varied in level of cooperation, from the highly cooperative

myopic strategy to the highly competitive strategies of the SPE.

In all experiments starting with predefined strategies, the equilibria of the evolving
meta-game converged, in terms of payoff, to a point considerably closer to the Pareto frontier
of payoffs than the SPE.

172

Conclusions to Part I1

To check the dynamic stability of these equilibria, we tested projected replicator
dynamics on the meta-game, starting from a uniform distribution. In all experiments, the
dynamics converged within this higher-payoff set of equilibria of the meta-game. This
contrasts with experiments with a random network strategy as the initial meta-game, in

which the dynamics never stabilised.

We further studied the strategies involved in these equilibria. Among low-cost strategies,
the most frequent strategy in the equilibria was the predefined Guess?2 strategy, which is
weakly cooperative: it competes strongly for demand potential but allows cooperation once
the desired demand share is reached. SAC- and PPO-trained strategies failed to reach this
level of cooperation; SAC-trained strategies became too competitive, while PPO-trained
agents were too cooperative, resulting in lower expected payoffs for both compared to the

Guess?2 strategy.

In contrast, among high-cost strategies, trained strategies had higher average probabilit-
ies than our predefined strategies. Notably, cooperative high-cost strategies were trained
that enabled competitive low-cost agents to secure their desired demand while maintaining
higher prices for mutual benefit. Both SAC and PPO were successful in training these

high-cost strategies.

Furthermore, SAC mostly trained competitive strategies that adapted their play to
the opponents, sought high demand, and kept prices unpredictable for the opponents.
PPO, however, tended to train mostly cooperative strategies with stable prices and similar
play against all opponents. Consequently, SAC-trained agents were more successful in
training both low-cost and high-cost agents added to the meta-game, whereas PPO was only
successful in training cooperative high-cost agents, as the low-cost ones failed to reach the
payoff threshold of equilibria in the PSRO setting. This difference in low-cost strategies
stems from the low-cost player’s advantage in the pricing game, which allows them to
compete aggressively to leverage their lower production cost to secure a higher share of

demand potential.

The importance of the initial meta-game structure and equilibrium selection was
evident in achieving these results. Omitting either factor prevented reaching higher-payoff
equilibria. Thus, we conclude that exposing learning agents to strategies with varying
levels of cooperation, combined with prioritising higher-social-welfare equilibria during the

iterative approximation, was crucial to guiding the meta-game toward cooperation.

These experiments also raised some further questions. For instance, while our learning
models successfully developed new, highly effective high-cost pricing strategies, the most
frequent low-cost strategy in the equilibria remained the predefined Guess2 strategy. Despite
employing advanced learning algorithms and techniques, the trained agents did not achieve
a more sophisticated level of cooperation than this strategy. This raises the question of what
additional techniques might help break down the complexity and make the development of

smarter cooperative strategies more straightforward for the learning agents.

This research has numerous possible extensions, including varying the specifics of the

learning process, modelling, or the pricing game itself. Our final experiments also revealed

173

Conclusions to Part I1

improvements that could be made to our early models. The framework we developed can
make examining these cases in future research more straightforward, as it automates the
tracking of different aspects of experiments for further analysis. We explain these ideas

under the directions for future research.

Directions for Future Work

A natural extension to our framework is to include a broader set of collusive strategies in the
initial meta-game. As the variations of the Guess strategy emerged most frequently in the
equilibria of the final experiments, applying Behavioural Cloning [20] to these strategies
could provide the learning agents with a larger pool of strategies exhibiting similar levels of

cooperation.

Another extension involves addressing the growth in meta-game size. As the PSRO
process iteratively expands the meta-game, computing its Nash equilibria becomes increas-
ingly complex. Removing trained pricing strategies that do not appear in the equilibria
could reduce the meta-game size, thereby lowering computation costs and allowing the

empirical process to continue toward better approximations of the hyper-game.

There are also many aspects of our research that invite further experimentation.
Beginning with the pricing game itself, this project proved more complex than initially
anticipated. Using machine learning to study a pricing game that is analytically challenging is
both appealing and demanding. Defining step-by-step benchmarks to evaluate performance
and gradually increasing complexity could simplify the process, especially when starting
from simpler games, such as single-round repeated games, where more analytical results
are available. Applying our experiments first to these simpler settings and then gradually
increasing the complexity may yield valuable insights. Indeed, in some early experiments,
we found studying a reduced form of the pricing game highly effective in monitoring the

learning agents’ progress.

Another interesting variation would be to remove the fixed number of rounds. Instead,
the game could terminate probabilistically at each stage, with a fixed probability of
termination. For comparability with our current results, this probability could be chosen so
that the expected game length matches 25 rounds. Given that game length would then follow
a geometric distribution, a termination probability of 0.04 would achieve this average. In
this setup, the distribution of game lengths would implicitly discount later-round rewards,
and the end-effect present in our fixed-length game would disappear. As a result, PPO might
perform better in training strategies compared to our current setting. This change could
also facilitate the emergence of cooperative strategies with punishment for deviation, as

observed in repeated-game theory.

We also see potential in revisiting the early, simpler learning algorithms. Our empirical
game model evolved alongside the project as we gained insights into engineering techniques
that enhance learning. Several modelling improvements from the final experiments,
such as the refined state representation, remain untested in these simpler algorithms.

Given that the REINFORCE model with a myopic baseline performed well against fixed

174

Conclusions to Part I1

deterministic opponents despite its simplicity, we suspect that incorporating the final
modelling specifications could improve its performance. Running PSRO with these

enhanced simpler algorithms might yield comparable results at lower computational cost.

In our implementation of the PSRO framework, we used Nash equilibria as the meta-
strategy solver, as we were also interested in the hyper-game’s Nash equilibria. However,
experimenting with alternative meta-strategy solvers could lead the training in different and
potentially beneficial directions. For example, Bighashdel, Wang, McAleer, Savani and
Oliehoek [5] suggests that “projected replicator dynamics” within PSRO outperforms the

Nash-based approach in preventing overfitting, while “minimum regret constraint profiles’

are more effective in minimising regret.

Finally, we have made our framework implementation available [34] to facilitate
experimentation with these ideas in future research. Our framework automates the pricing
game model, data management, logging, and learning processes, and is compatible with
advanced RL tools. It supports tracking the meta-game, analysing the behaviour of trained

strategies, and evaluating learning performance.

175

Appendix to Part Il

7.1. Plots of the Final Trained Agents

In the following, we present plots for the price path, demand potential, actions, and rewards
of the last two low-cost and two high-cost trained agents from our final experiments with
different initial game setups. Each plot illustrates the behaviour of the learning agent against
the two top opponents they were trained to compete with, with results shown for 10 trials

against each opponent. The trials against each opponent are represented in different colours.

7. Appendix to Part Il

Agent MCG-2_L SAC 91 prices through stages of pricing game

opponents
140 4 — McG-2.H_80
130 4 — MCG-2.H 72

260 1

2404

2204

2004

demand potential

180
opponents

160 | —— MCG-2_H_80
—— MCG2_H_72

0 5 10 15 20
Agent MCG-2_L_SAC 91 action in stages of pricing game

P _,_4’,’/; $ oppenents
@%‘vzf_\i‘\ —— MCG-2_H_80
\ > AN (— MCG2 H_72
N9 0 S

QIA AR
N\

W

opponents
104 — MCG-2_H 80
—— MCG2_H_72

reward
-]

Figure 7.1.: Performance of the low-cost Player 91 in the pricing game, trained using the
SAC algorithm in the MCG-2 experiment.

177

7. Appendix to Part Il

Agent MCG-2_L SAC 90 prices through stages of pricing game

150 o

opponents
140 4 — McG-2.H_80
130 { — MCG2 H 72
120
110 4

price

100 4

80 4
70 4

260 1

2404

2204

2004

180 4

demand potential

opponents
160 | —— MCG-2_H_80
—— MCG2_H_72

0 5 10 15 20
Agent MCG-2_L_SAC 90 action in stages of pricing game

opponents
,— MCG-2_H_80
% —— MCG-2_H_72

opponents
104 — MCG-2_H 80
— MCG-2 H 72

reward
-]

Figure 7.2.: Performance of the low-cost Player 90 in the pricing game, trained using the
SAC algorithm in the MCG-2 experiment.

178

7. Appendix to Part Il

Agent GUESS-2_L SAC_123 prices through stages of pricing game

150 o
opponents

140 4 GUESS-2_H_99
130 | — GUESS-2_H_107

120
110 4

price

100 4
90 -
80 4
70 4

5 10 15 20 25
Agent GUESS-2_L_SAC_123 demand potential through stages of pricing game

260 1

2404

2204

2004

180 4

demand potential

oppanents
160 { —— GUESS-2 H 99
—— GUESS-2_H_107

140 4

0 5 10 15 20
Agent GUESS-2 L SAC 123 action in stages of pricing game

i 4 N
RSSO
A A

R *""i"v\ YA
O, N K o .\\
opponents V’ V \ m "-\\

//P J

~—— GUESS-2_H_99

15
Agent GUESS-2_L_SAC_123 rewards in stages of pricing game

opponents
104 —— GUESS-2_H_99
—— GUESS-2_H_107

reward
-]

Figure 7.3.: Performance of the low-cost Player 123 in the pricing game, trained using the
SAC algorithm in the GUESS-2 experiment.

179

7. Appendix to Part Il

Agent GUESS-2_L SAC_124 prices through stages of pricing game

opponents
—— GUESS-2_H_107
—— GUESS-2_H_112

0 5 10 15 20 25

260 opponents

—— GUESS-2_H_107

2407 GUEss-2_H 112

2204

2004

180 4

demand potential

160

140 4

0 5 10 15 20
Agent GUESS-2 L SAC 124 action in stages of pricing game

action
8

oppenents \
10 —— GUESS-2_H_107
—— GUESS-2_H_112 \,

0 5 10 15 20 25
Agent GUESS-2_L_SAC_124 rewards in stages of pricing game

opponents
104 —— GUESS-2_H_107
—— GUESS-2.H_112

reward
-]

0 5 10 15 20 25

Figure 7.4.: Performance of the low-cost Player 124 in the pricing game, trained using the
SAC algorithm in the GUESS-2 experiment.

180

7. Appendix to Part Il

Agent ASPE_L SAC_102 prices through stages of pricing game

150 o
140 4
130 4
120
110 4

price

100 4

90 1
opponents

80 4 —— ASPE_H_60
704 —— ASPE_H 58

5 10 15 20 25
Agent ASPE_L_SAC_102 demand potential through stages of pricing game

260 opporients

—— ASPE_H_60
—— ASPE_H_58

2404

2204

2004

180 4

demand potential

160

140 4

0 5 10 15 20
Agent ASPE_L SAC_102 action in stages of pricing game

action
8

opponents
104 —— ASPE_H 60
—— ASPE_H_58

reward
-]

0 5 10 15 20 25

Figure 7.5.: Performance of the low-cost Player 102 in the pricing game, trained using the
SAC algorithm in the ASPE experiment.

181

7. Appendix to Part Il

Agent ASPE_L SAC_103 prices through stages of pricing game

opponents
1 —— ASPE_H_60
130 { —— ASPE_H 58

5 10 15
Agent ASPE_L_SAC_103 demand potential through stages of pricing game

260 opporients

—— ASPE_H_60
—— ASPE_H_58

2404

2204

2004

180 4

demand potential

0 5 10 15 20
Agent ASPE_L SAC_103 action in stages of pricing game

oppenents
—— ASPE H_60

opponents
104 —— ASPE_H 60
—— ASPE_H_58

reward
-]

Figure 7.6.: Performance of the low-cost Player 103 in the pricing game, trained using the
SAC algorithm in the ASPE experiment.

182

7. Appendix to Part Il

150 o
140 4
130 4
120

price

100 4

80 4
70 4

260 1

2404

demand potential

reward
-]

Agent RND-2_L SAC 119 prices through stages of pricing game

110 4

opponents
—— RND-2_H_159
—— RND-2_H_154

2204

2004

180 4

T
25
opponents
—— RND-2_H_159
—— RND-2_H_154
T T T T T
0 5 10 15 20
Agent RND-2_L SAC 119 action in stages of pricing game
= — g opponents
~—— RND-2_H_159
—— RND-2_H 154

: .
0 5 10 15 20 25

opponents
—— RND-2_H_159
—— RND-2_H_154

Figure 7.7.: Performance of the low-cost Player 119 in the pricing game, trained using the

SAC algorithm in the RND-2 experiment.

183

7. Appendix to Part Il

Agent RND-2_L SAC 120 prices through stages of pricing game

150
opponents
140 4 — RND-2_H_147
130 { —— RND-2_H_107
120 4
2 110
1=
B
100 4
a0 4
80 4
70
T T T T T T
0 25
260 opponents
sap] — RND-2.H 147
= —— RND-2_H_107
=}
£ 220
)
a
- 2004
&
£
£ 180+
k-]
160 4
140 = T T T T T
0 5 10 15 20
60 1
50 4
a0 4
=
S
< 304
&
20
opponents
10 { — RND-2_H_147
—— RND-2_H_107
0 T T T T v T
0 5 10 15 20 25
Agent RND-2_L_SAC_120 rewards in stages of pricing game
12 ==
opponents
10 —— RND-2_H_147
—— RND-2_H_107
8-
2
S 6
24
44
2
] T
0 5 10 15 20 25

Figure 7.8.: Performance of the low-cost Player 120 in the pricing game, trained using the
SAC algorithm in the RND-2 experiment.

184

7. Appendix to Part Il

Agent MCG-2_H SAC 93 prices through stages of pricing game

150 o
140 4
130 4
120
110 4

price

100 4

90 4
opponents

804 — MCG-2.L2

704 — MCG2.L 67

0 5 10 15 20 25
Agent MCG-2_H_SAC_93 demand potential through stages of pricing game

260 opponents

—— MCG2.L2

2491 —— MCG-2_L_67

2204

2004

180 4

demand potential

160

140 4

60 4
opponents:

—— MCG2_L 2
—— MCG2_L 67

action
8

Agent MCG-2_H_SAC_93 rewards in stages of pricing game

opponents
104 —— MCG-2_L 2
—— MCG-2_L_67

reward
-]

Figure 7.9.: Performance of the high-cost Player 93 in the pricing game, trained using the
SAC algorithm in the MCG-2 experiment.

185

7. Appendix to Part Il

Agent MCG-2_H SAC 94 prices through stages of pricing game

opponents
804 — MCG-2_L2
— MCG2.L 67

0 5 10 15 20 25
Agent MCG-2_H_SAC_94 demand potential through stages of pricing game

260 opponents

—— MCG2.L2
—— MCG-2_L 67

2404

demand potential
NN
(=] N
o o

180 A
160
140
60
opponents:
01 —— MCG2_L2
—— MCG-2_L 67
20 1
S T _@,‘
N S\, N
= DGt
10 1 _ 2 ST
0 i T
0 5 10 15 20 25
Agent MCG-2_H_SAC_94 rewards in stages of pricing game
12
opponents
10+ — MCG-2L 2
—— MCG-2_L 67
8
B
£ 6
g
4
>

Figure 7.10.: Performance of the high-cost Player 94 in the pricing game, trained using the
SAC algorithm in the MCG-2 experiment.

186

7. Appendix to Part Il

Agent GUESS-2_H_SAC_118 prices through stages of pricing game

opponents
804 — GUESS-2_L 1
—— GUESS-2_L 121

0 5 10 15 20 25
Agent GUESS-2_H_SAC_118 demand potential through stages of pricing game

opponents
—— GUESS-2_L 1
—— GUESS-2_L 121

demand potential
NN
(=] N
o o

opponents
—— GUESS-2_L 1
— GUESS-2_L 121

0 5 10 15 20 25
Agent GUESS-2_H_SAC_118 rewards in stages of pricing game

opponents
104 —— GUESS-2 L 1
—— GUESS-2_L_121

reward
-]

Figure 7.11.: Performance of the high-cost Player 118 in the pricing game, trained using the
SAC algorithm in the GUESS-2 experiment.

187

7. Appendix to Part Il

Agent GUESS-2_H_SAC_119 prices through stages of pricing game

150 o

oppenents
—— GUESS-2_L_1

140 4
130 4
120
110 4

price

100 4

80 4

70 4

0 5 10 15 20 25
Agent GUESS-2_H_SAC_119 demand potential through stages of pricing game

260 opponents

—— GUESS2.L 1
—— GUESS-Z_L_119

2404

2204

2004

180 4

demand potential

opponents
—— GUESS-2_L 1
—— GUESS-2 L 119

20 25

15
Agent GUESS-2_H_SAC_119 rewards in stages of pricing game

opponents
104 —— GUESS-2 L 1
—— GUESS-2_L_119

reward
-]

25

Figure 7.12.: Performance of the high-cost Player 119 in the pricing game, trained using the
SAC algorithm in the GUESS-2 experiment.

188

7. Appendix to Part Il

150 o
140 4
130 4
120

price

100 4

80 4
70 4

260 1

2404

demand potential

reward
-]

Agent ASPE_H_SAC 72 prices through stages of pricing game

110 4

opponents
—— ASPELS
—— ASPE L 82

10 15 20 25
Agent ASPE_H_SAC_72 demand potential through stages of pricing game

2204

2004

180 4

opponents
—— ASPE LS
—— ASPE_L 82

opponents

T
0 5 10 15 20 25

Agent ASPE_H_SAC_72 rewards in stages of pricing game
opponents
— ASPE.LS
—— ASPE_L 82

Figure 7.13.: Performance of the high-cost Player 72 in the pricing game, trained using the

SAC algorithm in the ASPE experiment.

189

7. Appendix to Part Il

Agent ASPE_H_SAC 73 prices through stages of pricing game

150 o
140 4
130 4
120
110 4

price

100 4

opponents
804 —— ASPE_L 5
—— ASPE L 75

0 5 10 15 20 25
Agent ASPE_H_SAC_73 demand potential through stages of pricing game

70

260 opponents

—— ASPELS

2491 —— ASPE_L 75

2204

2004

180 4

demand potential

160

140 4

Agent ASPE_H SAC 73 action in stages of pricing game

0 opponents

—— ASPELS
—— ASPEL TS

action
8

VA
e /,?"’?\\,
N A
= e

0 5 10 15 20 25
Agent ASPE_H_SAC_73 rewards in stages of pricing game

opponents
10 4 —— ASPE_L 5
—— ASPE_L 75

reward
-]

Figure 7.14.: Performance of the high-cost Player 73 in the pricing game, trained using the
SAC algorithm in the ASPE experiment.

190

7. Appendix to Part Il

Agent RND-2_H_SAC_168 prices through stages of pricing game

opponents
—— RND-2_L 10
— RND2_L 117

0 5 10 15 20 25
Agent RND-2_H_SAC_168 demand potential through stages of pricing game

260 opponents

—— RND-2_L 10
—— RND-2_L_117

2404

2204

2004

180 4

demand potential

160

140 4

opponents
—— RND-2_L_10
—— RND-2_L 117

action
8

T T T = T
0 5 10 15 20 25

Agent RND-2_H_SAC_168 rewards in stages of pricing game
12

opponents
104 —— RND-2_L 10
—— RND-2_L 117

reward
-]

Figure 7.15.: Performance of the high-cost Player 168 in the pricing game, trained using the
SAC algorithm in the RND-2 experiment.

191

7. Appendix to Part Il

Agent RND-2_H_SAC_167 prices through stages of pricing game

150
140
130
120
2 110
5
100
90 -
opponents
801 — RND-2_L_10
70 — RND-2_L 117
T r T T T T
0 5 10 15 20 25
Agent RND-2_H_SAC_167 demand potential through stages of pricing game
260 opponents
a4 —— RND-2_L 10
= —— RND-2_L 117
=
£ 220
)
2
= 200
&
£
£ 1804
k-]
160
140 4
60 |
opponents
01 —— RND-2_L_10
— RND-2_L 117
20 1
=
£ 30
&
20
10 4
0 T T T T T v
0 5 10 15 20 25
Agent RND-2_H_SAC_167 rewards in stages of pricing game
12 ==
opponents
10 —— RND-2_L 10
— RND-2_L_117
84
2
g6
24
4
>

25

Figure 7.16.: Performance of the high-cost Player 167 in the pricing game, trained using the
SAC algorithm in the RND-2 experiment.

The above agents were all trained using the SAC learning algorithm. To compare
the behaviour of SAC and PPO, the following two plots display the trained low-cost and
high-cost strategies among the last five strategies added to the meta-games in ASPE and
GUESS-2, using PPO.

192

7. Appendix to Part Il

Agent ASPE_L_PPO_99 prices through stages of pricing game

150 o

opponents
—— ASPE_H_70

140 4
130 4
120
110 4

price

100 4

90
80 4
70 4

0 5 10 15 20 25
Agent ASPE_L _PPO_99 demand potential through stages of pricing game

260 opponents

—— ASPE_H_70
—— ASPE_H_72

2404

2204

2004

180 4

demand potential

160

140 4

0 5 10 15 20
Agent ASPE_L_PPO_99 action in stages of pricing game

60 4
opponents

—— ASPE_H_70
—— ASPE H 72

action
8

204

104

0 5 10 15 20 25
Agent ASPE_L_PPO_99 rewards in stages of pricing game

opponents
104 —— ASPE_H_70
—— ASPE_H_72

reward
-]

0 5 10 15 20 25

Figure 7.17.: Performance of the low-cost Player 99 in the pricing game, trained using the
PPO algorithm in the ASPE experiment.

193

7. Appendix to Part Il

Agent GUESS-2_H_PPO_117 prices through stages of pricing game

150
opponents
140 GUESS-2_L_1
130 4 —— GUESS-2_L 121
120
2 110
5
100
90 -
80
70
T T T T T
0 5 10 15 20 25
Agent GUESS-2_H_PPO_117 demand potential through stages of pricing game
260 opponents
a4 GUESS-2_ L 1
= —— GUESS-2_L 121
=}
£ 220
)
2
= 200 \
&
£
£ 1804
k-]
160
140 4 . .
0 5 10 15 20
Agent GUESS-2 H_PPO_117 action in stages of pricing game
60 |
opponents
01 GUESS-2_L 1
—— GUESS-2_L 121
40
=
£ 30
&
20
10 /_\
0 f T T T T v
0 5 10 15 20 25
Agent GUESS-2_H_PPO_117 rewards in stages of pricing game
12
opponents
104 GUESS-2_L 1
—— GUESS-2_L 121
84
2
g6
24
3 \
>
]
0 5 10 15 20 25

Figure 7.18.: Performance of the high-cost Player 117 in the pricing game, trained using the
PPO algorithm in the GUESS-2 experiment.

7.2. Software Guide

We implemented the PSRO framework, as well as basic learning algorithms such as vanilla
policy gradient, in Python 3.9. As the project progressed, we utilised more complex learning
algorithms from the Stable-Baselines3 [54] library, which provides reliable implementations

of various reinforcement learning algorithms.

In this section, we describe the structure of our implementation, the logging details,

and how to extend and apply our framework [35] to other pricing games.

194

7. Appendix to Part I1

Environments

The pricing game we study is implemented as the environment in the reinforcement learning
setting. We have defined two environment classes, DisPricingGame and ConPricingGame,

both derived from the gym.Env class.

In our initial experiments, we considered the action space to be discrete, meaning

agents’ prices had discrete values.

price = myopic — n = step, n € {0, 1, ..., [60/step]}, step € N (7.1

We discretised the action space to reduce complexity for our basic learning methods.

The class DisPricingGame was the environment applied in this setting.

An important parameter that influences behaviour in other classes using an environment
is the action_step. This value is set to None for continuous environments and is set to an

integer (step in 7.1) in discrete environments.

Later, as we utilised more complex learning algorithms, we decided to continue our
experiments with a continuous action space over the same range. The class ConPricingGame

is employed in this setting.

price = myopic —a, a € [0, 60]

Our pricing game is implemented by overriding the reset() and step() functions. After
each step, the pricing game variables are updated, and the stage is incremented until the

final stage, where the game resets, and the parameters are initialised again.

The constant values in our pricing game are defined as global variables in the “globals.py"
file. At the start of our PSRO game, these global variables are initialised, and all other

classes have access to them.

Hence, to experiment with other pricing games, if the new game’s characteristics, such
as the payoff function and stopping condition, are the same, we suggest only changing the
values of global variables. However, if the pricing game is different, for example, if it
has a different payoff function, a new environment class should be implemented using our

implementation as a guide.

In the file classes.py, all classes used for implementing the PSRO framework are

gathered.

195

7. Appendix to Part I1

ConPricingGame

This class, defined in environments.py, represents the pricing game used in our experiments.
An instance of this class accepts a tuple of costs, an adversary’s mixed strategy, and an
integer called memory. The costs parameter specifies the production costs of the players in
order. For example, if costs = [57,71], it means the production cost of the first player in the

environment is 57, and for the second player, it is 71.

The adversary’s mixed strategy defines the opponent’s mixed strategy in this environ-
ment, against which we will train our agent. It is an instance of the MixedStrategy class.
At each episode, a specific opponent (not mixed) is selected by drawing from this mixed
strategy to train our agent. Finally, memory determines the length of the memory of previous

prices that will be included in the state representation for training the agent.

BimatrixGame

The PSRO framework in our project is implemented as a bimatrix game between low-cost
and high-cost strategies. This bimatrix game expands by adding new successful strategies
after each iteration. We have implemented this game by defining the “BimatrixGame"
class in the classes.py file. This class includes two lists, low_strategies and high_strategies,
where each component is an instance of the Strategy class. Additionally, this class includes
matrix_A and matrix_B, which store the payoffs of strategies playing against each other.
For example, A; ; is the low-cost player’s total payoff in the pricing game between low-cost

strategy 7 and high-cost strategy j. B; ; represents the payoff for the high-cost player.

One of the important properties we implemented for this class is its ability to be
serialised. When running the PSRO framework, we might need to stop and resume later due
to various reasons, such as encountering an error or needing to continue on a different server.
As the game size increases, rebuilding the matrix by having all strategies play against each
other becomes time-consuming. Additionally, since the strategies are stochastic, the values
of these matrices might not be the same in subsequent runs (despite averaging the results
of multiple pricing game runs), which increases the error. Therefore, using the methods
save_game() and load_game(), the game can be saved as a pickle file and loaded later to

continue running. For this purpose, each strategy will be serialised as well.

Each entry of the payoff matrices is computed by calling the update_matrix_entry(i,j)
method, in which the two strategies play the pricing game for NUM_MATRIX_ITER
times, and the average payoff becomes the matrix entry. To add new low-cost strategies,
the payoffs are computed, and the rows are added to both matrix_A and matrix_B us-
ing the add_low_cost_row(row_A, row_B) method. Similarly, for adding a column,
add_high_cost_col(col_A, col_B) can be used.

196

7. Appendix to Part I1

Strategy

As we mentioned before, each low-cost and high-cost strategy in the PSRO setting is defined
as an instance of the Strategy class. This class is serialisable as needed for serialising
the BimatrixGame class. There are two types of strategies: static and sb3_models. The
static strategies are those that are not trained through the learning process, and they are
deterministic given the state of the game. All the strategies explained in Section 4.3.2 are of

this type.

The models we train using reinforcement learning, employing neural networks as
function approximators, are referred to as sb3_models. This name arises from the fact that
these models are trained using stable-baseline3 implementations. However, in our earlier
implementations, we used models by defining neural networks directly, and those models

are referred to as neural_net.

The argument model_or_func can either accept the name of a trained model to be
loaded later or, in the case of a static strategy, specify the static function that takes the

environment, player index, and first-round price as inputs.

To compute the price that the strategy will play, you should call the method play(env,
player) on an instance of this class. This method requires the environment and player
index as inputs, where player=0 indicates playing as the first player and player=1 as the
second player in the defined environment. It’s important to note that the first player is not
necessarily the low-cost player. For instance, if env.costs is defined as [71, 57], the first

player in the environment would be the high-cost player.

When the play method is called, if the strategy is of type sb3model, the model will be
loaded. The model will then compute and return the price to play at the current state of the
environment. In this method, the environment is assumed to be already initialised, and the

method only computes the price without updating the environment.

The method play_against(env, adversary) can be used to play a full episode in the
environment against another strategy, referred to as the adversary. By using this method,
you can obtain the resulting payoff of two strategies competing against each other. The

output will be a list of their payoffs at every stage.

197

7. Appendix to Part I1

MixedStrategy

The Nash equilibrium strategies of the PSRO game are not necessarily pure, so we need a
structure to represent mixed equilibrium strategies. The MixedStrategy class represents a
mixed strategy over a set of strategies. It is defined by specifying a list of strategies and a
corresponding list of probabilities, called strategy_probs. In the environment, the adversary
is an instance of this class. At each episode, one strategy is selected according to the defined
probabilities. The method choose_strategy() draws a strategy from the mixed strategy based

on these probabilities and returns it.

As mentioned, we need the BimatrixGame class to be serialisable, which means that
strategies and mixed strategies must be serialisable as well. The method copy_unload()
unloads the models loaded into each strategy within the current mixed strategy and returns

a new instance of this class. This ensures the class is ready for serialisation.

BaseDataBase and DataBase

The BaseDataBase class serves as the foundational class from which the databases for each
of the projects can be derived. The DataBase class inherits from BaseDataBase and is

specific to this project and the pricing game.

Starting with the BaseDataBase class: when an instance of this class is initialised with
a name as input, a SQLite database is created if it does not already exist. This class provides
methods for executing insert, update, or delete queries, such as execute_insert_query(query)
and batch_insert_to_table(table, values_list). The method execute_select _query(query,
fetch_one) can be used to select rows from the database, while dataframe_select(query)
returns the selected rows as a DataFrame. These methods are then utilised in the derived

classes for actions specific to the game.

In the DataBase class, we have defined all the methods specific to our pricing and

PSRO games. Our database consists of the following tables:

* trained_agents: This table records all the details of any low-cost or high-cost agent
that has been trained, whether or not they are added to the PSRO game. These
details include the learning model, the number of episodes, the base agent from which
parameters were preset, the expected payoff, the payoff threshold, the equilibrium

used for training, and more.

* agent_iters: This table contains records of different iterations of each successfully
trained agent against various adversaries. These data are recorded for ease of analysis
and to have the data ready for running analytics models. However, these data can
also be accessed by loading the trained model and playing against each adversary.
As the PSRO game size increased later in our experiments, the database became too
large, so we became selective about which iterations to record. Some of these details
include the total return of both agents, the list of rewards at each stage of the pricing

game, the actions played at each stage, and the prices and demand of each player.

» game_equilibria: This table stores the details of each equilibrium found by the tracing

procedure in each round of the PSRO game, whether or not these equilibria were used

198

7. Appendix to Part I1

in the learning process. Some columns in this table include the game size, low-cost
and high-cost strategies, the expected payoft of each agent, whether the equilibrium
was used, and how many low-cost and high-cost agents were trained and added to the

game using this equilibrium.

* strategy_average_probs: This table records the average probability of each low-cost
and high-cost strategy appearing in the equilibria used for training agents. This table

helps us identify common agents in the equilibria and better analyse the game.

When an instance of this class is initialised, the SQLite database and its tables are
created if they do not already exist. The exact structure of the database is shown in
Figure 7.19.

The names of the tables and their columns are defined as constant parameters in the
DataBase class. Additionally, methods are provided for inserting new rows into each table

or updating existing ones when necessary, such as for the strategy_average_probs table.

Logging

When the PSRO framework is executed, various pieces of game-related information
are stored in different files within the base folder. This section provides an explanation of

each of these files and their contents.

During the execution of the main code, the experiment is identified by the job_name
variable. This value is used in the logging files’ names to specify the experiment they

belong to.

"error.log"

This file records any errors that occur during the execution of the project. The Python
“logging" library is utilised for this purpose, with the main code wrapped in a “try-except"
block that logs any exceptions raised into this file. This feature is particularly important
when running the project on an external server, as it allows for effective tracking and

troubleshooting of issues.

"game_[job_name].txt"

The latest bimatrix game in the PSRO setting is recorded in the “game_[job_name].txt"
file. With each round of the meta-game, whenever new strategies are added, this file is
updated with the new bimatrix game. It is crucial not to delete this file, as it is necessary for

restoring the last game from the previous stopping point.

The file begins with the number of rows and columns, separated by a space, on the first
line. Following this, the payoff matrix A, representing low-cost strategies, is printed. The
columns of each row of the matrix are separated by a tab, with each new row starting on
a new line. After matrix A, the payoff matrix B, corresponding to high-cost strategies, is

printed in the same format.

199

7. Appendix to Part Il

| agents_iters |
L3 id integer "id" integer
| agent_id integer "agent_id" integer NOT NULL
= adv text "adv" text NOT NULL
|~ agent_return text "agent_return" text
[Z) adv_return text "adv_return” text
=) agent_rewards text "agent_rewards" text
[=) adv_rewards text "adv_rewards" text
|l actions text "actions” text
[=) agent_prices text "agent_prices" text
|| adv_prices text "adv_prices" text
|- agent_demands text "agent_demands" text
|=) adv_demands text "adv_demands" text
| game_equilibria | B) -
3 id integer "id" integer
2 time text "time" text
[=) game_size text "game_size" text NOT NULL
[freg real "freq" real
|=I low_strategy text "low_strategy" text NOT NULL
|=) high_strategy text "high_strategy" text NOT NULL
) low_payoff real "low_payoff" real NOT NULL
[2) high_payoff real "high_payoff" real NOT NULL
| used INTEGER "used" INTEGER DEFAULT 0
=] num_new_low integer "num_new_low" integer DEFAULT 0
[= num_new_high integer "num_new_high" integer DEFAULT 0
_| strategy_average_probs
2 id integer "id" integer
= time text "time" text
|- game_size text "game_size" text
| equi_count integer "equi_count" integer
|- last_equi_id integer "last_equi_id" integer
=) cost integer "cost" integer
.| strategy_probs text "strategy_probs" text
.| trained_agents
E2id integer "id" integer
|2 time text "time" text
[=) name text "name" text NOT NULL
|| base_agent text "base_agent" text DEFAULT NULL
= n_ep integer "n_ep" integer NOT NULL
|=) cost integer "cost" integer NOT NULL
[mixed_adv text "mixed_adv" text NOT NULL
[alg text "alg" text NOT NULL
= seed integer "seed" integer
|=) num_procs integer "num_procs" integer DEFAULT 1
|=! running_time integer "running_time" integer
|=) return_std real "return_std" real
| expected_payoff real "expected_payoff" real
|=) payoff_treshhold real "payoff_treshhold" real
|- added integer "added" integer
|l equi id integer "equi id" integer

Figure 7.19.: The structure of the database, including tables and columns of the recorded
data.

games folder

At each iteration of the meta-game, the bimatrix game representation is saved in this folder.
The game representation is as explained in the last section. These files are not updated but

are saved separately to track the changes in the bimatrix game at each iteration.

Moreover, in the last lines of the text files, the names of all the strategies in the bimatrix

game are printed.

200

7. Appendix to Part I1

"game_[job_name].pickle"

To continue the meta-game from the last stopping point, we need to regularly (at the end of
each iteration) save the serialised bimatrix class instance. When we start running the game
again, we load the last saved file and continue from there. Saving and loading of the game
are done using the “pickle" library. This pickle file includes the matrix of the game as well

as the serialised strategies for both players.

This file is crucial for continuing the process from the last point; otherwise, the bimatrix
game would have to be reinitialised, and all entries would need to be recomputed. For large

games, this can take hours.

"progress_[job_name].txt"

In this file, all the progress is recorded. At each iteration, all the equilibria found for the
bimatrix game are written. For each equilibrium, all the new strategies trained and added to
the game are recorded along with their details, such as the learning algorithm and expected
payoff. The progress file will not be reset, and whenever the game is paused and continued,
the new logs will be appended to the previous logs, allowing all details to be tracked in this
file.

The content of this file is for us to follow the progress of the game. The running code

does not use this data; it is only logged.

201

Bibliography

[1]

[3]

[4]

[5]

[10]

[11]

[12]

[13]

Askenazi-Golan, G., Cecchelli, D. M. and Plumb, E., Reinforcement Learning,
Collusion, and the Folk Theorem, 2024, arXiv: 2411.12725 [cs.GT].

Aumann, R. J., Correlated Equilibrium as an Expression of Bayesian Rationality,
Econometrica 55.1 (1987), 1-18.

Avis, D., Rosenberg, G. D., Savani, R. and von Stengel, B., Enumeration of Nash
Equilibria for Two-Player Games, Economic Theory 42.1 (2010), 9-37.

Bertrand, Q., Duque, J., Calvano, E. and Gidel, G., Q-learners Can Provably Collude
in the Iterated Prisoner’s Dilemma, https://arxiv.org/pdf/2312.08484,
arXiv:2312.08484 [cs.LG], 2024.

Bighashdel, A., Wang, Y., McAleer, S., Savani, R. and Olichoek, F. A., Policy Space
Response Oracles: A Survey, Accessed: 2024-12-26, 2024, arXiv: 2403.02227.

Brightwell, G., Kenyon, C. and Paugam-Moisy, H., ‘Multilayer Neural Networks:
One or Two Hidden Layers?’, Proceedings of the Conference on Neural Information

Processing Systems, 1996.

Brown, Z. Y. and MacKay, A., Competition in Pricing Algorithms, American
Economic Journal: Microeconomics 13.3 (2021), 270-305.

Cai, Y., Candogan, O., Daskalakis, C. and Papadimitriou, C., Zero-sum Polymatrix
Games: A Generalization of Minmax, Mathematics of Operations Research 41.2
(2016), 648-655.

Calvano, E., Calzolari, G., Denicolo, V. and Pastorello, S., Artificial Intelligence,
Algorithmic Pricing, and Collusion, American Economic Review 110.10 (2020),
3267-3297.

Chen, X., Deng, X. and Teng, S.-H., Settling the Complexity of Computing Two-Player
Nash Equilibria, Journal of the ACM 56.3 (2009), Article 14.

Chin, H., Parthasarathy, T. and Raghavan, T., Structure of Equilibria in N-person
Non-Cooperative Games, International Journal of Game Theory 3.1 (1974), 1-19.

Daskalakis, C., Goldberg, P. W. and Papadimitriou, C. H., The Complexity of
Computing a Nash Equilibrium, SIAM Journal on Computing 39.1 (2009), 195-259.

Datta, R. S., Finding all Nash Equilibria of a Finite Game Using Polynomial Algebra,
Economic Theory 42.1 (2010), 55-96.

https://arxiv.org/abs/2411.12725
https://arxiv.org/pdf/2312.08484
https://arxiv.org/abs/2403.02227

Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

DeMichelis, S. and Germano, F., On the Indices of Zeros of Nash Fields, Journal of
Economic Theory 94.2 (2000), 192-217.

Demichelis, S. and Ritzberger, K., From Evolutionary to Strategic Stability, Journal
of Economic Theory 113.1 (2003), 51-75.

Douglas, C., Provost, F. and Sundararajan, A., Naive Algorithmic Collusion: When Do
Bandit Learners Cooperate and When Do They Compete?, 2024, arXiv: 2411.16574.

Fabian: High-Performance Computing, London School of Economics, Accessed:
2024-12-26, 2023, urL: https://info.lse.ac.uk/staff/divisions/dts/serv

ices/fabian/Fabian.

Fujimoto, S., Hoof, H. van and Meger, D., Addressing Function Approximation Error
in Actor-Critic Methods, 2018.

Game Theory Explorer, Game Theory Explorer Software, http://gametheoryexp
lorer.org/, Accessed: 2024-12-26, 2024.

Gleave, A., Taufeeque, M., Rocamonde, J., Jenner, E., Wang, S. H., Toyer, S., Ernestus,
M., Belrose, N., Emmons, S. and Russell, S., imitation: Clean Imitation Learning
Implementations, arXiv:2211.11972v1 [cs.LG], 2022, arXiv: 2211.11972 [cs.LG].

Govindan, S. and Wilson, R., Computing Nash Equilibria by Iterated Polymatrix
Approximation, Journal of Economic Dynamics and Control 28.7 (2004), 1229-1241.

Giil, F., Pearce, D. and Stacchetti, E., A Bound on the Proportion of Pure Strategy
Equilibria in Generic Games, Mathematics of Operations Research 18.3 (1993),
548-552.

Haarnoja, T., Zhou, A., Abbeel, P. and Levine, S., Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, 2018,
arXiv: 1801.01290.

Harsanyi, J. C., Oddness of the Number of Equilibrium Points: A New Proof,
International Journal of Game Theory 2.1 (1973), 235-250.

Harsanyi, J. C. and Selten, R., A General Theory of Equilibrium Selection in Games,
The MIT Press, 1988.

Harsanyi, J. C., The Tracing Procedure: a Bayesian Approach to Defining a Solution
for Noncooperative Games, International Journal of Game Theory 4.2 (1975), 61-94.

Hasselt, H. v., ‘Double Q-Learning’, Proceedings of the 24th International Conference
on Neural Information Processing Systems - Volume 2, NIPS’10, 2010, 2613-2621.

Hertling, C. and Vujic, M., Maximal Number of Mixed Nash Equilibria in Generic
Games where Each Player has Two Pure Strategies, Accessed: 2024-12-26, 2024,
arXiv: 2412.17890.

Hertling, C. and Vujic, M., Mixed Extensions of Generic Finite Games Embedded into
Products of Real Projective Spaces, Accessed: 2024-12-26, 2024, arXiv: 2412.17638.

203

https://arxiv.org/abs/2411.16574
https://info.lse.ac.uk/staff/divisions/dts/services/fabian/Fabian
https://info.lse.ac.uk/staff/divisions/dts/services/fabian/Fabian
http://gametheoryexplorer.org/
http://gametheoryexplorer.org/
https://arxiv.org/abs/2211.11972
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/2412.17890
https://arxiv.org/abs/2412.17638

Bibliography

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Hofbauer, J., Some Thoughts on Sustainable/Learnable Equilibria, Plenary lecture,
Conference of the 15th IMGTA (Italian Meeting on Game Theory and Applications),
Urbino, Italy, July 9-12, 2003. Accessed: 2024-12-26, UrRL: https://homepage.un

ivie.ac.at/josef.hofbauer/@3sustain.pdf.

Howson Jr, J. T., Equilibria of Polymatrix Games, Management Science 18.5, Part I
(1972), 312-318.

Ickstadt, C., Theobald, T. and von Stengel, B., A Stable-Set Bound and Maximal
Numbers of Nash Equilibria in Bimatrix Games, Accessed: 2024-12-26, 2024, arXiv:
2411.12385.

Jacot, A., Gabriel, F. and Hongler, C., ‘Neural Tangent Kernel: Convergence and
Generalization in Neural Networks’, Proceedings of the 32nd Conference on Neural
Information Processing Systems (NeurIPS), 2018, 8580-8589.

Jahani, S., 2x2x2 Games: Equilibrium Enumeration and Graphical Representation,
Accessed: 2025-07-13, GitHub, 2025, urL: https://github.com/sahar-jahani
/2x2x2_Games_Equilibria.

Jahani, S., Pricing Game Strategy Evolution via PSRO and Reinforcement Learning,
Accessed: 2025-07-13, GitHub, 2025, urL: https://github.com/sahar-jahani
/PSRO_RL_Pricing.

Jahani, S. and von Stengel, B., ‘Automated Equilibrium Analysis of 2 X2 x 2 Games’,
Algorithmic Game Theory, 15th International Symposium, SAGT 2022, ed. by P.
Kanellopoulos, M. Kyropoulou and A. Voudouris, vol. 13584, Lecture Notes in
Computer Science, Springer, Cham, 2022, 223-237.

Keser, C., Experimental Duopoly Markets with Demand Inertia: Game-Playing
Experiments and the Strategy Method, vol. 391, Lecture Notes in Economics and

Mathematical Systems, Berlin: Springer Verlag, 1992.

Keser, C., Some Results of Experimental Duopoly Markets with Demand Inertia,
The Journal of Industrial Economics 41.2 (1993), 133-151.

Kingma, D. P. and Ba, J., Adam: A Method for Stochastic Optimization, Accessed:
2024-12-26, 2017, arXiv: 1412.6980.

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Perolat, J., Silver, D.
and Graepel, T., ‘A Unified Game-Theoretic Approach to M Reinforcement Learning’,
Advances in Neural Information Processing Systems, 2017, 4193—-4206.

Lemke, C. E., Bimatrix Equilibrium Points and Mathematical Programming, Man-
agement Science 11.7 (1965), 681-689.

Lemke, C. E. and Howson Jr, J. T., Equilibrium Points of Bimatrix Games, Journal
of the Society for Industrial and Applied Mathematics 12.2 (1964), 413—423.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D. and
Wierstra, D., Continuous Control with Deep Reinforcement Learning, 2019, arXiv:
1509.02971.

204

https://homepage.univie.ac.at/josef.hofbauer/03sustain.pdf
https://homepage.univie.ac.at/josef.hofbauer/03sustain.pdf
https://arxiv.org/abs/2411.12385
https://github.com/sahar-jahani/2x2x2_Games_Equilibria
https://github.com/sahar-jahani/2x2x2_Games_Equilibria
https://github.com/sahar-jahani/PSRO_RL_Pricing
https://github.com/sahar-jahani/PSRO_RL_Pricing
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1509.02971

Bibliography

[44]

[45]

[46]

[47]
(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

McKelvey, R. D. and McLennan, A., The Maximal Number of Regular Totally Mixed
Nash Equilibria, Journal of Economic Theory 72.2 (1997), 411-425.

McMabhan, H. B., Gordon, G. J. and Blum, A., Planning in the Presence of Cost
Functions Controlled by an Adversary, Carnegie Mellon (2003).

Miklés-Thal, J. and Tucker, C., Al, Algorithmic Pricing, and Collusion, CPI Antitrust
Chronicle (2024).

Nash, J., Non-Cooperative Games, The Annals of Mathematics 54.2 (1951), 286-295.

Neumann, J. von and Morgenstern, O., Theory of Games and Economic Behavior,

Princeton University Press, 1944.

Nobel Foundation, Nobel Prize 1994 — Economic Sciences: John C. Harsanyi, John
F. Nash Jr., Reinhard Selten, Accessed: 2024-12-26, 1994, urL: https://www.nobe

lprize.org/prizes/economic-sciences/1994/selten/facts/.

Ockenfels, A. and Moldovanu, B., Reinhard Selten: Pioneering Analyst of Rationality
and Human Behaviour, Accessed: 2024-12-26, 2016, uUrRL: https://cepr.org/vox
eu/columns/reinhard-selten-pioneering-analyst-rationality-and-hum

an-behaviour.

OpenAl Contributors, Proximal Policy Optimization (PPO), Accessed: 2024-12-26,
OpenAl, 2024, urL: https://spinningup.openai.com/en/latest/algorithms
/ppo.html.

OpenAl Contributors, Spinning Up in Deep Reinforcement Learning: Soft Actor-
Critic (SAC), Accessed: 2024-12-26, OpenAl, 2024, urL: https://spinningup.op

enai.com/en/latest/algorithms/sac.html.

PyTorch Contributors, Adam Optimizer: torch.optim.Adam, Accessed: 2024-12-26,
PyTorch Foundation, 2024, urL: https://pytorch.org/docs/stable/generate
d/torch.optim.Adam.html.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M. and Dormann, N.,
Stable-Baselines3: Reliable Reinforcement Learning Implementations, Journal of
Machine Learning Research 22.268 (2021), 1-8.

Ritzberger, K., The Theory of Normal Form Games from the Differentiable Viewpoint,
International Journal of Game Theory 23 (1994), 207-236.

Rosenmiiller, J., On a Generalization of the Lemke—Howson Algorithm to Non-
cooperative N-person games, SIAM Journal on Applied Mathematics 21.1 (1971),
73-79.

Savani, R. and Turocy, T. L., Gambit: The Package for Computation in Game Theory,
Version 16.3.0, Accessed: 2025-05-06, 2025.

Schulman, J., Chen, X. and Abbeel, P., Equivalence Between Policy Gradients and
Soft Q-Learning, 2018, arXiv: 1704.06440.

Schulman, J., Levine, S., Moritz, P., Jordan, M. 1. and Abbeel, P., Trust Region Policy
Optimization, 2017, arXiv: 1502.05477.

205

https://www.nobelprize.org/prizes/economic-sciences/1994/selten/facts/
https://www.nobelprize.org/prizes/economic-sciences/1994/selten/facts/
https://cepr.org/voxeu/columns/reinhard-selten-pioneering-analyst-rationality-and-human-behaviour
https://cepr.org/voxeu/columns/reinhard-selten-pioneering-analyst-rationality-and-human-behaviour
https://cepr.org/voxeu/columns/reinhard-selten-pioneering-analyst-rationality-and-human-behaviour
https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://spinningup.openai.com/en/latest/algorithms/sac.html
https://spinningup.openai.com/en/latest/algorithms/sac.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://arxiv.org/abs/1704.06440
https://arxiv.org/abs/1502.05477

Bibliography

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O., Proximal Policy
Optimization Algorithms, 2017, arXiv: 1707.06347.

Selten, R., Reexamination of the Perfectness Concept for Equilibrium Points in
Extensive Games, International Journal of Game Theory 4.1 (1975), 25-55.

Selten, R., Spieltheoretische Behandlung eines Oligopolmodells mit Nachfragetrigheit:
Teil I: Bestimmung des dynamischen Preisgleichgewichts, Zeitschrift fiir die gesamte

Staatswissenschaft / Journal of Institutional and Theoretical Economics 121.2 (1965),

301-324.

Shapley, L. S., A Note on the Lemke-Howson Algorithm, Mathematical Programming
Study 1: Pivoting and Extensions, (1974), 175-189.

Sutton, R. S. and Barto, A. G., Reinforcement Learning: An Introduction, 2nd ed.,
MIT Press, 2018.

van den Elzen, A. H. and Talman, A. J. J., A Procedure for Finding Nash Equilibria
in Bi-matrix Games, Zeitschrift fiir Operations Research 35.1 (1991), 27-43.

von Stengel, B., Finding Nash Equilibria of Two-Player Games, 2021, arXiv: 2412
.17638.

von Stengel, B., Game Theory Basics, Cambridge, UK: Cambridge University Press,
2022.

von Stengel, B., van den Elzen, A. and Talman, D., Computing Normal Form Perfect
Equilibria for Extensive Two-Person Games, Econometrica 70.2 (2002), 693-715.

Vujié, M., ‘Geometry of the Sets of Nash Equilibria in Mixed Extensions of Finite
Games’, PhD thesis, Universitit Mannheim, 2022.

Waltman, L. and Kaymak, U., Q-learning Agents in a Cournot Oligopoly Model,
Journal of Economic Dynamics and Control 32.10 (2008), 3275-3293.

Watkins, C. J. and Dayan, P., Q-learning, Machine Learning 8.3 (1992), 279-292.

Wellman, M. P., ‘Methods for Empirical Game-Theoretic Analysis’, Proceedings
of the National Conference on Artificial Intelligence (AAAI), AAAI Press, 2006,
1552-1556.

Wilson, R., Computing Equilibria of N-person Games, SIAM Journal on Applied
Mathematics 21.1 (1971), 80-87.

Winkels, H. M., ‘An algorithm to Determine All Equilibrium Points of a Bimatrix
Game’, Game Theory and Related Topics, ed. by O. Moeschlin and D. Pallaschke,
Amsterdam: North-Holland, 1979, 137-148.

Zai, A. and Brown, B., Deep Reinforcement Learning in Action, New York, NY:
Manning Publications, 2020.

Zhu, A., ‘Solving 2 X 2 X 2 Games’, Undergraduate Dissertation in Mathematics,
London School of Economics, Candidate number 13905, 2021.

206

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2412.17638
https://arxiv.org/abs/2412.17638

	Declaration
	Abstract
	Acknowledgements
	Equilibrium Enumeration in 2 2 2 Games
	Introduction to Part I
	Equilibrium Enumeration for 2 2 2 Games
	Background
	General Form of a 222 Game
	Components of Best Response Correspondence
	Formulation of Hyperbolas
	Classification of Indifference Surfaces
	Solving Indifference Equations System
	Intersection of Two Indifference Surfaces (IOS)
	Types of Nash Equilibria

	Generic and Non-Degenerate Games
	Enumeration of Nash Equilibria
	Computing Partially Mixed and Pure Equilibria
	Computing Completely Mixed Equilibria

	Graphical Representation of the Game
	Selten’s Horse, a Well-Known Example

	Upper Bound on the Number of Equilibria in 2 2 2 games
	Preliminary Lemmas
	Upper Bound Theorem
	Concept of Equilibrium Index
	Completing the Proof of Main Theorem
	Discussion and Ongoing Work

	Conclusions to Part I
	Appendix to Part I
	Excluded Case of the Upper Bound Theorem
	Instructions for Software
	Code Structure

	Empirical Game-Theoretic Analysis of a Pricing Game
	Introduction to Part II
	Foundations and Modelling
	Learning Fundamentals
	Single-Agent Reinforcement Learning
	Markov Decision Process
	Value Functions
	Q-Learning
	Policy Gradient Algorithms

	Policy-Space Response Oracles
	The Pricing Game
	Subgame Perfect Equilibrium
	Initial Deterministic Strategies

	The Framework: Pricing Game, Reinforcement Learning and PSRO

	Initial Reinforcement Learning Experiments
	REINFORCE Algorithm
	REINFORCE with Baseline
	Actor-Critic

	PSRO Framework and Advanced RL Algorithms
	PSRO Framework Using REINFORCE with Myopic Baseline
	Advanced Learning Algorithms: New RL Framework
	Proximal Policy Optimisation
	Soft Actor-Critic
	Comparison of the Learning Algorithms

	Incorporating Advanced RL Algorithms into the PSRO Setting
	Integrating PPO and SAC into a Unified Meta-Game
	Hyperparameter Tuning of the Learning Algorithms
	Equilibrium Selection in PSRO
	Initial Meta-Game

	Final Experiments: Exploring Initial Meta-Games with Updated Equilibrium Selection
	Equilibria of the Meta-Game
	Price Instability
	Average Strategy Probabilities in Equilibria
	Behaviour of Final Pricing Strategies
	Replicator Dynamics

	Conclusion to Part II
	Appendix to Part II
	Plots of the Final Trained Agents
	Software Guide

